
Stat Papers (2018) 59:725–757
https://doi.org/10.1007/s00362-016-0787-2

REGULAR ARTICLE

Estimation of parameters of Weibull–Gamma
distribution based on progressively censored data

Rashad M. EL-Sagheer1

Received: 14 July 2015 / Revised: 21 March 2016 / Published online: 2 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, the estimation of parameters of a three-parameter Weibull–
Gamma distribution based on progressively type-II right censored sample is studied.
The maximum likelihood, Bayes, and parametric bootstrap methods are used for
estimating the unknown parameters as well as some lifetime parameters reliabil-
ity function, hazard function and coefficient of variation. Approximate confidence
intervals for the unknown parameters as well as reliability function, hazard func-
tion and coefficient of variation are constructed based on the s-normal approximation
to the asymptotic distribution of maximum likelihood estimators (MLEs), and log-
transformed MLEs. In addition, two bootstrap CIs are also proposed. Bayes estimates
of the unknown parameters and the corresponding credible intervals are obtained
by using the Gibbs within Metropolis–Hasting samplers procedure. Furthermore, the
results of Bayes method are obtained under both the balanced squared error loss and
balanced linear-exponential loss. Analysis of a simulated data set has also been pre-
sented for illustrative purposes. Finally, a Monte Carlo simulation study is carried
out to investigate the precision of the Bayes estimates with MLEs and two bootstrap
estimates, also to compare the performance of different corresponding CIs considered.

Keywords Weibull–Gamma distribution · Progressive type-II censoring · Maximum
likelihood estimators · Bootstrap methods · Markov chain Monte Carlo technique

1 Introduction

In industrial life testing and medical survival analysis, very often the object of inter-
est is lost or withdrawn before failure or the object lifetime is only known within an
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interval. Hence, the obtained sample is called a censored sample (or an incomplete
sample). Some of the major reasons for removal of the experimental units are sav-
ing the working experimental units for future use, reducing the total time on test and
lower the cost associated with these. Right censoring is one of the censoring tech-
niques used in life-testing experiments. The most common right censoring schemes
are type-I and type-II censoring, but the conventional type-I and type-II censoring
schemes do not have the flexibility of allowing removal of units at points other than
the terminal point of the experiment. For this reason, a more general censoring scheme
called progressive type-II right censoring is proposed. A progressive type-II censor-
ing is a useful scheme in which a specific fraction of individuals at risk may be
removed from the experiment at each of several ordered failure times. Schematically
a progressively type-II censored sample can be described as follows. Suppose that n
independent items are put on a life test with continuous identically distributed failure
times X1, X2, . . . , Xn . Suppose further that a censoring scheme (R1, R2, . . . , Rm) is
previously fixed such that immediately following the first failure X1, R1 surviving
items are removed from the experiment at random, and immediately following the
second failure X2, R2 surviving items are removed from the experiment at random.
This process continues until, at the time of them th observed failure Xm , the remaining
Rm surviving items are removed from the test. The m ordered observed failure times
denoted by X (R1,...,Rm )

1:m:n , X (R1,...,Rm )
2:m:n , . . . , X (R1,...,Rm )

m:m:n are called progressively type II
right censored order statistics of size m from a sample of size n with progressive cen-
soring scheme (R1, R2, . . . , Rm). It is clear that n = m +∑m

i=1 Ri . The special case
when R1 = R2 = · · · = Rm−1 = 0 so that Rm = n − m is the case of conventional
type-II right censored sampling. Also when R1 = R2 = ··· = Rm = 0, so thatm = n,
the progressively type II right censoring scheme reduces to the case of no censoring
(ordinary order statistics). Many authors have discussed inference under progressive
type-II censored using different lifetime distributions, see for example, Basak et al.
(2009), Kim et al. (2011), Ng et al. (2005), Balakrishnan and Lin (2003), Asgharzadeh
(2006), Madi and Raqab (2009), Fernandez (2004), Mahmoud et al. (2014c) and Soli-
man et al. (2015). A thorough overview of the subject of progressive censoring and the
excellent review article is given in Balakrishnan (2007). Aggarwala and Balakrishnan
(1998) developed an algorithm to simulate general, progressively type-II censored
samples from the uniform or any other continuous distribution. The joint probability
density function for progressively type-II censored sample of sizem from a sample of
size n is given by, for details see Balakrishnan and Aggarwala (2000).

fx1:m:n ,...,xm:m:n (x1:m:n, . . . , xm:m:n) = c
m∏

i=1

f (xi :m:n) [1 − F (xi :m:n)]Ri , (1)

where c = n(n − 1 − R1)(n − 2 − R1 − R2) . . .
(
n −∑m−1

i=1 (Ri + 1)
)
.

The Weibull–Gamma distribution is appropriate for phenomenon of loss of signals
in telecommunications which is called fading when multipath is superimposed on
shadowing. The Weibull–Gamma distribution is introduced by Bithas (2009). A ran-
dom variable X has a Weibull–Gamma distribution if its probability density function
(PDF) and the corresponding cumulative distribution function (CDF) are given by
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f (x;α, β, λ) = αβ

λ
xα−1

(

1 + 1

λ
xα

)−(β+1)

, x > 0, α, β, λ > 0, (2)

and

F (x;α, β, λ) = 1 −
(

1 + 1

λ
xα

)−β

, x > 0, α, β, λ > 0. (3)

TheWeibull–Gamma distributionwith parameters α, β and λwill be denoted byWGD
(α, β, λ). Its reliability and hazard functions are given by

S (t) =
(

1 + 1

λ
tα
)−β

, t > 0, (4)

and

h (t) = αβ

λ
tα−1

(

1 + 1

λ
tα
)−1

, t > 0. (5)

