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Abstract We present the lower bounds expressed in standard deviation units on the
expectations of the generalized order statistics (gOS)which are based on the parent dis-
tributionswith the decreasing generalized failure rate. The particular cases are families
of distributions with the decreasing density and decreasing failure rate. The bounds
are obtained with the use of the projection method applied to functions satisfying
some particular conditions and appropriately chosen convex cones. We also provide
the attainability conditions. The results are illustrated with the numerical results on
the progressively type II censored order statistics, which are one of the special cases
of gOS.
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1028 M. Bieniek, A. Goroncy

1 Introduction

Assume that F is arbitrary distribution with the quantile function

F−1(u) = sup {x ∈ R : F(x) ≤ u} , u ∈ [0, 1),

and finite moments

μ =
∫ 1

0
F−1(x)dx, σ 2 =

∫ 1

0

(
F−1(x) − μ

)2
dx .

Letγ = (γ1, . . . , γn)be thevector of positive numbers.Thegeneralizedorder statistics
(gOSs, for short) X (1)

γ , . . . , X (n)
γ based on F with the parameters γ were introduced

by Kamps (1995a, b) by means of the quantile transformation

X (r)
γ = F−1

(
U (r)

γ

)
, r = 1, . . . , n,

where U (1)
γ , . . . ,U (n)

γ denote the uniform generalized order statistics with the joint
density function of the form

f
U (1)

γ ,...,U (n)
γ

(u1, . . . , un) = k

⎛
⎝n−1∏

j=1

γ j

⎞
⎠
(
n−1∏
i=1

(1 − ui )
mi

)
(1 − un)

k−1,

for 0 ≤ u1 ≤ · · · ≤ un < 1, where mi = γi − γi+1 − 1 for all i = 1, . . . , n − 1 and
k = γn .

The model of gOSs contains various models of ordered statistical data as special
cases. For instance, if γr = n − r + 1, 1 ≤ r ≤ n, then gOSs coincide in the dis-
tributional sense with ordinary order statistics of the random sample of size n. Other
special cases include various models of record values, sequential order statistics or
progressively type II order statistics. For details the reader is referred, e.g., to Cramer
and Kamps (2003). The main role of the model is to unify the study of various models
of ordered random variables, and to provide a unified approach to a broad variety of
problems. Examples of such approach may be found for instance in the papers by Bie-
niek (2006, 2008a, b), Cramer et al. (2002, 2004), Rychlik (2010) andGoroncy (2014)
(optimal bounds on expectations of gOS), Belzunce and Martínez-Riquelme (2015)
(stochastic ordering of gOSs), Mahmoud and Al-Nagar (2009) (recurrence relations
on moments of gOSs and related characterizations of distributions) and Barakat et al.
(2016) (prediction of future values of gOSs).

To formulate themain aimof this paperwe need to introduce the following notations
and definitions. For a fixed α ∈ R the generalized Pareto distributions (GPDs) are
defined as follows
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Sharp lower bounds on expectations of gOS… 1029

Wα(x) =

⎧⎪⎨
⎪⎩
1 − (1 − αx)1/α , for x ≥ 0 if α < 0;
1 − (1 − αx)1/α , for 0 ≤ x ≤ 1

α
if α > 0;

1 − e−x , for x ≥ 0 if α = 0.

Consider the distribution function F which succeeds theGPDdistribution in the convex
transform order, i.e., F �c Wα , which means that the composition F−1Wα is a convex
function on the support of Wα . This condition is equivalent to W−1

α F being concave
on the support of F and if F is absolutely continuous with the density function f , the
derivative

(W−1
α F)′(y) = (1 − F(y))α−1 f (y)

is decreasing. Bieniek (2008a) introduced the family of distributions with the decreas-
ing generalized failure rate (DGFR) as follows

DGFR(α) = {F : F �c Wα},

(see alsoBieniek 2007a)with the generalized failure rate of an absolutely continuous F
defined as

γα(y) = (1 − F(y))α−1 f (y),

(see Barlow and van Zwet 1970). Note that if α = 1, then W1 becomes the standard
uniform distribution, and if α = 0, then W0 is the standard exponential distribution,
hence obviously, DGFR(0) = DFR and DGFR(1) = DD.

