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Abstract The receiver operating characteristic (ROC) curve describes the perfor-
mance of a diagnostic test, which classifies individuals into one of two categories.
Many parametric, semiparametric and nonparametric estimation methods have been
proposed for estimating the ROC curve and its functionals. In this paper the mini-
mum distance estimation of the binormal ROC curve is considered. A modification
of the estimator considered in the paper of Davidov and Nov (J Stat Plan Inference
142(4):872–877, 2012) and some new estimators are proposed. We compare the accu-
racy of the new estimators with known minimum distance estimators of the binormal
ROC curve and we conclude that our estimators generally perform better than their
competitors.

Keywords Receiver operating characteristic (ROC) curve · Binormal model ·
Semiparametric estimation · Minimum distance estimation (MDE) · Bayesian
bootstrap (BB)

1 Introduction

The receiver operating characteristic (ROC) curve is commonly used to describe
the accuracy of a medical or other diagnostic test, which classifies individuals into
“non-diseased” and “diseased” categories. It is defined as a plot of the true posi-
tive rate against the false positive rate, or sensitivity versus 1-specificity, for various
threshold values. Over the years, it has been widely applied in many fields including
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biosciences, data mining, experimental psychology, finance, geosciences, machine
learning, medicine, radiology, sociology and others. For comprehensive review of the
literature, see Zhou et al. (2002), Pepe (2003), Krzanowski and Hand (2009) and
Gonçalves et al. (2014).

More precisely, let X and Y be the test results from a non-diseased population and
a diseased population, respectively. Let F be a continuous cumulative distribution
function (cdf) of the random variable X, and G—a continuous cdf of the random
variable Y. The ROC curve is defined as a plot of 1 − G(c) versus 1 − F(c) for
−∞ ≤ c ≤ ∞, or equivalently as a plot

ROC(t) = 1 − G(F−1(1 − t)), (1)

against t , for t ∈ [0, 1].
Aspecial feature of theROCcurve is that it is invariant to any increasing transforma-

tion of the data, i.e. if X ′ = h(X), and Y ′ = h(Y ), for some increasing transformation
h, then the ROC curve corresponding to the distribution functions F andG is the same
as the ROC curve corresponding to the distribution function F ′ and G ′ of the random
variables X ′ and Y ′, respectively.

In this paper we consider the problem of estimation of the ROC curve in the binor-
mal model, i.e. we assume that after some increasing transformation h, the random
variables X ′ and Y ′ are normally distributed.Without loss of generality we can assume
that X ′ ∼ N (0, 1) and Y ′ ∼ N (μ, σ 2). In this case the ROC curve has a simple para-
metric form

ROC(t) = �
(μ

σ
+ 1

σ
�−1(t)

)
, (2)

where � is the cumulative distribution function of the standard normal distribution.
Thus, in the binormalmodel, the estimation of the ROC curve reduces to the estimation
of the parametersμ and σ.Themost common arguments in favor of using the binormal
estimator are presented in Hanley (1988). Swets (1986) and Hanley (1988, 1996) also
argue that the binormal estimator is robust.

Many different techniques have been proposed to solve the problem of semipara-
metric estimation of the ROC curve. For estimating ROC curves from discrete or
grouped response data, the most commonly used procedure is that proposed by Dorf-
man and Alf (1969). Metz et al. (1998) developed an algorithm called LABROC,
which groups continuous data into a finite number of ordered categories and then
uses the maximum likelihood algorithm from Dorfman and Alf (1969). Hsieh and
Turnbull (1996) proposed a generalized least squares procedure for grouped data and
a minimum distance estimator (MDE), which does not require grouping data. MDE
of the binormal ROC curve was also considered in the papers of Davidov and Nov
(2009, 2012). In the papers of Zou and Hall (2000), Cai and Moskowitz (2004), Zhou
and Lin (2008) maximum likelihood and pseudo-likelihood approach to estimate the
binormal ROC curve was considered. Techniques based on regression were also pro-
posed (see for example Lloyd 2002; Cai and Pepe 2002; Qin and Zhang 2003; Wan
and Zhang 2007). Bayesian approach to the semiparametric estimation of the ROC
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curve was considered in the papers of Branscum et al. (2008), Erkanli et al. (2006),
Gu et al. (2008), Gu and Ghosal 2009. The paper Gonçalves et al. (2014) overviews
some developments on the estimation of the ROC curve with the particular emphasis
on some frequentist and Bayesian methods which have been mostly employed in the
medical setting.

This paper deals with minimum distance estimation of the binormal ROC curve. To
the best of our knowledge, a minimum distance approach to estimating the binormal
ROCcurve parameterswas considered only byHsieh andTurnbull (1996) andDavidov
and Nov (2009, 2012). In the paper of Davidov and Nov (2009) the central idea
was to estimate the unknown function h (a transformation of X and Y to normal
random variables) in two different ways; only one of the two estimates depended on
the unknown parameters μ and σ of the binormal ROC curve. Then, they estimated
μ and σ by the values that minimized a certain norm of the difference between the
estimates of the function h. In this paper we do not develop this idea. A different
approach is presented in the papers of Hsieh and Turnbull (1996) andDavidov andNov
(2012). They took into consideration two different measures of distance between the
empirical and the theoretical ordinal dominance curve (ODC), the curve closely related
to the ROC curve. Davidov and Nov (2012) showed that their MDE is consistent and
asymptotically normally distributed and it outperforms Hsieh and Turnbull’s original,
grouped-data estimator, but it has not been compared with the Hsieh and Turnbull’s
MDE estimator.

In this paper we compare the accuracy of the known MDE’s given by Hsieh and
Turnbull (1996) and Davidov and Nov (2012).We obtain that theMDE given by Hsieh
and Turnbull (1996) outperforms, in some sense, MDE given by Davidov and Nov
(2012). Both of the estimators are obtained by minimization of distance measures
between the unknown binormal and empirical ROC curve. Empirical ROC curve, as a
step function, often gives unsatisfactory nonparametric estimators of the ROC curve
in the case of small sample sizes. Therefore, the second purpose of this work is to
introduce modifications of these known measures of distance by replacing the under-
laying empirical ROC curve by its continuous nonparametric counterparts. Another
modification of Davidov and Nov (2012) approach stems from widening the domain
taken into account when the distance between empirical and binormal ROC curve
is calculated. In this paper, a total of seven new estimators in binormal model are
introduced and their performances are compared in the simulation study.