It is noted that if α = 1 and λ = 1, the WGD reduced to standard Pareto distribution.
For more detials about WGD and its properties see Molenberghs and Verbeke (2011)
andMahmoud et al. (2014a, b). The coefficient of variation is used in numerous areas of
science such as biology, economics, and psychology, and in engineering in queueing
and reliability theory see, for example Sharma and Krishna (1994). Nairy and Rao
(2003) gave a summary of uses of the coefficient of variation in a number of areas.
Given a set of observations from WGD(α, β, λ), the sample coefficient of variation
(CV ) is often estimated by the ratio of the sample standard deviation to the sample
mean. Or equivalent

CV =
√
Var (X)

E (X)
=
√
E
(
X2
)− [E (X)]2

E (X)
, E (X) �= 0, (6)

where E (X) and E
(
X2
)
are the first and the second moments of the WGD (α, β, λ),

given by

E (X) = λ
1
α �
(
1 + 1

α

)
�
(
β − 1

α

)

� (β)
, αβ > 1 (7)

E
(
X2
)

= λ
2
α �
(
1 + 2

α

)
�
(
β − 2

α

)

� (β)
, αβ > 2, (8)

where � (z) is the gamma function satisfies � (z) = ∫∞
0 yz−1e−ydy. Then, the theo-

retical CV for the WGD according to (6) is

CV = W (α, β, λ) , (9)
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where

W (α, β, λ) =
λ

1
α

[

�
(
1 + 2

α

)
�
(
β − 2

α

)−
[
�
(
1+ 1

α

)
�
(
β− 1

α

)]2

�(β)

]

�
(
1 + 1

α

)
�
(
β − 1

α

) , αβ > 2. (10)

Molenberghs and Verbeke (2011) gave a summary of the Weibull–Gamma frailty
model, its infinite moments, and its connection to generalized log-logistic, logis-
tic, Caushy, and extreme value distributions. Mahmoud et al. (2014a) discussed the
recurrence relations for moments of dual generalized order statistics from WGD
and its characterizations. Mahmoud et al. (2014b) established a new recurrence
relations satisfied by the single and product moments of the progressively type-II
right censored order statistics from non truncated and truncated WGD, and derived
approximate moments of progressively type-II right censored order statistics from this
distribution.

The great success story of modern day Bayesian statistics is Markov chain Monte
Carlo (MCMC) technique. MCMC has a sister method. It is Gibbs sampling method.
They permit the numerical calculation of posterior distributions in situations far too
complicated for analytic expression see Brooks (1998) for a review. Gibbs sampler
requires only the specification of the conditional posterior distribution for each para-
meter. In situations where those distributions are simple to sample from, the approach
is easily implemented. In other situations, the more complex Metropolis–Hastings
approach needs to be considered see Gamerman and Carlo (1997) and Gupta et al.
(2008). In the present paper, the author has developed a hybrid strategy combining
the Metropolis algorithm within the Gibbs sampler for obtaining the samples from the
posterior arising fromWGD. To our best knowledge, statistical inference for unknown
parameters of WGD has not yet been studied under progressive type-II censoring. In
this paper, maximum likelihood and Bayesian inference of unknown parameters as
well as reliability function, hazard function and coefficient of variation will be stud-
ied under progressive type-II censoring. The asymptotic confidence interval of the
reliability function, hazard function and coefficient of variation are approximated by
delta and bootstrap methods. An MCMC procedure to estimate the parameters and
corresponding credible intervals is also discussed.

The layout of the paper is as follows: Sect. 2, discusses the maximum likelihood
estimators (MLEs) of the unknown parameters, reliability function, hazard function
and coefficient of variation. Asymptotic confidence intervals based the maximum
likelihood estimates are presented in Sect. 3. In Sect. 4, we introduce two parametric
bootstrap procedures to construct the confidence intervals for the unknown parameters,
reliability function, hazard function and coefficient of variation. Section 5, provides
the conditional distributions required for implementing theMarkov chainMonte Carlo
approach. A simulation example to illustrate the approach is given in Sect. 6. Monte
Carlo simulation results are presented in Sect. 7. Finally, we conclude the paper in
Sect. 8.
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2 Maximum likelihood inference

Suppose that x = X1:m:n , X2:m:n, . . . , Xm:m:n a progressively type-II censored sample
drawn from Weibull–Gamma population whose pdf and cdf are given by (1) and (2),
with the censoring scheme (R1, R2, . . . , Rm). From (1), (2) and (7), the likelihood
function is then given by

L(α, β, λ|x) = c αmβmλ(−m)

⎡

⎣
m∏

i=1

xα−1
i(

1 + 1
λ x

α
i

)

⎤

⎦ exp

⎧
⎨

⎩
−β

m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

)
⎫
⎬

⎭
.

(11)

The log-likelihood function � = ln L(α, β, λ|x) without normalized constant is
obtained from (11) as

� ∝ m ln α+m ln β−m ln λ+(α − 1)
m∑

i=1

ln xi−
m∑

i=1

(β(Ri + 1) + 1) ln

(

1 + 1

λ
xα
i

)

.

(12)
Calculating the first partial derivatives of � with respect to α, β and λ and equating

each to zero, we get the likelihood equations as

m

α
+

m∑

i=1

ln xi −
m∑

i=1

β(Ri + 1) + 1
(
1 + 1

λ
xα
i

)

(
xα
i

λ

)

ln xi = 0, (13)

m

β
−

m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

)

= 0, (14)

and
−m

λ
+

m∑

i=1

β(Ri + 1) + 1
(
1 + 1

λ
xα
i

)

(
xα
i

λ2

)

= 0. (15)

From (14) we obtain the MLEs β as

β̂ (α, λ) = m

[
m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

)]−1

. (16)

Since Eqs. (13)–(16) do not have closed form solutions, theNewton–Raphson iteration
method is used to obtain the estimates. The algorithm is described as follows:

1. Use the method of moments or any other methods to estimate the parameters α,
β and λ as starting point of iteration, denote the estimates as (α0, β0, λ0) and set
k = 0.