The problemwe consider in this paper is to find the lower bounds on the expectations
of the standardized generalized order statistics

E
X (r)

γ − μ

σ
, (1)

when the underlying distribution function F belongs to the family of distributions
with the decreasing generalized failure rate (DGFR). The issue of the bounds on the
expectations of gOSs has been extensively examined recently, beginning with the
general case considered by Cramer et al. (2002), who presented the upper nonnegative
bounds, expressed in scale units generated by absolute central moments of various
orders, using the projection method (for details see Rychlik 2001). Later, Goroncy
(2014) completed these results by establishing the upper non-positive and all lower
bounds on (1) for an arbitrary distribution function F , considering also the case of
bounds expressed in the absolute central moments units. In general, lower negative
(upper positive) and lower positive (upper negative) bounds are obtained by use of
different methods.

Non-positive lower bounds on expectations of gOSs in the general case of the
baseline distribution function F were derived by use of the projection method, based
on the greatest convex minorants (see Moriguti 1953). Below we briefly describe the
procedure.
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1030 M. Bieniek, A. Goroncy

First, we make use of the representation due to Cramer and Kamps (2003) of the
probability density function of the r th uniform gOS U (r)

γ in the form

f∗,r (x) = cr−1Gr (x | γ1, . . . , γr )

= cr−1Gr,0
r,r

(
1 − x

∣∣∣∣ γ1, . . . , γr

γ1 − 1, . . . , γr − 1

)
, x ∈ (0, 1),

where cr−1 = ∏r
j=1 γ j and Gr,0

r,r is a particular Meijer’s G-function defined by

Gr,0
r,r

(
s

∣∣∣∣ γ1, . . . , γr

γ1 − 1, . . . , γr − 1

)
= 1

2π i

∫
L

sz∏r
j=1(γ j − 1 − z)

dz (2)

and L is appropriately chosen contour of integration. For the definition of a general
G-function see Chaps. 2 and 3 of Mathai (1993). Note that (2) implies that changing
the order of γ1, . . . , γr does not affect f∗,r and therefore without loss of generality
we may and do assume that γ1 ≥ . . . ≥ γr > 0. Moreover, we denote by F∗,r the
cumulative distribution function of U (r)

γ .
Secondly, the expectation of the r th gOS is given by

EX (r)
γ =

∫ 1

0
F−1(u) f∗,r (u)du.

Denoting h∗,r = 1 − f∗,r , and noting that h∗,r integrates to 0 over [0, 1] we have

− (EX (r)
γ − μ) =

∫ 1

0
(F−1(u) − μ)h∗,r (u)du. (3)

Consider the convex cones

C =
{
g ∈ L2(0, 1) : g is nondecreasing

}

C 0 =
{
g ∈ C :

∫ 1

0
g(u)du = 0

}

in the usual Hilbert space L2(0, 1) of square integrable functions on [0, 1]. Denote by
P and P0 the projection operators onto C and C 0, respectively. Then we have

−(EX (r)
γ − μ) ≤

∫ 1

0
(F−1(u) − μ)P0h∗,r (u)du.

Since the cone C is translation invariant then

∫ 1

0
Ph∗,r (u)du =

∫ 1

0
h∗,r (u)du = 0.
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Sharp lower bounds on expectations of gOS… 1031

Therefore Ph∗,r ∈ C 0 and P0h∗,r = Ph∗,r . Using the Schwarz inequality we obtain
the following bound

EX (r)
γ − μ

σ
≥ −‖Ph∗,r‖. (4)

The projection Ph∗,r is determined using the greatest convex minorant method of
Moriguti (1953). Cramer et al. (2004) have shown that f∗,r is a unimodal function
(see also Bieniek 2007b). Accordingly, assuming that H∗,r denotes the antiderivative
of h∗,r we need to determine δ such that H∗,r (δ) = δh∗,r (δ), or equivalently,

F∗,r (δ) = δ f∗,r (δ), (5)

hence

Ph∗,r (u) =
{
1 − f∗,r (δ), for 0 ≤ u ≤ δ,

1 − f∗,r (u), for δ < u ≤ 1.

Therefore we have the following bound

EX (r)
γ − μ

σ
≥ −

(
δ( f∗,r (δ))

2 +
∫ 1

δ

( f∗,r (u))2du − 1

)1/2

.

The equality holds for the distribution function satisfying the following condition

F−1(u) − μ

σ
= Ph∗,r (u)

‖Ph∗,r‖ , u ∈ (0, 1).