The paper is organized as follows. In Sect. 2 we recall the MDE’s of the binormal
ROC curve parameters considered in the papers of Hsieh and Turnbull (1996) and
Davidov and Nov (2012). Then we propose a modification of the Davidov and Nov
estimator, and somenewMDE’s by replacing the empirical ROCcurve by theBayesian
bootstrap estimator of theROCcurve (seeGu andGhosal 2008) inmeasures of distance
considered by Hsieh and Turnbull (1996) and Davidov and Nov (2012). We prove
the consistency of the estimators proposed. We also recall two smooth nonparametric
estimators of the ROC curve, namely the kernel estimator considered by Lloyd (1998),
and the estimator proposed by Jokiel-Rokita and Pulit (2013), which we also use
to obtain MDE’s of the binormal ROC curves. Results from simulation studies are
provided in Sect. 3. In Sect. 4 real data analysis is discussed. The paper ends with
some concluding remarks in Sect. 5.
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2 Minimum distance estimation of the ROC curve

In this section, we recall some known methods and provide some new methods of
estimation of the parameters μ and σ in the binormal model, basing on the minimum
distance concept. Minimum distance estimation has been studied extensively begin-
ning with the work ofWolfowitz (1957). The concept of minimum distance estimation
of the binormal ROC curve parameters was introduced in framework of estimation of
binormal ordinal dominance curve (ODC) given by D(t) = F(G−1(t)), t ∈ [0, 1].
The ODC curve is closely related to the ROC curve and in the binormal model it has
the following parametric form

D(t) = �(μ + σ�−1(t)).

However, in course of this paper, we findmore convenient to construct all estimators of
the unknown parameters μ and σ in the direct reference to the ROC curves. Therefore
all results originally established for ODC curves will be rephrased in terms of ROC
curves.

2.1 Minimum distance estimator of Hsieh and Turnbull

Assume that independent samples X1, . . . , Xm and Y1, . . . ,Yn from distributions with
cdf’s F andG, respectively, are available. Denote by Fm andGn the empirical distribu-
tion functions of X1, . . . , Xm and Y1, . . . ,Yn, respectively, and the empirical quantile
function by G−1

n (t) = inf{y : Gn(y) ≥ t}. The empirical ROC curve is defined as

ROCmn(t) = 1 − Gn(F
−1
m (1 − t)), t ∈ (0, 1), (3)

while the empirical ODC curve is given by

Dmn(t) = Fm(G−1
n (t)), t ∈ (0, 1).

In the paper of Hsieh and Turnbull (1996), MDE’s of the ROC curve parameters are
derived by finding the ODC curve that fits most closely to the empirical ODC curve
using a L2 norm criterion.We adopt the original idea introduced byHsieh and Turnbull
(1996). More precisely, for θ = (μ, σ )T , let us denote by

ξmn(θ) = ROCmn(t) − �
(μ

σ
+ 1

σ
�−1(t)

)
, (4)

and

‖ξmn(θ)‖ =
∫ 1

0
ξ2mn(θ)dt (5)

the L2-distance measure between ROC(t) and ROCmn(t).
The MDE θ̂ = (μ̂, σ̂ )T of the parameter θ is defined by

‖ξmn(θ̂)‖ = inf
θ∈�

‖ξmn(θ)‖, (6)
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where � = {θ = (μ, σ )′ : μ ∈ R, σ > 1}, as in the paper of Hsieh and Turnbull
(1996). The restriction that σ > 1 is not unreasonable if one thinks of the healthy
response as “noise” and the diseased response as “noise plus signal”. However, we
can avoid this restriction if we modify the distance criterion (5) so that the integral
is over a closed interval excluding 0 and 1. In the sequel, we will denote the MDE
estimator θ̂ by θ̂HT = (μ̂HT , σ̂HT ). Using the theory developed by Millar (1984),
Hsieh and Turnbull (1996) proved the asymptotic normality of their MDE of the
parameter θ , but did not provide any concrete procedure to compute them. In Sect. 3,
we describe an algorithm, used in the simulation study, to obtain the estimates θ̂HT .

2.2 Minimum distance estimator of Davidov and Nov

Hsieh and Turnbull (1996) also proposed (in Remark 1), as an object for future
research, to modify their measure of distance by applying the �−1 transformation
to both Dmn(t) and D(t) which, in terms of the ROC curve, leads to following coun-
terpart

νmn(θ) = �−1(ROCmn(t)) −
(μ

σ
+ 1

σ
�−1(t)

)
(7)

of ξmn(θ). Davidov and Nov (2012) followed on this suggestion and considered
estimation of the parameter θ based on minimization of the following objective func-
tion

‖νmn(θ)‖ =
∫ b

a
ν2mn(θ)dt, (8)

where the integration endpoints 0 < a < b < 1 ensures that the last integral is finite.
Namely, they considered the MDE

θ̂DN := (μ̂DN , σ̂DN ) = argminμ,σ

∫ b

a

[
�−1(ROCmn(t)) −

(μ

σ
+ 1

σ
�−1(t)

)]2
dt,

(9)
where

a = min{i/m : ROCmn(i/m) > 0, i = 1, . . . ,m}, (10)

b = max{i/m : ROCmn(i/m) < 1, i = 1, . . . ,m}. (11)

The minimization problem given by (9) is convex and quadratic inμ and σ and, unlike
(6), it enjoys a closed-form solution

μ̂DN = σ̂DN Ŝ1 − Ŝ3, σ̂DN = Ŝ4 − Ŝ23
Ŝ2 − Ŝ1 Ŝ3

,

where

Ŝ1 = 1

b − a

∫ b

a
�−1(ROCmn(t))dt, (12)
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Ŝ2 = 1

b − a

∫ b

a
�−1(ROCmn(t))�

−1(t)dt, (13)

Ŝ3 = 1

b − a

∫ b

a
�−1(t)dt, (14)

Ŝ4 = 1

b − a

∫ b

a

(
�−1(t)

)2
dt. (15)

Please note that since we employed the ROC instead of the ODC curve, the
formulas (12)–(15) differ from corresponding Davidov and Nov’s (2012) formu-
las.

