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Abstract In this paper, an extension of the indirect inference methodology to semi-
parametric estimation is explored in the context of censored regression. Motivated
by weak small-sample performance of the censored regression quantile estimator
proposed by Powell (J Econom 32:143–155, 1986a), two- and three-step estimation
methods were introduced for estimation of the censored regression model under con-
ditional quantile restriction. While those stepwise estimators have been proven to be
consistent and asymptotically normal, their finite sample performance greatly depends
on the specification of an initial estimator that selects the subsample to be used in sub-
sequent steps. In this paper, an alternative semiparametric estimator is introduced that
does not involve a selection procedure in the first step. The proposed estimator is based
on the indirect inference principle and is shown to be consistent and asymptotically
normal under appropriate regularity conditions. Its performance is demonstrated and
compared to existing methods by means of Monte Carlo simulations.
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1 Introduction

The censored regression model has been studied and extensively used in a wide range
of applied economics literature. To estimate the parameters of censored regression
models, the maximum likelihood estimator (MLE) is usually used under the assump-
tion that the error terms have distribution functionswith a known parametric form (e.g.,
that the error terms are normally distributed). Contrary to the least squares estimator
in linear regression model, the MLE is not robust to departures from the parametric
assumptions about the error term distribution. If the employed assumptions do not
hold, the MLE is in general inconsistent (cf. Arabmazar and Schmidt 1982; Brännäs
andLaitila 1989). The same applies also toHeckman’s two-step estimator (see Jonsson
2012).

To relax the strong assumptions of MLE, several semiparametric estimators have
been introduced in the econometric literature. Relying on very weak identification
assumptions, Powell (1984, 1986a) proposed the censored least absolute deviation
(CLAD) and censored regression quantile (CRQ) estimators by imposing the restric-
tion that the conditional quantile of the error term is zero. These consistent and
asymptotically normal estimators were applied in many contexts (e.g., Fahr 2004;
Melenberg and van Soest 1996), and furthermore, have been extended in many direc-
tions, which include random censoring (Honore et al. 2002; Portnoy 2003) as well as
panel-data models (Honore 1992; Campbell and Honore 1993). In practice, the CRQ
estimator is very appealing due to its robustness to misspecification of the error-term
distribution and of the form of heteroskedasticity.

On the other hand, CRQ is difficult to compute exactly since its objective function
is non-differentiable, non-convex, and more importantly, exhibits multiple local min-
ima. The results using algorithms searching local minima (see Fitzenberger 1997b, for
an overview) depend on the choice of the starting points, while the algorithms search-
ing the global minimum (e.g., Fitzenberger and Winker 2007) can become relatively
demanding in terms of computation time, especially if many regressors are involved.
In Monte Carlo experiments, Fitzenberger (1997a) demonstrated a more severe draw-
back of the CRQ estimator in small samples than themean-biasedness and inefficiency
documented already by Paarsch (1984) and Moon (1989): the CRQ estimator exhibits
a heavy-tailed asymmetric distribution in small samples. These observationsmade also
by Fitzenberger and Winker (2007), for instance, are supported by larger differences
between expected and median values of CRQ in some simple settings, and as argued
by Khan and Powell (2001), can be attributed to the fact that the CRQ parameter
estimates play two roles: while they are estimates of the regression parameters, they
also determine which observations have positive conditional quantiles and can thus
enter the minimization of the CRQ objective function. (Note that these unfavorable
finite-sample properties are shared to some extent also by some alternatives to CLAD
such as the symmetrically censored least squares of Powell (1986b). Other alternative
estimator such as those by Horowitz (1986) and Honore and Powell (1994) do not
exhibit such heavy-tailed finite-sample distributions, but require the error terms and
the explanatory variables being independent, which is a rather strong assumption.)

Since Khan and Powell (2001) highlighted the inherent property of CLAD and
CRQ that causes their poor small-sample performance—the joint identification of
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observations entering the objective function and of the quantile regression line, several
stepwise estimation procedures have been proposed, for example, by Khan and Powell
(2001) and Chernozhukov and Hong (2002). These methods select first a subset of
observations to identify the quantile regression line and then apply the quantile regres-
sion (QR) on the selected observations. The first step can be achieved, for example, by
a nonparametric selection procedure as in Buchinsky and Hahn (1998) and Khan and
Powell (2001). Although asymptotically nearly equivalent to an ‘oracle’ QR estimator,
the selection procedure in the first step works at a cost in finite samples. Alterna-
tively, Chernozhukov and Hong (2002) developed a three-step estimation method that
involves a parametric first step to circumvent the “curse-of-dimensionality” problem
posed by nonparametric selection procedures. Its performance in small samples does
not however improve upon the two-step estimators in simple regression models.