Note that the Moriguti (1953) approach has been also used, e.g., by Okolewski and
Kaluszka (2008) to derive sharp upper bounds on the expectations of concomitants of
order statistics or by Bieniek (2016b) to derive optimal bounds on the bias of trimean.

2 Auxiliary results

In this paper we are interested in establishing the lower negative bounds on the expec-
tations of the gOSs based on the DGFR families of distributions. Therefore we need to
adapt the procedure described in the previous section, imposing additional restrictions
on F . The upper bounds in the restricted families of DD, DDA and DFR, DFRA dis-
tributions have been already considered by Bieniek (2006, 2008b), who established
the positive projection bounds, and recently by Goroncy (2017), who examined the
negative ones in the DD and DDA families.

Fix a distribution function W on the interval [0, d), where d ≤ ∞, with the proba-
bility density function w such that

∫ d

0
x2w(x)dx < ∞. (6)
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1032 M. Bieniek, A. Goroncy

We consider the Hilbert space L 2
W of square integrable functions with respect to the

weight w, and we define the following convex cones inL 2
W

CW =
{
g ∈ L 2

W : g is nondecreasing and convex
}

,

C 0
W =

{
g ∈ CW :

∫ d

0
g(u)w(u)du = 0

}
.

By PW and P0
W we denote the projection operators onto CW and C 0

W , respectively. In

what follows we use the notation f̂∗,r = f∗,r ◦ W and ĥ∗,r = h∗,r ◦ W . Changing the
variables in (3) we have

−(EX (r)
γ − μ) =

∫ d

0
(F−1W (u) − μ)ĥ∗,r (u)w(u)du

≤
∫ d

0
(F−1W (u) − μ)P0

W ĥ∗,r (u)w(u)du.

(7)

Taking into account that

∫ d

0
ĥ∗,r (u)w(u)du =

∫ 1

0
h∗,r (t)dt = 0,

and appealing to the translation invariance ofCW , similar arguments as in the previous
section prove that P0

W ĥ∗,r = PW ĥ∗,r . Therefore, using (7), we have

EX (r)
γ − μ

σ
≥ −‖PW ĥ∗,r‖W , (8)

where for an arbitrary f ∈ L 2
W we denote theL 2

W–norm of f by

‖ f ‖W =
(∫ d

0
| f (u)|2w(u)du

)1/2

.

The equality in (8) is attained for distribution functions F satisfying the following
condition:

F−1W (u) − μ

σ
= PW ĥ∗,r (u)

‖PW ĥ∗,r‖W
, u ∈ (0, 1). (9)

2.1 The shapes of the projected functions

In order to determine PW ĥ∗,r it is crucial to study the monotonicity and convexity
properties of the functions f̂∗,r and ĥ∗,r . The shape of f̂∗,r was briefly described by
Bieniek (2008a), but here we need much more precise statement. This requires the
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Sharp lower bounds on expectations of gOS… 1033

knowledge of sign changes of the derivatives f̂ ′∗,r and f̂ ′′∗,r . (Bieniek 2008a, Lemma
2.1) argued that these properties can be studied effectively only if W satisfies the
conditionW ′′(x)(1−W (x)) = c

(
W ′(x)

)2, i.e., whenW = Wα for some α ∈ R. Then
we may apply the following variation diminishing property (VDP) of the functions
f̂∗,1, . . . , f̂∗,r , which is an easy consequence of Theorems 1, 2 and 3 of Bieniek
(2007b).

Proposition 1 (VDP) Assume that r ∈ N and γ1 ≥ γ2 ≥ · · · ≥ γr > 0. Then the
number of zeroes in (0, d) of any linear combination

∑r
j=1 a j f̂∗, j in the support of

Wα does not exceed the number of sign changes in the sequence (a1, . . . , ar ) of its
coefficients. Moreover, the first and the last signs of the combination are the same as
the signs of the first and last non zero elements of (a1, . . . , ar ), respectively.

Next we recall the expressions for the first and second derivatives of f̂∗,r = f∗,rWα

obtained by Bieniek (2008a)

f̂ ′∗,r (x) = 1

1 − αx

(
γr f̂∗,r−1(x) − (γr − 1) f̂∗,r (x)

)
, (10)

and

f̂ ′′∗,r (x) = 1

(1 − αx)2
[
ar−2 f̂∗,r−2(x) + ar−1 f̂∗,r−1(x) + ar f̂∗,r (x)

]
,

where

ar−2 = γr−1γr > 0 for r ≥ 3,

ar−1 = −γr (γr + γr−1 − α − 2),

ar = (γr − 1)(γr − α − 1).