The integration endpoints a, b were introduced to ensure that �−1(ROCmn(t)) 	=
±∞ and hence that optimization problem (9) is well-defined. However, the selection
of the upper integral limit according to Eq. (11) causes that the difference between the
empirical ROC curve and the true (binormal) ROC curve on the interval [b, c], where
c := min{i/m : ROCmn(i/m) = 1, i = 1, . . . ,m} (on the last step of the ROCmn) is
not taken into account. We think that this loss of information influences the accuracy
of estimates for small samples sizes m and n. Hence, we propose a modification of
the minimum distance estimator considered by Davidov and Nov by choosing the
upper limit of integration just before the last jump of the empirical ROC curve. Since
ROCmn(t) is right-continuous, we take

b′
m = sup{t ∈ [0, 1] : ROCmn(t) < 1} − εm, (16)

where εm < 1/m is a positive constant, which guarantees that�−1(ROCmn(t)) < ∞.
Moreover, thanks to the right continuity of the empirical ROC curve, there is no need
to introduce any modification for the lower integration endpoint (the lowest possible
value is already provided by formula (10)).

The estimates of the parametersμ and σ computedwith b′
m instead of b in (12)–(15)

will be denoted by μ̂DNM and σ̂DNM , respectively. It is clear, that those modified esti-
mators are consistent and asymptotically normal as the original estimators of Davidov
andNov (see Davidov andNov 2012, Theorems 1 and 2), under the same assumptions.

2.3 Minimum distance estimators of the binormal ROC curve parameters
based on BB estimator of the ROC curve

In the paper of Gu and Ghosal (2008) the Bayesian bootstrap (BB) for the nonpara-
metric estimation of the ROC curve and its functionals has been proposed (see also Gu
et al. 2008). In this approach stochastic empirical distribution functions, introduced
by Rubin (1981), are employed. Let U1, . . . ,Um−1 be iid uniform U(0, 1) random
variables, independent of data. Rubin’s stochastic empirical distribution function, say
F (b)
m , based on the sample X1, . . . , Xm, is defied as follows

F (b)
m (x) =

⎧⎨
⎩
0, when x < X(1),

U(i), when X(i) ≤ x < X(i+1), 1 ≤ i ≤ m − 1,
1, when x ≥ X(m),

(17)
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Fig. 1 Comparison of empirical and BB estimates of ROC curve with the true binormal ROC curve for
μ = 1.8 and σ = 1.5. The estimates are based on samples of sizes m = n = 15.

whereU(i) denotes i-th order statistic of the vector (U1, . . . ,Um−1).The function F
(b)
m

is a step function which at each point X(i), i = 1, . . . ,m, jumps up by the random

value U(i) − U(i−1), where U(0) = 0,U(m) = 1. Let G(b)
n be Rubin’s stochastic

empirical distribution function based on the observations Y1, . . . ,Yn from the second
sample. In order to get a ROC curve estimator, say ROC (b)

mn, we proceed in the same
way as in the case of empirical ROC curve given by (3), and plug in Rubin’s stochastic
empirical distribution functionG(b)

n and quantile function F (b)−1
m into (1). Next the BB

estimate of the ROC curve is obtained by averaging over a large number of ROC (b)
mn

realizations, i.e.

ROCBB
mn (t) = 1

B

B∑
b=1

ROC (b)
mn(t).

The estimator ROCBB
mn is a bandwidth-free nonparametric estimator and, because of

averaging over two random variations, is “smoother” than ROCmn . The BB estimates
of the ROC curve for two different values of B, based on the samples of equal sizes
n = m = 15, together with the empirical and the true ROC curve, are presented in
Fig. 1. As can be seen, that even when we average over a small number of realizations,
we obtain “smoother” estimate than the empirical ROC curve.

Remark 1 An efficient three-step procedure for computing BB estimates, which does
not require inverting the stochastic empirical distribution function (17), was proposed
by Gu et al. (2008). In the first step auxiliary variables Z j are defined, based on BB
resampling distribution,

Z j = 1 − F#(Y j ) = 1 −
m∑
i=1

pi I (Xi ≤ Y j ),
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where (p1, . . . , pm) ∼ Dirichlet (m; 1, . . . , 1) independent of others. In the sec-
ond step a random realization of ROC curve, ROC#

mn , is generated as randomized
distribution function of Z1, . . . , Zn ; we have

ROC#
mn(t) =

n∑
j=1

q j I (Z j ≤ t),

where (q1, . . . , qn) ∼ Dirichlet (n; 1, . . . , 1) independent of others. In the last step
the BB estimate of ROC curve is obtained by averaging over the ensemble of random
ROC curves ROCBB

mn (t) = mean(ROC#
mn(t)). A convenient method for generating

(p1, . . . , pm) ∼ Dirichlet (m; 1, . . . , 1) was also proposed by Gu.

Let us assume that

sup{x : F(x) = 0} = sup{x : G(x) = 0} := α

and
inf{x : F(x) = 1} = inf{x : G(x) = 1} := β.

Moreover, throughout this section we assume that the sample sizes m, n are such that
m = m(n) and n/m → λ ∈ (0,∞) as n → ∞, and that the following two conditions
are satisfied

(C1) The continuous cdf F is twice differentiable on (α, β), the derivative F ′ = f 	= 0
on (α, β), and for some γ > 0,

sup
x∈(α,β)

{
F(x)(1 − F(x))| f ′(x)/ f 2(x)|} ≤ γ.

(C2) Let cdf’s F and G satisfy Condition 1, and additionally

sup
x∈(α,β)

{
F(x)(1−F(x))

∣∣∣ g
′(x)

f 2(x)

∣∣∣
}

<∞, sup
x∈(α,β)

{
F(x)(1−F(x))

∣∣∣ g(x)
f (x)

∣∣∣
}

< ∞.

Using the theory of Kiefer processes, Gu and Ghosal (2008) proved some strong
approximation results and asymptotic properties of the Bayesian bootstrap ROC curve
estimator. In particular, its rate of convergence to the true ROC curve was shown to
be n−1/2.