The finite-sample performance of the stepwise estimators does not seem substan-
tially better than CLAD in studies of Khan and Powell (2001), Chernozhukov and
Hong (2002), and most recently Tang et al. (2011). This might be due to relatively low
precision of the initial nonparametric fit, for instance, but also due to a comparisonwith
CLAD estimates based on favorable local minima rather than the global minimum.
To improve upon the stepwise estimators, we introduce an alternative semiparametric
estimator for the censored regression model under conditional quantile restriction.
Contrary to the existing methods, we apply the linear regression QR estimator to
all data (rather than to a preselected subsample) and then correct its bias caused by
censoring. For the bias correction, indirect inference (II), which was suggested by
Gouriéroux et al. (1993), is used. The indirect inference methodology is a simulation-
based technique that is essentially used for estimation of the parameters of correctly
specified but intractable models, but it can be employed as a bias correction method
too (e.g., Gouriéroux et al. 2000; Gouriéroux et al. 2010).

Implementing the standard II approach requires knowledge of the error-term dis-
tribution at least up to a parametric form. To exploit only the conditional quantile
restriction, we propose a new II methodology based on simulating the values of the
error terms from a semiparametrically estimated distribution. The proposed II esti-
mator is based on the standard linear QR (which allows for linear, quadratic, and
polynomial functions of regressors) for two reasons. First, linear QR has desirable
properties such as convexity of the objective function and a reasonably small vari-
ance in small samples. Second and more importantly, the properties of linear QR are
known even under model misspecification (see Angrist et al. 2006) and can be used to
construct a nonparametrically estimated error distribution for the II simulations and
subsequent bias correction. Hence, the proposed bias-corrected QR procedure can be
shown to be consistent and asymptotically normal. Its benefits in small samples are
demonstrated by means of Monte Carlo simulations.

The remainder of the paper is organized as follows. Section 2 presents a review
of relevant estimation methods of censored regression model and a brief overview
of the indirect inference methodology. In Sect. 3, the proposed bias-corrected QR
estimator is described in details. The asymptotic properties of the indirect estimator
are discussed in Sect. 4 and the results of Monte Carlo experiments are presented in
Sect. 5. Proofs are given in the appendices.
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218 P. Čížek, S. Sadikoglu

2 Estimation of censored regression model and indirect inference

The censored regression model and some relevant estimators are introduced in Sect.
2.1 and the indirect inference concept is described in Sect. 2.2.

2.1 Censored regression model

Let us define the censored regression model. First, data are supposed to be a random
sample of size n ∈ N originating from a latent linear regression model

y∗
i = xTi β0 + εi , (1)

where y∗
i ∈ R is the latent dependent variable, xi ∈ Rk is the vector of explanatory

variables, β0 represents the k-dimensional parameter vector, and εi is the unobserved
error term with its conditional τ -quantile, τ ∈ (0, 1), being zero: qτ (εi |xi ) = 0. The
observed responses yi equal to y∗

i censored from below at some cut-off point cpi :

yi = max
{
cpi , x

T
i β0 + εi

}
. (2)

We consider here only the case of fixed censoringwith a known cut-off point cpi ≡ cp,
and without loss of generality, cp = 0. An extension to random censoring is possible
by the procedure of Honore et al. (2002).

The CRQ estimator is an extension of the classical linear QR to the censored
regression model under a conditional quantile restriction. Since the conditional quan-
tile function of yi in (2) is simply max{0, xTi β0}, Powell (1986a) proposed the CRQ

estimator β̂
CRQ
n :

β̂CRQ
n = argmin

β∈B

n∑
i=1

ρτ

(
yi − max

{
0, xTi β

})
, (3)

where B is a compact parameter space, ρτ (z) = {τ − I (z ≤ 0)}z with τ ∈ (0, 1),
and I (·) denotes the indicator function. Note that CRQ can be interpreted as applying
the linear QR estimator to the observations xi with xTi β0 > 0: only observations with
xTi β0 > 0 carry information to identify and estimate the conditional quantiles of y∗

i
given xi , xTi β0 > 0, whereas observations with xTi β0 ≤ 0 carry information that the
conditional quantile of y∗

i is negative and the conditional quantile of yi equals zero
given xi , xTi β0 ≤ 0, but they do not identify the conditional quantile of y∗

i at xi and
their contributions to the objective function (3) are independent of β in a neighborhood
of β0. This leads then to a heavy-tailed small-sample distribution of CRQ.