2. Calculate
(

∂�
∂α

, ∂�
∂β

, ∂�
∂λ

)

(αk ,βk ,λk )
and the observed Fisher Information matrix

I−1 (α, β, λ), given in the next paragraph.
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3. Update (α, β, λ) as

(αk+1, βk+1, λk+1) = (αk, βk, λk) +
(

∂�

∂α
,
∂�

∂β
,
∂�

∂λ

)

(αk ,βk ,λk )

× I−1 (α, β, λ) .

(17)
4. Set k = k + 1 and then go back to Step 1.
5. Continue the iterative steps until |(αk+1, βk+1, λk+1) − (αk, βk, λk)| is smaller

than a threshold value. The final estimates of (α, β, λ) are the MLE of the para-
meters, denoted as (α̂, β̂, λ̂).

Moreover, using the invariance property of MLEs, the MLEs of S (t), h (t) andCV
can be obtained after replacing α, β and λ by α̂, β̂ and λ̂ as

Ŝ (t) =
(

1 + 1

λ̂
t α̂
)−β̂

, ĥ (t) = α̂β̂

λ̂
t α̂−1

(

1 + 1

λ̂
t α̂
)−1

, ĈV = W (α̂, β̂, λ̂) (18)

3 Asymptotic confidence intervals

As indicated by Vander Wiel and Meeker (1990) the most common method to set
confidence bounds for the parameters is to use the asymptotic normal distribution of the
MLEs. The asymptotic variances and covariances of theMLEs, α̂, β̂ and λ̂ are given by
the entries of the inverse of theFisher informationmatrix Ii j = E

[−∂2� (�) /∂φi∂φ j
]

where i, j = 1, 2, 3 and � = (φ1, φ2, φ3) = (α, β, λ). Unfortunately, the exact
closed forms for the above expectations are difficult to obtain. Therefore, the observed
Fisher information matrix Îi j = E

[−∂2� (�) /∂φi∂φ j
]
�=�̂

, which is obtained by
dropping the expectation operator E, will be used to construct confidence intervals
for the parameters, see Cohen (1965). The observed Fisher information matrix has
second partial derivatives of log-likelihood function as the entries, which easily can
be obtained. Hence, the observed information matrix is given by

Î (α, β, λ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− ∂2�

∂α2 − ∂2�

∂α∂β
− ∂2�

∂α∂λ

− ∂2�

∂β∂α
− ∂2�

∂β2 − ∂2�

∂β∂λ

− ∂2�

∂λ∂α
− ∂2�

∂λ∂β
− ∂2�

∂λ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓(α=α̂,β=β̂,λ=λ̂)

. (19)

Therefore, the asymptotic variance–covariance matrix [V̂ ] for the MLEs is obtained
by inverting the observed information matrix Î (α, β, λ). Or equivalent

[V̂ ] = Î−1 (α, β, λ) =
⎛

⎜
⎝

̂var(α) cov(α, β) cov(α, λ)

cov(β, α) ̂var(β) cov(β, λ)

cov(α, λ) cov(β, λ) ̂var(λ)

⎞

⎟
⎠

↓
(
α̂,β̂,λ̂

)

. (20)

123



Estimation of parameters of Weibull–Gamma distribution… 731

It is well known that under some regularity conditions, see Lawless (1982), (α̂, β̂, λ̂) is
approximately distributed as multivariate normal with mean (α, β, λ) and covariance
matrix I−1 (α, β, λ). Thus, the (1−γ )100% approximate confidence intervals (ACIs)
for α, β and λ can be given by

(

α̂ ± Zγ /2

√
̂var(α)

)

,

(

β̂ ± Zγ /2

√
̂var(β)

)

,

(

λ̂ ± Zγ /2

√
̂var(λ)

)

(21)
where Zγ /2 is the percentile of the standard normal distribution with right-tail proba-
bility γ /2.

Furthermore, to construct the asymptotic confidence interval of the reliability func-
tion, hazard function and coefficient of variation, we need to find the variances of
them. In order to find the approximate estimates of the variance of Ŝ (t), ĥ (t) and ĈV
we use the delta method discussed in Greene (2000). According to this method, the
variance of Ŝ (t), ĥ (t) and ĈV , can be approximated, respectively by

σ̂ 2
Ŝ(t)

= [�Ŝ (t)]T [V̂ ][�Ŝ (t)], σ̂ 2
ĥ(t)

= [�ĥ (t)]T [V̂ ][�ĥ (t)],
σ̂ 2
ĈV

= [�ĈV ]T [V̂ ][�ĈV ], (22)

where �Ŝ (t), �ĥ (t) and �ĈV are, respectively, the gradient of Ŝ (t), ĥ (t) and ĈV
with respect to α, β and λ. Thus, the (1− γ )100% ACIs for S (t), h (t) and CV can
be given by

(
Ŝ (t) ± Zγ /2

√
σ̂ 2
Ŝ(t)

)
,
(
ĥ (t) ± Zγ /2

√
σ̂ 2
ĥ(t)

)
,

(
ĈV ± Zγ /2

√
σ̂ 2
ĈV

)
. (23)

The main disadvantage of approximate (1 − γ )100% CI is that it may yield neg-
ative lower bound though the parameter takes only positive values. In such a case
the negative value is replaced by zero. However, a different transformation of the
MLE can be used to correct the inadequate performance of the normal approximation.
Meeker and Escobar (1998) suggested the use of the normal approximation for the
log-transformed MLE. Thus, A two-sided (1 − γ )100% normal approximation CIs
for � = (α, β, λ, S (t) , h (t) ,CV ) are given by

⎛

⎜
⎝�̂. exp

⎧
⎨

⎩
−
Z γ

2

√
̂

var(�̂)

�̂

⎫
⎬

⎭
, �̂. exp

⎧
⎨

⎩

Z γ
2

√
̂

var(�̂)

�̂

⎫
⎬

⎭

⎞

⎟
⎠ , (24)

where �̂ = (α̂, β̂, λ̂, Ŝ (t) , ĥ (t) , ĈV ).