We will consider minimum distance estimation of the binormal ROC curve
parameters by replacing the empirical ROC curve with corresponding BB estima-
tor ROCBB

mn (t) in measure (8). Since jumps of ROCBB
mn (t) are random we can choose

the integration limits in (12)–(15) to be closer to 0 and 1 then in the original procedure.
Namely we define

a′
m = inf

{
t ∈ [0, 1] : ROCBB

mn (t) > 0
}

, (18)

b′
m = sup

{
t ∈ [0, 1] : ROCBB

mn (t) < 1
}

− εm, (19)
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where εm < 1/m is a positive constant, which need to be introduced due to right
continuity of ROCBB

mn function (analogously to (16)). To bemore specific, we consider
the MDE

θ̂DNB = (μ̂DNB, σ̂DNB)

:= argminμ,σ

∫ b′
m

a′
m

[
�−1(ROCBB

mn (t)) −
(μ

σ
+ 1

σ
�−1(t)

)]2
dt.

Using the same approach as in Sect. 2.2, one can show that the solution to the opti-
mization problem above is given by

μ̂DNB = σ̂DNB S̃1 − S̃3, σ̂DNB = S̃4 − S̃23
S̃2 − S̃1 S̃3

, (20)

where

S̃1 = 1

b′
m − a′

m

∫ b′
m

a′
m

�−1(ROCBB
mn (t))dt,

S̃2 = 1

b′
m − a′

m

∫ b′
m

a′
m

�−1(ROCBB
mn (t))�−1(t)dt,

are the counterparts of Eqs. (12), (13), respectively. Similarly, S̃3 and S̃4 are computed
by changing the integration domain from (a, b) to (a′

m, b′
m) in Eqs. (14)–(15).

The following lemma can be proved in an analogousmanner to Lemma1 inDavidov
and Nov (2012).

Lemma 1 Under the above assumptions, a′
m → 0 and b′

m → 1 a.s., as m → ∞.

Denote

ROCDNB
mn (t) = �

( μ̂DNB

σ̂DNB
+ 1

σ̂DNB
�−1(t)

)
.

Theorem 1 Under assumptions (C1)–(C2), μ̂DNB → μ and σ̂DNB → σ in prob-
ability, as n → ∞, and hence the estimator ROCDNB

mn of the binormal ROC curve
converges pointwise to the true ROC curve on (0, 1).

A proof of Theorem 1 is given in in Appendix.
We will also consider an estimator of the parameter ϑ , which combines the min-

imum distance concept of Hsieh and Turnbull with the BB nonparametric estimator
of the ROC curve. In this method, Eq. (4) is modified by replacing the empirical
ROCmn(t) curve with the Bayesian bootstrap estimator ROCBB

mn (t) which gives

ξ BB
mn (θ) = ROCBB

mn (t) − �
(μ

σ
+ 1

σ
�−1(t)

)
,
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and the corresponding L2-distance measure is

‖ξ BB
mn (θ)‖ =

∫ 1

0
ξ BB
mn

2
(θ)dt. (21)

Theminimum distance estimate θ̂HT B = (μ̂HT B, σ̂HT B) of the parameter θ is defined
as the value which minimizes (21), i.e.

‖ξ BB
mn (θ̂HT B)‖ = inf

θ
‖ξ BB

mn (θ)‖.

2.4 Minimum distance estimators of the binormal ROC curve parameters
based on smooth nonparametric estimators of the ROC curve

The empirical ROC curve retains many properties of the empirical distribution func-
tion. It is uniformly convergent to the theoretical curve (Hsieh and Turnbull 1996), but
it is also not continuous and not very accurate for small sample sizes. The idea behind
semiparametric procedures of Hsieh and Turnbull, as well as Davidov and Nov, is to
minimize a distance between binormal ROC curve given by (2), and the empirical one.
In this section we propose MDE’s of the binormal curve by replacing the empirical
ROC curve, in measures (5) and (8), by its continuous nonparametric counterparts.
Consequently, each considered nonparametric estimator of the ROC curve leads to
two new semiparametric minimum distance estimators.

2.4.1 Kernel estimator of the ROC curve

Lloyd (1998) used the kernel smoothing technique to obtain a smooth ROC curve
estimator given by

ROCK
mn(t) = 1 − GK

n (FK
m

−1
(1 − t)), t ∈ [0, 1], (22)

where

FK
m (x) = 1

m

m∑
j=1

K
(
x − X j

hm

)
, GK

n (x) = 1

n

n∑
j=1

K
(
x − Y j

hn

)

are standard kernel estimators with kernel function K , K(v) = ∫ v

−∞ K (z)dz and
bandwidth parameters hn and hm . Lloyd and Yong (1999) showed that estimator (22)
has better mean squared error properties than the empirical ROC curve. In the problem
of kernel density estimation, choosing between many available kernel functions is of
secondary importance as all give comparable results, but more care needs to be taken
over the selection of bandwidth. Therefore, in the kernel ROC curve estimation the
main emphasis is put on the bandwidth selection (Zhou and Harezlak 2002, Hall and
Hyndman 2003). In the Simulation study (Sect. 3), the Gaussian kernel is employed
and the bandwidth parameter hm is chosen according to
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hm = 0.9min(sx , iqrx/1.34)m
−1.5,

where sx and iqrx are the standard deviation and the interquartile range for non-
diseased population, respectively. The bandwidth parameter hn for diseased population
was determined in the same way. This method of bandwidth selection was recom-
mended by Silverman (1986) as it works ’very well for a wide range of densities’,
which is reasonable in our case, since we have no information about samples distri-
bution.

Kernel estimator (22) of the ROC curve allows us to introduce two new minimum
distance estimators of the binormal ROC curve parameters which will be denoted by
θ̂HT K and θ̂DNK . The first one employs the ROCK

mn(t) instead of the empirical ROC
curve in Eq. (4), while the latter—in Eq. (7), e.g.