To eliminate this property, Khan and Powell (2001) proposed a two-step estimation
method. In the first step, the observations with xTi β0 > 0 are determined by an initial
semiparametric or nonparametric estimation, and in the second step, the standard QR
estimation is conducted on the selected observations. Nevertheless, the finite sample
results of Khan and Powell (2001) do not seem to generate a substantial advantage
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with respect to the CRQ estimator in terms of mean or median squared errors, possibly
due to an imprecise selection of observations in the first step; alternatively, using a
local rather than a global optimization algorithm for CRQ could have played a role.

Later, Chernozhukov and Hong (2002) proposed a semiparametric three-step esti-
mator of the censored regression model under conditional quantile restriction. The
initial subset of observations with xTi β0 > 0 is selected by a parametric binary-choice
model (e.g., logit) and QR is used in the subsequent steps to obtain not only consis-
tent estimates, but also a more precise selection of the observations with xTi β0 > 0.
Their finite-sample results are however not substantially better than those of the two-
step procedures: while having a smaller mean bias in small samples, the three-step
estimates often exhibit a larger mean squared errors (cf. Tang et al. 2011, Sect. 5).

2.2 Parametric indirect inference

Our strategy for estimating the censored regression model will differ from the existing
ones in that QR will be applied to all observations and its bias due to censoring will be
corrected bymeans of the indirect inference (II). In this section, we therefore describe a
general principle of (parametric) II introduced by Gouriéroux et al. (1993) and discuss
how II can be applied as a bias correction method following Gouriéroux et al. (2000).

Consider a general model, for example, (1)–(2):

yi = h(xi , εi ;β), (4)

where yi represents the response variable, xi ∈ Rk is the vector of explanatory vari-
ables with a distribution function G0(·), β0 ∈ B ⊂ Rk is the parameter vector, and εi
is the unobserved error term with a known conditional distribution function F0(·|xi )
(a generalization to a nonparametrically estimated distribution function will follow in
Sect. 3).

To implement II, an instrumental criterion, which is a function of the observations
{yi , xi }ni=1 and of an auxiliary parameter vector θ ∈ � ⊂ Rq , q ≥ k, has to be defined
(e.g., linear QR applied to censored data). This criterion is minimized to estimate the
auxiliary parameter vector:

θ̂n = argmin
θ∈�

Qn
({yi }ni=1, θ

)

(please note that the dependence on the explanatory variables {xi }ni=1 is kept implicit
as we do not consider simulating values of xi , but work conditionally on observed
{xi }ni=1; see Gouriéroux et al. 1993, for details).

The data-generating process is then fully determined by F0 and β0 and the instru-
mental criterion Qn is assumed to converge asymptotically to a non-stochastic limit
that has a unique minimum θ0:

θ0 = argmin
θ∈�

Q∞
(
F0, β0, θ

)
.
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220 P. Čížek, S. Sadikoglu

Evaluating it at any F(·|xi ) and β leads to the definition of the binding function
b(F, β):

b(F, β) = argmin
θ∈�

Q∞(F, β, θ), (5)

which implies that θ0 = b(F0, β0).
Under some regularity assumptions (see Assumptions A1–A4 in Gouriéroux et al.

1993), θ̂n is a consistent estimator of θ0. Provided that b(F0, β) is known and one-
to-one, a consistent estimate β̃n of β0 would be defined as β̃n = b−1(F0, θ̂n) (F0 is
traditionally assumed to be fully known; auxiliary parameters of the error distribution
have to be a part of the parameter vector θ ). Since the binding function is often difficult
to compute, Gouriéroux et al. (1993) defined a simulation-based procedure to estimate
the parameter β0.