The above expressions for f̂ ′∗,r and f̂ ′′∗,r are valid also for r = 1 and r = 2 if we adopt

the convention f̂∗,0 = f̂∗,−1 ≡ 0.
Recall that by Lemma 2.2 of Cramer et al. (2004) we have the following values of

f̂∗,r at 0 and d

f̂∗,r (0)=
{

γ1, if r =1,

0, if r ≥ 2,
lim
x→d

f̂∗,r (x)=

⎧⎪⎨
⎪⎩
0, if γr > 1,

A > 1, if γr−1>γr = 1,

+∞, if γr−1 = γr = 1 or γr <1.

Next, using (10) and VDP it is easy to see that each f̂∗,r , r ≥ 2, is increasing–
decreasing if γr > 1 or increasing if γr ≤ 1. Moreover we note that since f̂∗,r

integrates to 1 with weight wα over the support of Wα , then in any case the maximum
of f̂∗,r is greater than 1. Summarizing the above considerations we easily determine
the shape of f̂∗,r which is described in the following lemma.

Lemma 1 The shape of f̂∗,r = f∗,rWα for r ≥ 2 is as follows:
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1034 M. Bieniek, A. Goroncy

(i) If γr ≤ 1, then f̂∗,r is strictly increasing on (0, d) from 0 to either A > 1 or
A = +∞;

(ii) If α > 0 and γr ∈ (1, 1 + α], then there exists a ∈ (0, d) such that f̂∗,r is
increasing on (0, a) from 0 to f̂∗,r (a) > 1 and then concave decreasing on
(a, d) to 0;

(iii) If γr > 1 + max(α, 0), then there exist a, b ∈ (0, d) such that a < b and f̂∗,r is
increasing on (0, a) from 0 to f̂∗,r (a) > 1, then concave decreasing on (a, b),
and finally convex decreasing on (b, d) to 0.

Obviously, the convexity properties of f̂∗,r on (0, a) may also be established, but
as it turns out later they are irrelevant for our purposes.

2.2 The results on the projection problem

The projection of ĥ∗,r onto CW will be determined using the following extension
of the results of Danielak and Rychlik (2004). We consider the class of functions
h : [0, d) → R satisfying the following set of conditions:

(A) h is a bounded, twice differentiable function, such that h(0) ≥ 0, h(d) :=
limx↗d h(x) ≥ 0 and

∫ d
0 h(x)w(x)dx = 0, where w is a positive weight func-

tion satisfying
∫ d
0 w(x)dx = 1. Moreover, h is decreasing on (0, a), convex

increasing on (a, b), and concave increasing on (b, d), for some 0 < a < b < d.

This set of conditions is the same as the one considered by Danielak and Rychlik
(2004) except for the assumption that h(0) = 0. But careful analysis of the proof of
Lemma 3 of Danielak and Rychlik (2004) shows that it holds true under less restrictive
condition h(0) ≥ 0 as well. By Lemma 1 we see that the function ĥ∗,r = 1 − f̂∗,r

satisfies the conditions (A) for r ≥ 2 and γr > 1 + α if α > 0, or γr > 1 if α ≤ 0.
Note that each function h satisfying the conditions (A) has the unique minimum

h(a) < 0, so it has the unique zero θ ∈ (a, d). By Lemma 4(ii) of Danielak and
Rychlik (2004), if

H(x) =
∫ x

0
h(u)w(u)du, x ∈ (0, d),

then the equation

H(γ ) = W (γ )h(γ ) (11)

has exactly one solution γ ∈ (0, d), which belongs to the interval (a, θ).
The precise form of PWh for h satisfying (A) is determined by the following

auxiliary functions
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Sharp lower bounds on expectations of gOS… 1035

λW (y) =
∫ d
y (x − y) (h(x) − h(y)) w(x)dx∫ d

y (x − y)2w(x)dx
,

KW (y) = λW (y) − h′(y), (12)

LW (y) =
∫ d

y
[h(x) − h(y) − λW (y)(x − y)]w(x)dx .

The following results is now easy extension of Propostion 1 of Danielak and Rychlik
(2004).