θ̂HT K = (μ̂HT K , σ̂HT K ) = argminμ,σ

∫ 1

0

[
ROCK

mn(t) − �
(μ

σ
+ 1

σ
�−1(t)

)]2
dt,

θ̂DNK = (μ̂DNK , σ̂DNK ) = argminμ,σ

∫ b′

a′

[
�−1(ROCK

mn(t)) −
(μ

σ
+ 1

σ
�−1(t)

)]2
dt,

where the integration limits a′ and b′ are the counterparts of Eqs. (18)–(19), where
ROCBB

mn (t) is replaced with ROCK
mn(t).

2.4.2 Estimator of the ROC curve by smoothing the sample distribution functions

In the paper of Jokiel-Rokita and Pulit (2013), the authors proposed to estimate the
ROC curve using the plug in method with smoothed sample distribution functions.
Let X1:m ≤ X2:m ≤ · · · ≤ Xm:m and Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n denote order statistics
from the samples XXXm and YYY n , respectively. We set

X0:m = 2L − X1:m, X(m+1):m = 2U − Xm:m,

Y0:n = 2L − Y1:n, Y(n+1):n = 2U − Yn:n,

where L , U are random variables such that L ≤ min {X1:m,Y1:n} and U ≥
max {Xm:m,Yn:n} almost surely. Denote

Q j (XXXm) = X( j−1):m + X j :m
2

, j = 1, 2, . . . ,m + 1,

R j (XXXm) = Q j+1(XXXm) − Q j (XXXm) = X( j+1):m − X( j−1):m
2

, j = 1, 2, . . . ,m,

Q j (YYY n) = Y( j−1):n + Y j :n
2

, j = 1, 2, . . . , n + 1,

R j (YYYn) = Q j+1(YYYn) − Q j (YYY n) = Y( j+1):n − Y( j−1):n
2

, j = 1, 2, . . . , n.
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With this notation we define the estimators of the distribution functions F, G by

FS
m(x) = 1

m

m∑
j=1

T

(
x − Q j (XXXm)

R j (XXXm)

)
,

GS
n (x) = 1

n

n∑
j=1

T

(
x − Q j (YYYn)

R j (YYYn)

)
,

respectively, where

T (x) =
⎧⎨
⎩
0, for x < 0,
r(x), for 0 ≤ x ≤ 1,
1, for x > 1,

(23)

where r : [0, 1] → [0, 1] is a continuous, strictly increasing function such that r(0) =
0, r(1) = 1, e.g. r(x) = x . The inverse function of FS

m(t) on [L ,U ] can be written as

FS
m

−1
(t)=

{
L , for t = 0,
r−1(mt − (k − 1))Rk(XXXm) + Qk(XXXm), for k−1

m < t ≤ k
m , k = 1, . . . ,m.

It is clear that FS
m

−1
(t) is continuous and strictly increasing on [0, 1]. Since GS

n (t)
is continuous and strictly increasing on [L ,U ], it follows that the composition

GS
n (F

S
m

−1
(t)) is continuous and strictly increasing on [0, 1]. Hence we can define

the continuous and strictly increasing nonparametric ROC curve estimator by

ROCS
mn(t) = 1 − GS

n (F
S
m

−1
(1 − t)), t ∈ [0, 1]. (24)

An appropriate choice of the function r, appearing in formula (23), can guarantee dif-
ferentiability of the estimator (e.g. if function r is differentiable and r ′+(0) = r ′−(1) =
0). Simultaneously, determination of the estimator (24) remains as easy as in the case
of the empirical ROC curve.

Minimum distance estimators of the parameter θ, based on the nonparametric ROC
curve estimator ROCS

mn applied in (4) and (7) instead of the estimator ROCmn, will
be denoted by θ̂HT S and θ̂DNS, respectively.

3 Simulation study

A simulation experiment was conducted in order to

• Investigate the accuracy of the original minimum distance estimators considered
by Davidov and Nov (2012) in comparison with their modification proposed in
Sect. 2.2,

• Compare the accuracy of the minimum distance estimators of the binormal ROC
curve parameters proposed by Hsieh and Turnbull (1996) with those considered
by Davidov and Nov (2012) (answer the question: which measure of distance
provides more accurate estimators),
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• Compare the accuracy of the minimum distance estimators considered by Hsieh
and Turnbull (1996) and Davidov and Nov (2012) with their counterparts obtained
by replacing the empirical ROC curve with BB estimator or with the smooth
nonparametric estimators of the ROC curve (the kernel estimator and the estimator
proposed by Jokiel-Rokita and Pulit 2013).

An important index connected with the ROC curve is the area under the curve,
commonly denoted by

AUC =
∫ 1

0
ROC(t)dt. (25)

It can be easily shown that in themodel considered AUC = P(X < Y ).Weconsidered
binormal ROC curves which values of AUC were 0.75 and 0.85 and assumed that
X ∼ N (0, 1) and Y is normally distributed with standard deviation σ ∈ {1, 4/3, 2}
and mean value μ follows according to μ = √

1 + σ 2�−1(AUC). For each ROC
curve, 5000 data sets with m = n ∈ {15, 20, 100} were generated. Next, for each data
set, four nonparametric ROC curve estimators were computed: the empirical ROC
curve R̂OCmn , the smoothed estimator ROCS

mn according to Eq. (24) with linking
function r(x) = x , the kernel estimator ROCK

mn given by formula (22), and the
Bayesian bootstrap estimator ROCBB

mn averaged over B = 1000 realizations.
All nonparametric estimators were calculated on regular grid with intervals length

of 0.0001. For kernel estimator we additionally used four times denser support grid,

in order to compute the inverse of the cdf estimator FK
m

−1
with sufficient accuracy. As

it was tested, further increase of the grid density virtually did not alter the simulation
results. Then semiparametric minimum distance estimators were calculated based on
nonparametric ones. In study, nine distinct semiparametric estimatorswere considered:
five based on minimum distance approach considered by Davidov and Nov (2012)
(shortly D–N estimators) and four based on the measure of distance considered by
Hsieh and Turnbull (1996) (shortly H–T estimators). For all D–N estimators, except
the original DN, the integration endpoints were calculated according to equation (19)
with proper nonparametric ROC estimator plugged in. In practice, due to the finite
distance between grid points, there is no need to introduce the εn constant.