4 Bootstrap confidence intervals

A parametric bootstrap interval provides much more information about the population
value of the quantity of interest than does a point estimate. Also it is evident that
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the confidence intervals based on the asymptotic results do not perform very well
for small sample size. For this, two parametric bootstrap procedures are provided to
construct the bootstrap confidence intervals of α, β, λ, S (t) , h (t) and CV . The first
one is the percentile bootstrap (Boot-p) confidence interval based on the idea of Efron
(1982). The second one is the bootstrap-t (Boot-t) confidence interval, proposed by
Hall (1988). Boot-t developed based on a studentized ‘pivot’ and requires an estimator
of the variance of the MLE of α, β, λ, S (t), h (t) and CV .

4.1 Parametric Boot-p

(1) Based on the original data x = x1:m:n , x2:m:n, . . ., xm:m:n obtain α̂, β̂ and λ̂ by
maximizing Eqs. (13)–(16).

(2) Based on the pre-specified progressive censoring scheme (R1, R2, . . . , Rm) gen-
erate a type-II progressive censoring sample x∗ = x∗

1:m:n , x∗
2:m:n, . . ., x∗

m:m:n from
the GWD with parameters α̂, β̂ and λ̂, using the algorithm described in Balakr-
ishnan and Sandhu [29].

(3) Obtain the MLEs based on the bootstrap sample and denote this bootstrap esti-
mate by ψ̂∗ (in our case ψ could be α, β, λ, S (t), h (t) or CV .

(4) Repeat Steps (2) and (3) Nboot times, and obtain.ψ̂∗
1 , ψ̂∗

2 , . . . , ψ̂∗
Nboot , where

ψ̂∗
i = (α̂∗

i , β̂
∗
i , λ̂∗

i , Ŝ
∗
i (t) , ĥ∗

i (t) , ĈV
∗
i ), i = 1, 2, 3, . . . , Nboot .

(5) Arrange ψ̂∗
i , i = 1, 2, 3, . . .,Nboot in ascendingorders andobtain ψ̂∗

(1), ψ̂
∗
(2), . . . ,

ψ̂∗
(Nboot).

Let G1(z) = P(ψ̂∗ ≤ z) be the cumulative distribution function of ψ̂∗. Define
ψ̂boot−p = G−1

1 (z) for given z. The approximate bootstrap-p 100(1 − γ )% CI of ψ̂ ,
is given by [

ψ̂boot−p

(γ

2

)
, ψ̂boot−p

(
1 − γ

2

)]
. (25)

4.2 Parametric Boot-t

(1)–(3) The same as the parametric Boot-p.
(4) Based on the asymptotic variance–covariance matrix (20) and delta method

(22), respectively, compute thevariance–covariancematrix I−1∗
(
α̂∗, β̂∗, λ̂∗

)

and the approximate estimates of the variance Ŝ∗ (t), ĥ∗ (t) and ĈV
∗
.

(5) Compute the T ∗ψ statistic defined as

T ∗ψ = (ψ̂∗ − ψ̂)
√

̂

var(ψ̂∗)

(6) Repeat Steps 2–5, NBoot times and obtain T ∗ψ
1 , T ∗ψ

2 , . . . , T ∗ψ
Nboot .

(7) Sort T ∗ψ
1 , T ∗ψ

2 , . . . , T ∗ψ
Nboot in ascending orders and obtain the ordered

sequences T ∗ψ

(1) , T
∗ψ

(2) , . . . , T
∗ψ

(Nboot).
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Let G2(z) = P(T ∗ ≤ z) be the cumulative distribution function of T ∗ for a given
z, define

ψ̂boot−t = ψ̂ + G−1
2 (z)

√
̂

var(ψ̂∗)

Then, the approximate bootstrap-t 100(1 − γ )% CI of ψ̂ = (α̂, β̂, λ̂, Ŝ (t) , ĥ (t) or
ĈV ), is given by [

ψ̂boot−t

(γ

2

)
, ψ̂boot−t

(
1 − γ

2

)]
. (26)

5 Bayes estimation using MCMC

In this section we obtain Bayesian estimates and the corresponding credible intervals
of the unknown parameters α, β and λ, as well as some lifetime parameters S (t), h (t)
andCV . It is assumed here that the parameters α, β and λ are independent and follows
the gamma prior distributions

⎧
⎨

⎩

π1(α) ∝ αa1−1 exp {−b1α} , α > 0,
π2(β) ∝ βa2−1 exp {−b2β} , β > 0,
π3(λ) ∝ λa3−1 exp {−b3λ} , λ > 0,

, (27)

where the hyperparameters ai and bi , i = 1, 2, 3 are assumed to be nonnegative
and known. The posterior distribution of the parameters α , β and λ denoted by
π∗(α, β, λ|x), up to proportionality can be obtained by combining the likelihood
function (11) with the prior (27) via Bayes’ theorem and it can be written as

π∗(α, β, λ|x) = L(α, β, λ|x) × π1(α) × π2(β) × π3(λ)
∫∞
0

∫∞
0

∫∞
0 L(α, β, λ|x) × π1(α) × π2(β) × π3(λ)dαdβdλ

.

(28)
Therefore, the Bayes estimate of any function of the parameters, say g (α, β, λ), under
squared error loss function can be obtained as

ĝBS
(
α, β, λ|x) = Eα,β,λ|x (g (α, β, λ))

=
∫∞
0

∫∞
0

∫∞
0 g (α, β, λ) L(α, β, λ|x) × π1(α) × π2(β) × π3(λ)dαdβdλ

∫∞
0

∫∞
0

∫∞
0 L(α, β, λ|x) × π1(α) × π2(β) × π3(λ)dαdβdλ

.