Proposition 2 Assume that γ is given by (11) and let

K = {γ < y < b : KW (y) ≥ 0 and LW (y) = 0} .

IfK �= ∅ and y∗ = supK , then

PWh(x) =

⎧⎪⎨
⎪⎩
h(γ ), for 0 ≤ x ≤ γ,

h(x), for γ < x ≤ y∗,
h(y∗) + λ∗(x − y∗), for y∗ < x < d,

(13)

where λ∗ = λW (y∗). Otherwise, ifK = ∅, then

PWh(x) = − H(y)

W (y)

⎡
⎣ (x − y)1[y,d)(x)∫ d

y (x − y)w(x)dx
− 1

⎤
⎦ , (14)

for the greatest y ∈ (0, γ ] satisfying
∫ d
y h(x)w(x)dx∫ y

0 w(x)dx
=

∫ d
y (x − y)w(x)dx

∫ d
y (x − y)h(x)w(x)dx∫ d

y (x − y)2w(x)dx − (∫ d
y (x − y)w(x)dx

)2 . (15)

3 Main results

Weare now ready to formulate themain results, concerning the family of theDGFR(α)

distributions, i.e., for W = Wα . In order to fulfil the condition (6) we need to assume
that α > − 1

2 . In the formulation and the proof of the main result we use the following
notation and auxiliary functions. Firstly, for 1 ≤ j ≤ r we define

σ j,r (α) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

α

⎛
⎝1 −

r∏
i= j

γi

γi + α

⎞
⎠ , if α �= 0,

r∑
i= j

1

γi
, if α = 0.
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1036 M. Bieniek, A. Goroncy

Then σ j,r (α) > 0 for j = 1, . . . , r , if γr ≥ 1 and α > − 1
2 . Also, σ j,r (α) → σ j,r (0)

if α → 0. It is easy to verify that the sequence σ j,r (α), 1 ≤ j ≤ r , is decreasing with
respect to j . Moreover, we define auxiliary functions which are used in the statement
and the proof of the main result. First, let

λα(y) = (1 + α)(1 + 2α)

2(1 − αy)

⎧⎨
⎩−

r−1∑
j=1

σ j,r (α)

γ j
f̂∗, j (y) +

(
1

1 + α
− σr,r (α)

γr

)
f̂∗,r (y)

⎫⎬
⎭ .

(16)
Moreover, we define

Kα(y) = 1

1 − αy

r∑
j=1

b j f̂∗, j (y), (17)

where

b j = − (1 + α)(1 + 2α)

2γ j
σ j,r (α), 1 ≤ j ≤ r − 2,

br−1 = − (1 + α)(1 + 2α)

2γr−1
σr−1,r (α) + γr ,

br = − (γr − 1)(γr + (α + 1
2 ))(γr − (1 + α))

γr (γr + α)
,

and

Lα(y) = 1

1 − Wα(y)

r∑
j=1

d j f̂∗, j (y), (18)

where

d j = 1

γ j

(
1 + 2α

2
σ j,r (α) − 1

)
, 1 ≤ j ≤ r − 1,

dr = (γr − 1)(γr − (1 + α))

2(1 + α)γr (γr + α)
.

Proposition 3 Assume that α > − 1
2 and let X (r)

γ with r ≥ 2 be the generalized
order statistic based on the distribution function F ∈ DGFR(α) and parameters
γ = (γ1, . . . , γr ), where γ1 ≥ γ2 ≥ · · · ≥ γr > 1 + max(α, 0). Let δ ∈ (Wα(a), 1)
be the unique solution to

(1 − δ)

r∑
j=1

1

γ j
f∗, j (δ) = 1 − δ f∗,r (δ) (19)

and let γ = W−1
α (δ).
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Sharp lower bounds on expectations of gOS… 1037

Let v be the only solution to equation Kα(v) = 0 in the interval (a, b). If the
condition

Kα(γ ) > 0 and Lα(γ ) < 0 < Lα(v), (20)

holds true, then there exists the unique y ∈ (γ, v) such that Lα(y) = 0 and we have
the following bound

E
X (r)

γ − μ

σ
≥ −B1, (21)

where

B2
1 = δ

(
1 − f∗,r (δ)

)2 +
∫ W (y)

δ

(1 − f∗,r (x))
2dx

+ (1 − Wα(y))

[
(ĥ∗,r (y))

2 + 2λĥ∗,r (y)
1 − αy

1 + α
+ 2λ2(1 − αy)2

(1 + α)(1 + 2α)

]
,

and λ = λα(y). The equality in (21) is attained for F satisfying

F−1(Wα(x)) =

⎧⎪⎨
⎪⎩

μ + σ
B1

(1 − f̂∗,r (γ )), for 0 ≤ x < γ,

μ + σ
B1

(1 − f̂∗,r (x)), for γ ≤ x < y,

μ + σ
B1

[1 − f̂∗,r (y) + λ(x − y)], for y ≤ x < d.