In Hsieh and Turnbull approach one need to numerically minimize the L2-distance
between the binormal ROC curve and considered nonparametric estimator. For the
binormal model this problem corresponds to minimization of a function of two vari-
ables μ and σ . In simulations the Nelder–Mead method was employed to minimize
the objective function and initial values of unknown parameters were calculated using
corresponding DNM estimator.

Theperformanceof estimators introduced in previous section is studied in twoways:
by comparing the estimates of binormal parameters and by looking at the deviation
of estimated ROC curve from it’s true shape. In Table 1 estimated bias and MSE of
parameters μ and σ are listed for four binormal models (with σ = 1 and σ = 2 and
for two values of AUC: 0.75 and 0.85). In practice one is more interested in estimation
of the ROC curve than the parameters of binormal model. Hence, in order to examine
overall goodness of fit of the ROC curve estimator the mean integrated square error
(MISE)
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Table 2 Simulated mean integrate square error, multiplied by 100, for AUC = 0.75

Estimator n = m = 15 n = m = 20 n = m = 100

σ = 1 σ = 4
3 σ = 2 σ = 1 σ = 4

3 σ = 2 σ = 1 σ = 4
3 σ = 2

ROCmn 1.807 1.652 1.455 1.424 1.250 1.120 0.284 0.256 0.231

ROCS
mn 1.395 1.274 1.195 1.161 1.010 0.966 0.271 0.242 0.228

ROCK
mn 1.788 1.634 1.437 1.414 1.241 1.111 0.284 0.256 0.230

ROCBB
mn 1.445 1.355 1.241 1.163 1.036 0.968 0.249 0.229 0.211

DN 1.512 1.366 1.218 1.141 0.985 0.912 0.198 0.181 0.176

DNM 1.344 1.209 1.093 1.039 0.895 0.843 0.193 0.177 0.172

DNS 1.329 1.072 1.002 0.862 0.780 0.789 0.185 0.173 0.171

DNK 1.479 1.370 1.293 1.119 0.981 0.941 0.194 0.178 0.172

DNB 1.215 1.183 1.143 0.975 0.897 0.881 0.199 0.183 0.173

HT 1.403 1.275 1.156 1.104 0.947 0.884 0.209 0.187 0.176

HTS 1.222 1.108 1.041 0.999 0.854 0.820 0.207 0.184 0.174

HTK 1.404 1.275 1.154 1.104 0.948 0.883 0.209 0.187 0.176

HTB 1.335 1.231 1.130 1.062 0.922 0.868 0.207 0.187 0.175

Results are based on 5000 simulation replications per model and method. In each column result with lowest
MISE is given with bold font. MISE’s for nonparametric estimators are given for completeness

MISE = E
( ∫ 1

0

(
ROC(t) − R̂OC(t)

)2
dt

)
,

was estimated, where R̂OC(t) stands for the considered ROC curve estimator. In
Table 2 the estimated values of MISE (multiplied by 100, for brevity) are collected
for three values of σ , AUC=0.75, and different sample sizes. Results corresponding
to AUC=0.85 are given in Table 3. MISE’s are presented for both semiparametric and
nonparametric ROC curves estimates for comparison.

As can be seen from Table 1, there are quite big differences in accuracy between the
original (DN) and the modified (DNM) minimum distance estimators of Davidov and
Nov, even though the latter requires only a marginal modification in the computational
procedure. For m = n = 10 and m = n = 15 estimated mean square errors of the
DNM estimators of parameters μ and σ are significantly smaller (sometimes even by
half) than the corresponding estimated errors of the original DN estimators. The bias
for ϑ̂DNM is also smaller than the one for ϑ̂DN , but the difference between them is less
prominent. For large samples size, m = n = 100, when formulas (11) and (16) yields
virtually the same integration endpoints, the DN and DNM procedures give almost the
same biases and mean square errors, as expected. The DNM estimator outperforms
the original Davidov and Nov (2012) estimator (DN) also in terms of mean integrated
square error. The results given in Tables 2 and 3 indicate a reduction of MISE by
approximately 10% in the case of small sample sizes and 3% for m = n = 100.
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Table 3 Same as in Table 2, but for AUC = 0.85

Methods n = m = 15 n = m = 20 n = m = 100

σ = 1 σ = 4
3 σ = 2 σ = 1 σ = 4

3 σ = 2 σ = 1 σ = 4
3 σ = 2

ROCmn 1.379 1.183 0.953 1.078 0.916 0.756 0.223 0.192 0.162

ROCS
mn 0.971 0.892 0.892 0.790 0.700 0.709 0.201 0.176 0.178

ROCK
mn 1.364 1.169 0.939 1.070 0.909 0.749 0.223 0.192 0.162

ROCBB
mn 1.091 0.942 0.786 0.872 0.748 0.644 0.192 0.169 0.147

DN 1.242 1.025 0.811 0.909 0.753 0.632 0.159 0.140 0.128

DNM 1.037 0.860 0.690 0.781 0.653 0.556 0.153 0.135 0.124

DNS 0.811 0.719 0.738 0.593 0.539 0.566 0.145 0.131 0.127

DNK 1.046 0.978 0.949 0.802 0.732 0.712 0.153 0.137 0.125

DNB 0.771 0.767 0.750 0.645 0.620 0.617 0.161 0.150 0.131

HT 1.048 0.884 0.721 0.811 0.679 0.576 0.156 0.134 0.120

HTS 0.857 0.776 0.767 0.681 0.594 0.592 0.151 0.129 0.122

HTK 1.048 0.883 0.719 0.811 0.679 0.576 0.157 0.134 0.120

HTB 0.988 0.834 0.693 0.779 0.653 0.564 0.156 0.134 0.120

We find interesting to examine the accuracy of the estimates obtained by minimiza-
tion of two distinct measures (5) and (8). In the case of small sample sizesm = n = 15
and m = n = 20, the HT procedure performs much better in terms of bias and mean
square error than DNM, and hence also outperforms the DN, regardless of AUC and
true value of parameter σ (cf. Table 1). For m = n = 100, the bias of μ̂HT remains
much lower than the corresponding bias of μ̂DN and μ̂DMN , while the differences
in MSE between these estimators are reduced. Simultaneously, the HT method gives
also smaller bias of the estimator of σ in comparison to DN and DNM procedures but
in some cases it yields greater MSE. These conclusions also holds to a great extend
whenDNS estimator, based on smoothed nonparametric ROC curve, is compared with
corresponding HTS estimator. At the same time, inspection of the results collected in
Tables 2 and 3 reveals that estimators based on D–N approach, aside from the original
DN, yielded better fit to the true ROC curve in terms of MISE than these originating
from H–T procedure—in all models, expect one, estimates that gave the lowest MISE
were obtained utilizing the distance measure considered by Davidov and Nov (2012).