(29)

It may be noted that, the calculation of the multiple integrals in (29) cannot be solved
analytically. In this case, we use the MCMC technique to generate samples from
the posterior distributions and then compute the Bayes estimators of the unknown
parameters and construct the corresponding credible intervals. From (28), the joint
posterior density function of α, β and λ can be written as
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π∗(α, β, λ|x) ∝ αm + a1−1βm + a2−1λ(−m) + a3−1

[
m∏

i=1

xα−1
i(

1 + 1
λ
xα
i

)

]

× exp

{

−β

(

b2 +
m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

))

− b1α − b3λ

}

.

(30)

The conditional posterior densities of α, β and λ can be written as

π∗
1 (α|β, λ, x) ∝ αm + a1−1

[
m∏

i=1

xα−1
i(

1 + 1
λ
xα
i

)

]

exp

{

−b1α − β

m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

)}

,

(31)

π∗
2 (β|α, λ, x) ∝ βm + a2−1 exp

{

−β

(

b2 +
m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

))}

. (32)

and

π∗
3 (λ|α, β, x) ∝ λ(−m)+a3−1

[
m∏

i=1

(

1 + 1

λ
xα
i

)−1
]

× exp

{

−b3λ − β

m∑

i=1

(Ri + 1) ln

(

1 + 1

λ
xα
i

)}

. (33)

It can be easily seen that the conditional posterior densities of β given in
(32) is gamma density with shape parameter (m + a2) and scale parameter(
b2 +∑m

i=1(Ri + 1) ln
(
1 + 1

λ
xα
i

))
.Thus, samples of β can be easily generated using

any gamma generating routine. Also, since the conditional posteriors of α and λ in
(31) and (33) do not present standard forms, but the plot of both them shows that
they similar to normal distribution see Figs. 1 and 2, and so Gibbs sampling is not a
straightforward option, the use of the Metropolis–Hasting (M–H) sampler is required
for the implementations ofMCMCmethodology.Given these conditional distributions
in (31)–(33), below is a hybrid algorithm with Gibbs sampling steps for updating the
parameter β and with M-H steps for updating α and λ. To run the Gibbs sampler algo-
rithmwe started with theMLEs of α̂, β̂ and λ̂. We then drew samples from various full
conditionals, in turn, using the most recent values of all other conditioning variables
unless some systematic pattern of convergence was achieved. Now, the following steps
illustrate the process of the Metropolis–Hastings algorithm within Gibbs sampling:

(1): Start with initial guess
(
α(0), β(0), λ(0)

)
.

(2): Set j = 1.
(3): Generate β( j) from Gamma

(
m + a2, b2 +∑m

i=1(Ri + 1) ln
(
1 + 1

λ
xα
i

))
.

(4): Using the followingM-H algorithm, generate α( j) and λ( j) from π∗
1 (α( j−1)|β( j),

λ( j−1), x) and π∗
3 (λ( j−1)|α( j), β( j), x) with the normal proposal distributions

N
(
α( j−1), var (α)

)
and N

(
λ( j−1), var (λ)

)
.
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Fig. 1 Posterior density
function π∗

1 (α|β, λ, x) of α

Fig. 2 Posterior density
function π∗

3 (λ|α, β, x) of λ

(i): Generate a proposal α∗ from N
(
α( j−1), var (α)

)
and λ∗ from N

(
λ( j−1),

var (λ)
)
.

(ii): Evaluate the acceptance probabilities

ηα = min

[

1,
π∗
1 (α∗|β( j), λ( j−1), x)

π∗
1 (α( j−1)|β( j), λ( j−1), x)

]

,

ηλ = min

[

1,
π∗
3 (λ∗|α( j), β( j), x)

π∗
3 (λ( j−1)|α( j), β( j), x)

]

. (34)

(iii): Generate a u1 and u2 from a Uniform (0,1) distribution.
(iv): If u1 < ηα , accept the proposal and set α( j) = α∗, else set α( j) = α( j−1).

(v): If u2 < ηλ, accept the proposal and set λ( j) = λ∗, else set λ( j) = λ( j−1).

(5): Compute the reliability function, hazard function and coefficient of variation as

⎧
⎨

⎩

S( j) (t) =
(
1 + 1

λ( j) t
α( j)
)−β( j)

, t > 0,

h( j) (t) = α( j)β( j)

λ( j) tα
( j)−1

(
1 + 1

λ( j) t
α( j)
)−1

, t > 0,

CV ( j) = W
(
α( j), β( j), λ( j)

)
, α( j)β( j) > 2

, (35)

(6): Set j = j + 1.
(7): Repeat Steps (3)–(6) N times.
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In order to guarante the convergence and to remove the affection of the selection of
initial value, the first M simulated varieties are discarded. Then the selected sample
are α( j), β( j), λ( j), S( j) (t), h( j) (t) and CV ( j), j = M + 1, . . . , N , for sufficiently
large N , forms an approximate posterior sample which can be used to develop the
Bayes estimates of φ = α, β, λ, S (t), h (t) or CV as

φ̂MC = 1

N − M

N∑

j=M+1

φ( j). (36)

To compute the credible intervals of α, β, λ, S (t), h (t) and CV , order α(i),
β(i), λ( j), S(i) (t), h(i) (t) and CV (i), i = 1, . . . , N as

{
α(1) < · · · < α(N )

}
,

{
β(1) < · · · < β(N )

}
,
{
λ(1) < · · · < λ(N )

}
,
{
S(1) < · · · < S(N )

}
,
{
h(1) < · · · < h(N )

}

and
{
CV (1) < · · · < CV (N )

}
. Then the 100(1−γ )%CRIs of φ = α, β, λ, S (t), h (t)

or CV become [
φ(Nγ /2), φ(N (1−γ /2))

]
. (37)