(22)

Otherwise, i.e., if (20) fails, then we define y ∈ (0, γ ] as the greatest solution to
equation

1 −
r∑
j=1

1

γ j
f̂∗, j (y) = (1 + 2α)Wα(y)

r∑
j=1

1

γ j

[
1 + (1 + α)σ j,r (α)

]
f̂∗, j (y) (23)

and we put ρ = Wα(y), λ = λα(y). Then we have the following bound

E
X (r)

γ − μ

σ
≥ −B2, (24)

where

B2 =
√
1 + 2αρ − (1 + 2α)ρ2

(1 + 2α)ρ2

⎛
⎝1 −

r∑
j=1

1

γ j
f̂∗, j (y)

⎞
⎠ . (25)

The equality in (24) holds for F such that

F−1(Wα(x)) =
{

μ + σ
B2

(1 − f̂∗,r (y)), for 0 ≤ x < y,

μ + σ
B2

[1 − f̂∗,r (y) + λ(x − y)], for y ≤ x < d.
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1038 M. Bieniek, A. Goroncy

Proof It suffices to determine PWα ĥ∗,r applyingProposition 2withW = Wα , h = ĥ∗,r

and H = Ĥ∗,r defined by

Ĥ∗,r (y) =
∫ y

0
ĥ∗,r (t)wα(t)dt.

First we determine γ defined by (11). Since ĥ∗,r = 1 − f̂∗,r , then (11) is equivalent
to F∗,r (Wα(γ )) = Wα(γ ) f̂∗,r (γ ) or to (5) with δ = Wα(γ ). Using the representa-
tion (12) of Bieniek (2008b)

1 − F∗,r (u) = (1 − u)

r∑
j=1

1

γ j
f∗, j (u)

we get (19). Note that an easy application of the last formula shows that

Ĥ∗,r (y) = (1 − W (y))

⎛
⎝ r∑

j=1

1

γ j
f̂∗, j (y) − 1

⎞
⎠ . (26)

Next we determine the conditions which ensure that PWα ĥ∗,r is of the form (13).
To this aim we need to study the properties of the functions λα = λWα ,
Kα = KWα and Lα = LWα given by (12). Writing temporarily λW (y) =
λW (y; h), KW (y) = KW (y; h) and LW (y) = LW (y; h), we easily obtain
that λWα (y; ĥ∗,r ) = −λWα (y; f̂∗,r ) and KWα (y; ĥ∗,r ) = −KWα (y; f̂∗,r ) and
LWα (y; ĥ∗,r ) = −LWα (y; f̂∗,r ). The functions on the right hand sides of the last
three equalities are determined in (A.1), (3.2) and (3.3) of Bieniek (2008a). This eas-
ily implies the representation of λα , Kα and Lα given in (16), (17) and (18).

The next step is to determine the zeros of Kα and Lα in order to determine when
the setK is not empty. First we determine the zeros of (17). Note that since λα(y) is
the slope of the best linear approximation of ĥ∗,r restricted to the interval (y, d) and
passing through (y, ĥ∗,r (y)), then easy geometric considerations show that Kα(a) >

0 > Kα(b). Since b j < 0, j = 1, . . . , r − 2 and br < 0, we conclude that function
Kα is either − or − + − on (0, d). The first situation is not possible since K (a) > 0,
therefore K is negative, positive and ultimately negative on (0, d) and hence positive
and negative on (a, b). Let v denote the only solution of the equation Kα(v) = 0 in
(a, b). So if Kα(γ ) > 0, thenK + = {y ∈ (γ, b) : Kα(y) > 0} = (γ, v). Otherwise,
if Kα(γ ) ≤ 0, then K + = ∅ and in consequence K = ∅.