Let {̃ε1, . . . , ε̃S} be S sets of error terms, where ε̃s = {̃εsi }ni=1, s = 1, . . . , S, are
simulated from F0(·|xi ), ε̃si |xi ∼ F0(·|xi ), assuming this distribution is fully known.
Then for any given β, one can generate S sets of simulated paths {ỹ1(β), . . . , ỹS(β)}
using model (4), where ỹs(β) = {ỹsi (β)}ni=1 and ỹsi (β) = h(xi , ε̃si ;β) conditional
on xi for s = 1, . . . , S. From these simulated samples, S auxiliary estimates can be
computed:

θ̃ sn(β) = argmin
θ∈�

Qn
({ỹsi (β)}ni=1, θ

)
. (6)

Under appropriate conditions, θ̃ sn (β) tends asymptotically tob(F0, β),which allows
to define the indirect inference estimator in the following way:

β̂ I I
n = argmin

β∈B

[
θ̂n − 1

S

S∑
s=1

θ̃ sn (β)

]T
�

[
θ̂n − 1

S

S∑
s=1

θ̃ sn (β)

]
, (7)

where � is a positive definite weighting matrix. This estimator can be shown to be
consistent and asymptotically normal (see Proposition 1 and 3 in Gouriéroux et al.
1993). As in GMM estimation, the choice of � does not affect the asymptotic distrib-
ution of the estimator if dim(β) = dim(θ) and its choice will thus be asymptotically
irrelevant.

To argue that II can be used as a bias correction technique, note that β can represent
the parameter value in the original model (4) (e.g., censored regression (1)–(2)) and
θ the parameter value of the auxiliary biased criterion (e.g., linear QR applied to
censored data). The binding function b(F0, β) then maps the parameter values β to
biased estimates θ and its inverse β̂ I I

n = b−1(F0, θ̂n) maps the biased estimates back
to the parameters in the original model; see Gouriéroux et al. (2000) for details.

3 Semiparametric indirect inference for censored regression

In this subsection, we introduce the semiparametric indirect estimation procedure to
estimate the parameter vector of the censored regression model under conditional
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quantile restriction. As the linear quantile regression is used as an instrumental cri-
terion and the distribution of εi is unknown, a crucial ingredient of the procedure
is the behavior of QR under misspecification (this is true even if quadratic or poly-
nomial regression functions are used due to the kink of the true quantile function).
Angrist et al. (2006) characterize the QR vector under misspecification as a minimizer
of a weighted mean-squared approximation to the true conditional quantile function,
assuming the almost-sure existence of the conditional density of the dependent vari-
able, or equivalently, of the error term. As this result does not directly apply to the
censored regression model, we modify their result to accommodate the fact that the
error distribution is not continuous. In particular, we characterize the QR estimates
under misspecification in terms of the distribution function of the error term rather
than its density as Angrist et al. (2006) did.

Let us first introduce necessary notation. The conditional quantile function of the
dependent variable yi is max{0, xTi β0}. For any quantile index τ ∈ (0, 1), the QR
vector is defined by:

θ0 = argmin
θ∈�

E
[
ρτ (yi − xTi θ)

]
, (8)

where ρτ (z) = {τ − I (z ≤ 0)}z. Further, let	(xi , β0, θ) denote the QR specification
error, 	(xi , β0, θ) = xTi θ − max{0, xTi β0}, and the observed residual ui be defined
as ui = yi − max{0, xTi β0}. Finally, let Fu(u|xi ) and Fy(y|xi ) be the conditional
distribution functions of ui and yi , respectively, and let fu(u|xi ) and fy(y|xi ) denote
the corresponding conditional densities whenever they exist. For continuously distrib-
uted latent error εi in model (1), fu(u|xi ) and fy(y|xi ) exist and will be used only for
ui > −max{0, xTi β0} and yi > 0, respectively.

Theorem 1 Suppose that E(yi ) and E‖xi‖2 are finite, θ0 uniquely solves (8), and
P{	(xi , β0, θ0) = 0} = 0. Then, θ̄ = θ0 uniquely solves the equation

θ̄ = argmin
θ∈�

E
[
w(xi , β

0, θ̄ ) · 	2(xi , β
0, θ)

]
, (9)

where

w(xi , β
0, θ̄ ) =

⎧⎨
⎩

Fu{	(xi ,β0,θ̄ )|xi }−τ

2	(xi ,β0,θ̄ )
if 	(xi , β0, θ̄ ) �= 0

w0(xi ) if 	(xi , β0, θ̄ ) = 0

for any bounded function w0(xi ):Rk → R+
0 .

Proof See Appendix 1. 
�
Theorem 1 states that the linear QR vector depends on the weighting function

w(xi , β0, θ0), which in turn is a function of the distribution function Fu(·|xi ).
Thus, for any other distribution function F̃̃u(·) such that F̃̃u{	(xi , β0, θ0)|xi } =
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Fu{	(xi , β0, θ0)|xi }, the weighting function remains unchanged and the linear QR
yields the same vector θ0.