Based on simulations, we may also address the influence of replacing the empirical
ROC curvewith other nonparametric estimators on the accuracy of estimated binormal
ROC curve. In all considered models, semiparametric estimators based on smoothed
empirical ROC curve, ROCS

mn(t), performed better than their counterparts based on
empirical curve ROCmn(t) for both employed distance measures. The bias and MSE
of μ̂DNS and σ̂DNS are considerably smaller than of μ̂DNM and σ̂DNM , respectively.
Similar conclusions can be drawnwhen compareHTSwith original HT procedure. For
small sample sizes, the mean square error for estimates of both parameters decreases,
by factor of 4.5 on average,when underlaying empirical ROCcurve is replacedwith it’s
smoothed counterpart (24). Naturally, the advantage of estimates based on ROCS

mn(t)
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Table 4 Estimated parameters
for Tupikowski’s kidney cancer
data for hemoglobin level (HB)
and fibrinogen concentration
(FC)

HL FC

μ̂ σ̂ AUC μ̂ σ̂ AUC

DN 0.899 1.391 0.7002 0.709 1.134 0.6805

DNM 0.837 1.067 0.7165 0.688 0.998 0.6868

DNS 0.884 1.192 0.7149 0.782 1.117 0.6990

DNK 0.881 1.082 0.7250 0.786 1.085 0.7030

DNB 0.998 1.187 0.7399 0.859 1.111 0.7173

HT 0.857 1.301 0.6992 0.629 1.025 0.6699

HTS 0.853 1.333 0.6957 0.675 1.085 0.6763

HTK 0.915 1.337 0.7081 0.689 1.058 0.6820

HTB 0.877 1.135 0.7190 0.699 0.931 0.6955

over those based on ROCmn(t) decreases when sample size increases. However, no
significant improvement of parameters estimates is observed when kernel or BBmeth-
ods are employed. In the case of methods based on Davidov and Nov approach, when
one minimizes the objective function given by (9), the estimated biases and MSE’s of
the estimators θ̂DNK and θ̂DNB are only slightly reduced with comparison to DNM
method. Furthermore, for HTK and HTB methods even some increase of bias and
MSE is observed in comparison to original minimum distance procedure of Hsieh and
Turnbull. Replacing the underlaying empirical ROC curve with it’s smoothed coun-
terpart leads also to decrease of mean integrated square error of both semiparametric
and nonparametric estimators. For eighteen binormal models considered in Tables 2
and 3 the DNSmethod always outperform the DN and in fifteen cases it yields smaller
MISE than DNM estimator. In fact, for AUC = 0.75, the DNS estimator achieves the
lowest MISE among all considered in 8 out of 9 comparisons. The HTS estimator
exceeds the HT also in 15 out of 18 comparisons. Some improvement of estimates
is observed when bootstrap estimator is employed (DNB and HTB methods). Con-
sequently, simulation study shows that replacing empirical ROC curve (3) with its
smoothed counterpart (24) significantly improves the minimum distance estimates of
the binormal ROC curve.

4 Real data analysis

To illustrate all considered semiparametric estimators, we apply them to data analysed
in the paper of Tupikowski et al. (2012). In the dataset the effectiveness of com-
bined treatment of interferon alpha and metronomic cyclophosphamide in patients
with metastatic kidney cancer was studied in terms of hemoglobin level (HL) and
serum fibrinogen concentration (FC). The dataset contains 31 observations in total; 14
with and 17 without clinical response. Low value of HL or FC level has been recog-
nized as a negative predictor of treatment response and associated with short survival.
The estimates of the binormal ROC curves parameters for HL and FC as predictive
factors are given in Table 4 for all considered methods. The estimated values of AUC
are also tabulated. Interestingly, while the estimates of the parameters μ and σ vary
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between methods, the estimates of AUC are close to each other, and differ only by 7%
for both HL and FC.

5 Conclusions and some prospects

In this article seven new estimators of binormal ROC curve in semiparametric setting
have been proposed. New estimators originate from the minimum distance concept
applied to the ROC curve estimation by Hsieh and Turnbull (1996) and recently revis-
ited by Davidov and Nov (2012). In the originalMDE procedures oneminimizes some
distance measures between the binormal ROC curve, characterized by two parameters
μ and σ , and the empirical ROC curve. In our methods we propose to replace the
ROCmn estimator, which is not continuous and not very accurate for small sample
sizes, with other nonparametric estimators of the ROC curve. Procedures involving
kernel, Bayesian bootstrap and smoothed ROC curve estimators were considered.
Moreover, for estimators based on the Davidov and Nov (2012) approach, the role of
appropriate integration limits was emphasized.

The small-sample performance of the proposed estimatorswas investigated numeri-
cally and comparedwith original procedures ofDavidov andNov (2012) andHsieh and
Turnbull (1996). The biggest improvement, both in terms of the parameters accuracy
and MISE, was observed for estimators based on the smoothed ROCS

mn nonparamet-
ric ROC curve estimator (see Sect. 2.4.2). For samples of small sizes, we observed
that replacing the ROCmn with ROCS

mn in minimum distance procedures can reduce
the MSE of the estimators of μ and σ parameters by an order of magnitude, and by
factor of 4.5 on average. The goodness of fit of the estimator of the ROC curve to the
true ROC curve is also improved as indicated by lower mean integrated square error.
Employing the BB estimator does not improve the performance of MDE’s so much,
while using the kernel estimators sometimes leads to even less accurate semiparametric
ROC curves estimates.