Nowwe analyze the function (18). Note that dr > 0.Moreover, consider δ j = γ j d j ,
j = 1, . . . , r −1. It is easily seen that δ1 ≥ · · · ≥ δr−1. This implies that d1, . . . , dr−1
are either all positive or all negative, or first positive, then negative. Therefore Lα is
either + or −+ or + − + on (0, d). By Lemma 4 of Gajek and Rychlik (1998) (see
also Lemma 7 of Danielak and Rychlik (2004)) we get that Lα is either + or −+ on
K + = (γ, v) provided that this set is non-empty.

Summing up if Kα(γ ) > 0 and Lα(γ ) < 0 < Lα(v), then K = {y}, where
y ∈ (γ, v) is the unique solution to Lα(y) = 0 in (γ, v). Therefore if (20) holds,
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then PWα ĥ∗,r is of the form (13) with y∗ = y and λ∗ = λα(y). The value of the
corresponding bound B1 given by (21) is justL 2

Wα
–norm of PWα ĥ∗,r , and (22) follows

from (9).
On the other hand if (20) fails, thenK = ∅ and PWα ĥ∗,r is of the form (14). The

parameter y is defined by (15) which is equivalent to (23). The value of the bound (24)
is just the L 2

Wα
-norm of (14) with W = Wα which amounts to

− Ĥ∗,r (y)

Wα(y)

√
1 + (1 + 2α)Wα(y)

(1 + 2α)(1 − Wα)(y)
.

Using (26) we transform this into the right hand side of (25). Again, the formula for
F for which the bound is attained follows from (9), which completes the proof. ��

3.1 Remaining cases

If α > 0 and 1 < γr ≤ 1 + α, then according to Lemma 1 the function ĥ∗,r is first
decreasing and then convex increasing. Its projection P↗ĥ∗,r onto the convex cone
of nondecreasing functions inL 2

W is determined by Moriguti approach. Thus

P↗ĥ∗,r (u) =
{
ĥ∗,r (γ ), for 0 ≤ u ≤ γ,

ĥ∗,r (u), for γ ≤ u ≤ d,

where γ = W−1
α (δ), and δ is the unique solution to (19). Therefore, P↗ĥ∗,r ∈ CWα

and PWα ĥ∗,r = P↗ĥ∗,r . This implies the bound

E
X (r)

γ − μ

σ
≥ −B3, (27)

where

B2
3 = Wα(γ )ĥ2∗,r (γ ) +

∫ d

γ

(
ĥ∗,r (u)

)2
wα(u)du

= δ
(
h∗,r (δ)

)2 +
∫ 1

δ

(
h∗,r (u)

)2
du,

which does not depend on α. The equality in (27) holds for F satisfying

F(x) =

⎧⎪⎨
⎪⎩
0, if x−μ

σ
<

h∗,r (δ)

B3
,

h−1∗,r

(
B3

x−μ
σ

)
, if h∗,r (δ)

B3
≤ x−μ

σ
< 1

B3
,

1, if x−μ
σ

≥ 1
B3

.

Finally, if γr ≤ 1, then ĥ∗,r is decreasing, so PWα ĥ∗,r is constant and the lower
bound is just 0, so EX (r)

γ ≥ μ.
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Table 1 Bounds on the expectations of the standardized progressively type II censored order statistics for
R1 = (1, 2, 3, 4, 5, 6, 7)

General F F ∈ DD F ∈ DFR

r Lower Upper Range Lower Upper Range Lower Upper Range

2 −2.7136 0.0171 2.7307 −1.5369 0 1.5369 −0.9411 0 0.9411

3 −2.1742 0.0665 2.2407 −1.4345 0 1.4345 −0.9080 0 0.9080

4 −1.8259 0.1197 1.9456 −1.3288 0 1.3288 −0.8708 0 0.8708

5 −1.5481 0.1749 1.7230 −1.2150 0 1.2150 −0.8266 0 0.8266

6 −1.2840 0.2367 1.5207 −1.0797 0 1.0797 −0.7678 0 0.7678

7 −0.9546 0,3191 1.2737 −0.8712 0 0.8712 −0.6643 0 0.6643

4 Applications

We illustrate the above results via one of the particular examples of the gOSs, which
is the model of the progressively type II censored order statistics. Such data often
occur, e.g., in life testing or reliability studies. The censored life testing, although is
not as efficient as life testing under the complete sample, is usually implemented in
case when some resources saving, i.e., time, is our priority. In such reliability tests
a fixed number of components is placed in test at the same time, and we decide to
terminate the test earlier (e.g., due to the long life of certain components) and perform
the reliability analysis based on the observed data up to the time of termination. The
test is terminated when a predetermined number of component failures have occurred,
while the times to failure of each failed unit are recorded.