5.1 Bayes estimation using balanced loss functions

In order to make the statistical inferences more practical and applicable, we often
need to choose an asymmetric loss function. A number of asymmetric loss functions
proposed for use, one of themost popular is theLINEX loss function. This loss function
was introduced by Varian (1975), and several others; among of them Ebrahimi et al.
(1991). Recently, A more generalized loss function called the balanced loss function
(see Jozani et al. 2012) of the form

Lρ,ω,δ0 (θ, δ) = ωρ (δ, δ0) + (1 − ω) ρ (θ, δ) (38)

where ρ is an arbitrary loss function, while δ0 is a chosen a prior ‘target’ estimator of
θ , obtained for instance using the criterion of maximum likelihood, least-squares or
unbiasedness. Loss Lρ,ω,δ0 , which depends on the observed value of δ0 (X) reflects
a desire of closeness of δ to both; the target estimator δ0 and the unknown parameter
θ ; with the relative importance of these criteria governed by the choice of ω ∈ [0, 1).
A general development with regard to Bayesian estimators under Lρ,ω,δ0 is given,
namely by relating such estimators to Bayesian solutions to the unbalanced case, i.e.,
Lρ,ω,δ0 withω = 0. Lρ,ω,δ0 can be specialized to various choices of loss function, such
as for absolute value, entropy, LINEX and a generalization of squared error losses.
In (38), the choice ρ (θ, δ) = (δ − θ)2 leads to balanced squared error loss (BSEL)
function, see Ahmadi et al. (2009), in the form

Lω,δ0 (θ, δ) = ω (δ − δ0)
2 + (1 − ω) (δ − θ)2 , (39)
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and the corresponding Bayes estimate of the unknown parameter θ under balanced
squared error loss (BSEL) is given by

δω

(
x
) = ωδ0

(
x
)+ (1 − ω) E

(
θ |x) . (40)

The balanced linear-exponential (BLINEX) loss function with shape parameter q(q �=
0), is obtainedwith the choice of ρ (θ, δ) = eq(δ−θ)−q (δ − θ)−1; q �= 0, see Zellner
(1986). Hence the Bayes estimation of the unknown parameter θ under BLINEX loss
function is given by

δω

(
x
) = −1

q
log
[
ωe−qδ0(x) + (1 − ω) E

(
e−qθ |x)

]
. (41)

It is clear that the balanced loss functions are more general, which include the MLE
and both symmetric and asymmetric Bayes estimates as special cases. For exam-
ples, from (40), with ω = 1, the Bayes estimate under balanced squared error loss
function reduces to ML estimate, and for ω = 0, it reduces to the Bayes esti-
mate relative to squared error loss function (symmetric). Also, the Bayes estimator
under balanced LINEX loss function in (41) reduces to ML estimate when ω = 1,
and for ω = 0, it reduces to the case of LINEX loss function (asymmetric). If
θ = (α, β, λ, S (t) , h (t) ,CV ) and suppose that we judge convergence to have been
reached after M iterations of an MCMC algorithm have been performed. Now the
approximate posterior mean under balanced squared error loss become

E [θ ] = ωδ0
(
x
)+ 1 − ω

N − M

N∑

j=M+1

θ( j). (42)

Thus, the approximate Bayes estimates of θ = α, β, λ, S (t), h (t) or CV under BSEL
are given by

θ̂BS = ωθ̂ + 1 − ω

N − M

N∑

j=M+1

θ( j), (43)

Similarly, the approximate posterior mean under balanced LINEX loss become

E [θ ] = −1

q
log

⎡

⎣ωe−qδ0(x) + 1 − ω

N − M

N∑

j=M+1

e−qθ( j)

⎤

⎦ . (44)

Thus, the approximate Bayes estimates for θ = α, β, λ, S (t), h (t) or CV , under
BLINEX are given by

θ̂BL = −1

q
log

⎡

⎣ωe−q θ̂ + 1 − ω

N − M

N∑

j=M+1

e−qθ( j)

⎤

⎦ . (45)
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By sortingα( j), β( j), λ( j), S( j) (t), h( j) (t) andCV ( j), j = M+1, . . . , N in ascending
orders, using themethod proposed by Chen and Shao (1999), the approximate 100(1−
γ )% CRIs for θ = α, β, λ, S (t), h (t) or CV , are given by

[
θ((N−M)γ /2), θ((N−M)(1−γ /2))

]
. (46)

6 Numerical computations

In this section, for illustrative purposes, we present a simulation example to check the
estimation procedures. In this example, by using the algorithm described in Balakrish-
nan and Sandhu (1995), we generate sample fromWGD(α, β, λ) with the parameters
(α, β, λ) = (2, 2, 3), using progressive censoring scheme CS: (m = 30, n = 20,
R = (1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1)). The progressive type-II
censored sample is

0.0534 0.3606 0.4987 0.5014 0.5059 0.5783 0.7192 0.7716 0.8083 0.8516
0.8645 0.9797 0.9811 1.1621 1.3112 1.3404 1.3442 1.4390 1.7815 2.7159

From (4), (5) and (9) the true values of S (t = 0.4), h (t = 0.4) andCV are 0.9013,
0.5063 and 0.8250. Using the iterative algorithm described in Sect. 2, we determine
the MLEs of α, β and λ to be α̂ = 2.0515, β̂ = 2.1583 and λ̂ = 3.0525. Using (18),
the MLEs of S (t), h (t) and CV are Ŝ (t = 0.4) = 0.9001, ĥ (t = 0.4) = 0.5271 and
ĈV = 0.6862. Also, we determined the 95% confidence intervals for α, β, λ, S (t),
h (t) and CV based on MLEs and these confidence intervals are presented in Table 1.

Using the algorithms described in Sect. 4 of the bootstrapmethods, themean of 1000
Boot-p (Bp) and Boot-t (Bt) samples of the lifetime parameters becomes, respectively

(α̂Bp, β̂Bp, λ̂Bp, ŜBp (t = 0.4) , ĥ Bp (t = 0.4) ,ĈV Bp)

= (2.1649, 2.1904, 3.1517, 0.9189, 0.5131, 0.7314) ,

and

(α̂Bt , β̂Bt , λ̂Bt , ŜBt (t = 0.4) , ĥ Bt (t = 0.4) ,ĈV Bt )

= (1.9867, 1.8995, 2.8541, 0.8889, 0.5164, 0.6687).