In the future research we are going to examine the asymptotic equivalence of the
estimators considered. Especially, the asymptotic properties of DNS and HTS esti-
mators needs further investigation since as these methods clearly outperforms the
others. In fact, the smoothed nonparametric estimator of the ROC curve, introduced
by Jokiel-Rokita and Pulit (2013), seems to be very promising method and theoretical
investigation of its asymptotic properties is of our interest. We are also going to study
robustness of the considered estimators on model misspecification.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Proof of Theorem 1 The idea behind the proof is the same as in the proof of Theorem
1 in Davidov and Nov (2012). Let Si , i = 1, . . . , 4, be the deterministic counterparts

123

http://creativecommons.org/licenses/by/4.0/


2180 A. Jokiel-Rokita, R.Topolnicki

of S̃i , obtained by substituting ROC(t) for ROCBB
mn (t), and the values 0 and 1 for the

lower and the upper integration limit, respectively, i.e., for example

S1 =
∫ 1

0
�−1(ROC(t))dt.

Convergence S̃3 → S3 and S̃4 → S4 in probability, as n → ∞, can be easily derived
from Lemma 1. We will show that S̃1 → S1 in probability. In very similar fashion
one can show that S̃2 → S2 in probability, hence, by definition (20), and Continuous
Mapping Theorem, the theorem will be proved.

From Lemma 1, the coefficient 1/(b′
m − a′

m) converges to 1 a.s., therefore it can be
omitted. We have,

∣∣∣∣∣
∫ b′

m

a′
m

�−1(ROCBB
mn (t))dt −

∫ 1

0
�−1(ROC(t))dt

∣∣∣∣∣

≤
∣∣∣∣∣
∫ b′

m

a′
m

�−1(ROCBB
mn (t))dt −

∫ b′
m

a′
m

�−1(ROC(t))dt

∣∣∣∣∣

+
∣∣∣∣∣
∫ b′

m

a′
m

�−1(ROC(t))dt −
∫ 1

0
�−1(ROC(t))dt

∣∣∣∣∣ . (26)

The second term of the right-hand side of the above inequality converges to 0 a.s., as
it was indicated in Lemma 1, hence it also converges to 0 in probability. Therefore it
remains to show that the first term of the above inequality converges to 0 in probability.
Using the same arguments as in the original paper of Davidov and Nov (2012), one
can show that
∣∣∣∣∣
∫ b′

m

a′
m

�−1(ROCBB
mn (t))dt −

∫ b′
m

a′
m

�−1(ROC(t))dt

∣∣∣∣∣
≤ max{�̇−1(ROC(a′

m)), �̇−1(ROC(b′
m))} sup

0≤t≤1
|ROCBB

mn (t) − ROC(t)|, (27)

where �̇−1(x) = (d/dx)�−1(x).Note that thefirst factor of the right side of inequality
(27) depends on the integration limits, while the second—depends on nonparametric
ROC curve estimator. In fact, the rate of convergence of

sup
0≤t≤1

|ROCBB
mn (t) − ROC(t)|

is OP (1/
√
m), what can be deduced from Theorem 4.1 of Gu and Ghosal (2008). We

will show that although �̇−1(ROC(a′
m)) converges to ∞ asm increases, it converges

to 0 after being multiplied by 1/
√
m; the corresponding proof for �̇−1(ROC(b′

m)) is
very similar and hence it is omitted. Let

a(b)
m = inf{t ∈ [0, 1] : ROC (b)

mn > 0},
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then the lower integration limit, defined by (19), can be expressed in terms of a(b)
m as

a′
m = inf{t ∈ [0, 1] : 1

B

B∑
b=1

ROC (b)
mn(t) > 0} = min

b=1,...,B
{a(b)

m }. (28)

The definition of a(b)
m may be equivalently written as

a(b)
m = 1 − F (b)(Yn:n) = [1 − F(Yn:n)] + [F(Yn:n) − Fm(Yn:n)]

+ [Fm(Yn:n) − F (b)(Yn:n)], (29)

where Fm is the empirical distribution function based on X1, . . . , Xm . As in the proof
of Theorem 1 in Davidov and Nov (2012), we can show that the rate of convergence
of the first term of (29) is �P (1/

√
m). The notation �P is the equivalent of OP for

an asymptotic lower bound, i.e., Qn = �P (Rn) if Rn/Qn is bounded in probability.
By the Dvoretzky–Kiefer–Wolfowitz inequality, the term in second bracket in (29)
converges in probability to 0 exponentially. We will show that the expression in third
bracket in (29) converges in probability to 0 faster than 1/m, hencea(b)

m = OP (1/
√
m).

For given samples, let K denote the number of observations in X1, . . . , Xm which are
not greater than Yn:n : K = ∑m

i=1 I{X j≤Yn:n}. By definition (17) and properties of the
empirical distribution function, the following inequality holds

P(|Fm(Yn:n) − F (b)(Yn:n)| > ε) = P

(∣∣∣K
m

−U(K )

∣∣∣ > ε

)

=
m∑

k=0

P

(
|U(k) − k

m
| > ε|K = k

)
P(K = k)

≤
m∑

k=0

P

(
|U(k) − k

m
| > ε

)
.

Since U(k) is k-th order statistic from the uniform distribution U(0, 1), it has beta
distribution B(k,m − k) with expected value equal to k/m. A suitably tight upper
bound for the last probability can be obtained using the following inequality (see
Mitzenmacher and Upfal 2005, p. 59)

P(|U(k) − E[U(k)]| > t E[(U(k) − E[U(k)])4]1/4) ≤ 1

t4
.

We have

λk := E[(U(k) − E[U(k)])4] = 3k(m − k)[(k + 2)m2 − (k + 6)km + 6k2]
m4(m + 1)(m + 2)(m + 3)

,

and
m∑

k=0

P

(
|U(k) − k

m
| > ε

)
≤ 1

ε4

m∑
k=0

λk = 1

ε4

(m − 1)2

10m3 = O
( 1

m

)
.
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Therefore, due to decomposition (29), we have a(b)
m = OP (1/

√
m), and combin-

ing this with relation (28), we conclude that a′
m = OP (1/

√
m). Using the same

approach as Davidov and Nov (2012) in their proof of Theorem 1, we can show that
�̇−1(ROC(a′

m)) = oP (
√
m) which completes the proof that S̃1 → S1 in probability,

as n → ∞, and thus theorem is proved.
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