Precisely, in the type II censoring scheme, we consider N independent lifetimes
X1, . . . , XN based on the common distribution function F , and the experiment where
particular amount of surviving units are removed at various experiment stages. After
the i-th failure, Ri still living units are removed at random, i = 1, . . . , n. Formally,
we observe n ≤ N failures X (1)∗,γ , . . . , X (n)∗,γ , according to the fixed censoring scheme
R = (R1, . . . , Rn) for non–negative integers R1, . . . , Rn with N = n +∑n

i=1 Ri . In

this case we have γ j = N + 1 − j −∑ j−1
i=1 Ri , j = 1, . . . , n and γ1 = N .

It may be of the interest to consider the time to failure of the r th item as the popula-
tionmeanμ estimator, in terms of the range of its bias. In order to do that, we need both
upper and lower bounds of the expected standardized progressively type II censored

order statistics E
X (r)∗,γ −μ

σ
, possibly in various cases of the initial distribution function.

In this paper we have considered N = 35, n = 7 and the following three censoring
schemes: R1 = (1, 2, 3, 4, 5, 6, 7), R2 = (4, 4, 4, 4, 4, 4, 4), R3 = (7, 6, 5, 4, 3, 2, 1)
(Bieniek 2016a, cf.) in the numerical calculations. The tables below present the lower
and the upper bounds for three various cases of the base distribution function F :
general case without any restrictions, decreasing density and decreasing failure rate
families for these particular censoring schemes. We also provide the spread of the
bounds, denoted in tables as range.
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Table 2 Bounds on the expectations of the standardized progressively type II censored order statistics for
R2 = (4, 4, 4, 4, 4, 4, 4)

General F F ∈ DD F ∈ DFR

r Lower Upper Range Lower Upper Range Lower Upper Range

2 −2.6405 0.0180 2.6585 −1.5273 0 1.5273 −0.9381 0 0.9381

3 −2.0529 0.0715 2.1244 −1.4060 0 1.4060 −0.8984 0 0.8984

4 −1.6659 0.1318 1.7977 −1.2733 0 1.2733 −0.8503 0 0.8503

5 −1.3546 0.1976 1.5522 −1.1251 0 1.1251 −0.7893 0 0.7893

6 −1.0600 0.2753 1.3353 −0.9459 0 0.9459 −0.7042 0 0.7042

7 −0.7009 0.3858 1.0867 −0.6731 0 0.6731 −0.5489 0 0.5489

Table 3 Bounds on the expectations of the standardized progressively type II censored order statistics for
R3 = (7, 6, 5, 4, 3, 2, 1)

General F F ∈ DD F ∈ DFR

r Lower Upper Range Lower Upper Range Lower Upper Range

2 −2.5580 0.0190 2.5770 −1.5157 0 1.5157 −0.9344 0 0.9344

3 −1.9061 0.0779 1.9840 −1.3667 0 1.3667 −0.8848 0 0.8848

4 −1.4575 0.1494 1.6069 −1.1868 0 1.1869 −0.8165 0 0.8165

5 −1.0818 0.2355 1.3173 −0.9680 0 0.9680 −0.7174 0 0.7174

6 −0.7127 0.3516 1.0643 −0.6850 0 0.6850 −0.5581 0 0.5581

7 −0.2450 0.5601 0.8051 −0.2450 0.2887 0.5337 −0.2295 0 0.2295

It would seem, that the scheme R1 preserves the most information among all
considered schemes, hence it should provide the best possible approximation of the
population meanμ in this particular setting of the progressively type II censored order
statistics. The intuition is that it is better to leave the items in the experiment as long
as possible, like the scheme R1 does. However, in this specific case, the better approx-
imation is delivered by the scheme R3, which is in some way against the intuition.
One can suspect that the similar situation holds for other values of N , n, and censoring
schemes R. Unfortunately, this supposition cannot be proved in the general case, since
the estimation formulas are too complicated (Tables 1, 2, 3).
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