Also, the 95% bootstrap (Boot-p and Boot-t) confidence intervals (CIs) are displayed
in Table 1.

Now we would like to compute the Bayes estimates of α, β, λ, S (t), h (t) and CV .
We assume the informative gamma priors forα,β and λ that is, when the hyperparame-
ters are ai = 1 and bi = 2, i = 1, 2, 3. As pointed out earlier, the posterior analysis has
been done based on a hybrid strategy combining Metropolis within the Gibbs chain.
We generate 12000 MCMC samples as has been suggested in Sect. 5. The initial val-
ues for the three parameters α, β and λ for running the MCMC sampler algorithm
were taken to be their maximum likelihood estimates i.e (α(0), β(0), λ(0)) = (α̂, β̂, λ̂).
Burn-in is a problem that may be encountered.Which is the number of iterations that
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Table 1 95% Confidence intervals α, β, λ, S (t), h (t) and CV

Method α β λ

ML (1.1482, 3.6656) (0.1338, 3.8075) (0.1055, 8.8327)

Boot-p (1.1863, 4.5748) (0.2215, 5.0012) (0.1632, 6.9640)

Boot-t (1.2556, 3.5461) (0.6547, 3.7456) (0.8934, 5.6611)

MCMC (1.4901, 2.8355) (1.1125, 2.7449) (1.5582, 6.4599)

Method S (t) h (t) CV

ML (0.8074, 0.9927) (0.1941, 0.8601) (0.1744, 0.9869)

Boot-p (0.7732, 1.1899) (0.2565, 0.9266) (0.2145, 1.2311)

Boot-t (0.7933, 1.0023) (0.1994, 0.8377) (0.2564, 1.2010)

MCMC (0.8165, 0.9769) (0.2645, 0.7564) (0.2796, 1.2853)

need to be discarded from the generated values. For any starting values α(0), β(0)

and λ(0) the first M values of the generated sequences Markov chain may be far from
reminded converged sequences. To determine M there are a number of diagnostic tests
proposed in the literature which address the convergence problem. One of them is the
trace plot. It is a simply plot of the sampled values from an algorithm at each iteration,
with the x-axis referencing the iteration of the algorithm and the y-axis referencing
the sampled values. With a trace plot, a lack of convergence is evidenced by trending
in the sampled values such that the algorithm never levels-off to a stable, stationary
state. Figure 3 shows the trace plots of the first 10000 MCMC outputs for posterior
distribution of α, β, λ, S (t), h (t) and CV . Visually the MCMC procedure converges
very well. We provide the histogram plots of generated α, β, λ, S (t), h (t) and CV
in Fig. 4. Discarding the first 2000 samples as ‘burn-in’. Burnin of M = 2000 sam-
ples is enough to erase the effect of starting point (initial values). Therefore, MCMC
samples can be used for constructing the approximate credible intervals or for esti-
mating the parameters and any functions of them. A sample of size 10000 is obtained
to make (approximate) Bayesian inference including posterior mean, median, mode
and credible interval of the parameters of interest constructed by the 2.5 and 97.5%
quantities.

Table 1 lists the 95% probability intervals for the parameters, reliability function,
hazard function and coefficient of variation. TheMCMC results of the posterior mean,
median, mode, standard deviation (S.D) and skewness (Ske) of α, β, λ, S (t), h (t)
and CV . are displayed in Table 2.

The result of Bayes estimates relative to both BSEL and BLINEX with different
values of the shape parameter q of LINEX loss function and various values ofω for the
parameters α, β and λ as well as the S (t = 0.4), h (t = 0.4) and CV , are displayed
in Table 3.

It is well known that LINEX loss function becomes symmetric for q close to zero
and hence approximately behaves as the squared error loss function itself. In addition,
we observed that the resulting estimates for q = 0.0001 are approximately similar to
the corresponding squared error Bayes estimates.
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Fig. 3 Trace plots of α, β, λ, S (t), h (t) and CV obtained from the Gibbs sampling

7 Monte Carlo simulation study

In order to compare the estimators of parameters, as well as some lifetime parameters
reliability function, hazard function and coefficient of variation of the MWD. Monte
Carlo simulations were performed utilizing 1000 progressively type-II censored sam-
ples for each simulations. All computations were performed using MATHEMATICA
ver. 8. To generate progressively type-II censored samples from MWD, we used the
algorithm proposed by Balakrishnan and Sandhu (1995) with the parameters α = 2,
β = 2 and λ = 3.We assume the informative gamma priors forα,β and λ that is, when
the hyperparameters are ai = 1 and bi = 2, i = 1, 2, 3. The true values of S(t), h (t)
and CV at t = 0.4 are S(0.4) = 0.9013, h (0.4) = 0.5063 and CV = 0.8250. Based
on 10000MCMC samples, the Bayes estimates of unknown quantities are derivedwith
respect to three different loss functions, namely (BSEL) and (BLINEXL) functions.
The Bayes estimates with respect to the BSE and BLINEX loss function are computed
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Fig. 4 Histograms of α, β, λ, S (t), h (t) and CV obtained from the Gibbs sampling

Table 2 MCMC results for α, β, λ, S (t), h (t) and CV

Parameters Mean Median Mode SD Ske

α 2.0031 1.9495 1.8454 0.4197 0.4538

β 1.9836 1.8833 1.7714 0.4812 0.2287

λ 3.2956 3.3118 3.3448 0.1206 −0.6782

S (t) 0.9045 0.9134 0.9269 0.0385 0.6660

h (t) 0.4591 0.4299 0.4116 0.1382 0.2731

CV 0.8204 0.8014 0.7998 0.0944 0.5279
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Table 3 MLE and Bayes MCMC estimates under BSEL and BLINEX

Parameters MLEs ω BSEL BLINEX

q = −0.5 q = 0.0001 q = 0.5

α 2.0515 0.0 2.0031 2.0510 2.0031 1.9632

0.3 2.0177 2.0512 2.0177 1.9893

0.6 2.0322 2.0513 2.0322 2.0157

0.9 2.0467 2.0515 2.0467 2.0425

β 2.1583 0.0 1.9836 2.0380 1.9836 1.9324

0.3 2.0049 2.0749 2.0060 1.9975

0.6 2.0707 2.1111 2.0784 2.0649

0.9 2.1364 2.1466 2.1365 2.1345

λ 3.0525 0.0 3.2956 3.2991 3.2956 3.2919

0.3 3.2225 3.2283 3.2226 3.2170

0.6 3.1496 3.1545 3.1496 3.1499

0.9 3.0768 3.0965 3.0769 3.0687

S (t) 0.9001 0.0 0.9045 0.9049 0.9045 0.9041

0.3 0.9047 0.9045 0.9044 0.9029

0.6 0.9027 0.9020 0.9018 0.9017

0.9 0.9007 0.9005 0.9003 0.9001

h (t) 0.5271 0.0 0.4591 0.4638 0.4591 0.4545

0.3 0.4725 0.4830 0.4795 0.4760

0.6 0.4959 0.5020 0.4999 0.4977

0.9 0.5193 0.5209 0.5203 0.5197

CV 0.6862 0.0 0.8204 0.8238 0.8204 0.7752

0.3 0.8004 0.8109 0.8005 0.6974

0.6 0.7086 0.7092 0.7088 0.6899

0.9 0.6168 0.6198 0.6170 0.6112

for two distinct values of ω, namely 0 and 0.6. In our study, we consider the following
scheme (CS):

CS I: R1 = n − m, Ri = 0 for i �= 1.
CS II: R(m+1)/2 = n − m, Ri = 0 for i �= (m + 1)/2 if m odd; Rm/2 = n − m,

Ri = 0 for i �= m/2 if m even.
CS III: Rm = n − m, Ri = 0 for i �= m.

The performance of the resulting estimators of α, β, λ, S(t), h (t) and CV has
been considered in terms of mean square error (MSE), which computed for k =
1, 2, . . . , 6, ϕ1 = α, ϕ2 = β, ϕ3 = λ, ϕ4 = S(t), ϕ5 = h(t) and ϕ6 = CV as
MSE = 1

M

∑M
i=1(ϕ̂

(i)
k − ϕk)

2. Also, we compare CIs obtained by using asymptotic
distributions of theMLEs, two bootstrap CIs, and MCMC CRIs. The comparison of
them are made in terms of the average CI lengths/credible interval lengths (ACL) and
coverage percentages (CP). For each simulated sample, we computed 95% CIs and
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checked whether the true value lies within the interval and recorded the length of the
CI. This procedure was repeated 1000 times. The estimated coverage probability was
computed as the number of CIs that covered the true values divided by 1000, while
the estimated expected width of the CI was computed as the sum of the lengths for all
intervals divided by 1000. The results of MSE of estimates are shown in Tables 4, 5,
6, 7, 8 and 9 and the results of ACL and CP of 95% CIs are shown in Tables 10, 11
and 12.

8 Conclusion

The purpose of this paper is to develop different methods to estimate and construct
confidence intervals for the parameters as well as reliability function, hazard function
and coefficient of variation of the Weibull–Gamma distributed under a progressively
type-II censored samples. The MLEs of the unknown parameters are obtained and
propose different confidence intervals using asymptotic distributions as well as para-
metric bootstrap methods. The Bayesian estimates of the unknown parameters are
also proposed. It is observed that the Bayes estimators cannot be obtained in explicit
forms and they can be obtained using the numerical integration. Because of that we
have used MCMC technique and it is observed that the Bayes estimate with respect to
informative prior works quite well in this case. Also, the Bayes estimates have been
obtained under balanced loss functions. The theoretical results have been applied with
the numerical example to illustrative purposes. A simulation study was conducted to
examine and compare the performance of the proposed methods for different sample
sizes (n,m) and different CSs (I, I I, I I I ). From the results, we observe the following:

1. It is observed that from Tables 4, 5, 6 7, 8 and 9, as sample size increases,
the MSEs decrease and Bayes estimates have the smallest MSEs for α, β, λ,

S(t), h (t) and CV . Hence, Bayes estimates perform better than the MLEs and
bootstrap methods in all cases considered.

2. From Tables 4, 5, 6 7, 8 and 9. It can be seen that bootstrap-t perform better than
percentile bootstrap andMLEs, because, bootstrap-t have theMSEs smaller than
MSEs in percentile bootstrap and MLEs for α, β, λ, S(t), h (t) and CV .

3. When ω = 0, Bayes estimates are provides better estimates for α, β, λ, S(t),
h (t) and CV in the sense of having smaller MSEs.

4. Bayes estimates under BLINEX with q = 0.5 are provides better estimates in
the sense of having smaller MSEs when ω = 0 and 0.6.

5. For fixed values of the sample n and failure time sizes m, the scheme I perform
better than scheme II and III in the sense of having smaller MSEs.

6. From Tables 10, 11 and 12. It can be seen that, the MCMC CRIs give more
accurate results than the approximate CIs and bootstrap CIs since the lengths of
the former are less than the lengths of latter, for different sample sizes, observed
failures and schemes.

7. The bootstrap-t CIs is better than the percentile bootstrap CIs and ACIs in the
sense of having smaller widths.
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8. For fixed sample sizes andobserved failures, thefirst scheme I, inwhich censoring
occurs after the first observed failures, gives lower lengths for the three methods
of the CIs other than the other two schemes.
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