Next, we consider Theorem 1 in the censored regression model with errors
εi ∼ Fε(·|xi ). To facilitate semiparametric estimation that does not require com-
plete estimation of Fε(·|xi ), we will construct another distribution F̃̃ε(·|xi ) that is
always from the same parametric family of distributions and that results in the same
QR fits as Fε(·|xi ) by Theorem 1.

First, note that ui = max{εi ,−xTi β0} for xTi β0 > 0 and ui = yi for xTi β0 ≤ 0.
Considering now different errors ε̃i ∼ F̃̃ε(·|xi ), one can set ũi = max{̃εi ,−xTi β0}
for xTi β0 > 0 and ũi = ỹi = max{0, xTi β0 + ε̃i } for xTi β0 < 0. As the censor-
ing points of ui and ũi are identical (conditionally on xi ), we essentially have to
match the two latent continuous distributions of εi and ε̃i . We will show that the
distribution ε̃i can be a normal one: ε̃i ∼ N (μτσ (xi ;β0), σ (x;β0)), where μτ is
the (1 − τ)th conditional quantile of the standard normal distribution N (0, 1) and
σ 2(xi ;β0) denotes the conditional variance. Specifically, we find σ(xi ;β0) such that
F̃̃u{	(xi , β0, θ0)|xi } = Fu{	(xi , β0, θ0)|xi } for any finite value of xi . First note that
Fu{	(xi , β0, θ0)|xi } = Fy(xTi θ0|xi ) (and analogously for ũi and ỹi ): σ(xi ;β0) has
to be therefore chosen so that

Fy(x
T
i θ0|xi ) = F̃ỹ(x

T
i θ0|xi ). (10)

The definition of σ(xi ;β0) is irrelevant if xTi θ0 < 0 as then Fy(xTi θ0|xi ) =
F̃ỹ(xTi θ0|xi ) = 0. Ignoring the case of Fy(xTi θ0|xi ) = τ , which will be dealt with
later, (10) for xTi θ0 ≥ 0 means

Fy(x
T
i θ0|xi ) = �

(
xTi θ0 − [xTi β0 + μτσ(xi ;β0)]

σ(xi ;β0)

)
= �τ

(
xTi θ0 − xTi β0

σ(xi ;β0)

)

(11)

and

σ(xi ;β0) = xTi θ0 − xTi β0

�−1
τ (Fy(xTi θ0|xi ))

, (12)

where � and �τ are the distribution functions of N (0, 1) and N (μτ , 1), respectively
(note that (12) leads to σ(xi , β0) = 0 for xTi θ0 < 0). Therefore, having ε̃i ∼ N (μτ ·
σ(xi ;β0), σ (xi ;β0)) with σ(xi , β0) defined in (12) yields the same linear QR vector
as the real data generated under εi ∼ Fε(·|xi ) and the biases of the linear QR estimates
in the censored regression model (1)–(2) both with the original data distribution εi ∼
Fε(·|xi ) and with the data generated from ε̃i ∼ N (μτ · σ(xi ;β0), σ (xi ;β0)) will be
equal.

For the case of Fy(xTi θ0|xi ) = τ , i.e., xTi (θ0−β0) → 0 for xTi β0 > 0, we consider
the limit of (12) and define σ(xi ;β0) as
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σ(xi ;β0) = φτ {�−1
τ [Fy(xTi β0|xi )]}
fy(xTi β0|xi )

= φτ {�−1
τ [Fy(xTi θ0|xi )]}
fy(xTi θ0|xi )

if Fy(x
T
i θ0|xi ) = τ. (13)

If the bias correction of linear QR is to be performed by II, we can simulate the set
of error terms {̃ε1, . . . , ε̃S} from N (μτ ·σ(xi ;β), σ (xi ;β)) instead of the original data
distribution and calibrate over β ∈ B (provided that σ(xi , β) is known). However,
β is not identified in this case because Eq. (11) holds for any value β substituted for
β0 if definition (12) is used at that β. To achieve identification, β0 in (12) has to be
replaced by an initial estimate or the denominator in (12) also has to be a function of β
instead of being equal to its true value at β0. We consider the latter strategy to achieve
good performance even in very small samples. It is well known that the identification
of the parameter vector in (1)–(2) under conditional quantile restriction relies on the
observations with positive values of the index xTi β0 > 0 (Powell 1984, 1986a) since
Fy(xTi β0|xi ) = τ only if xTi β0 > 0. We also exploit this fact and we define σ̃ (xi ;β)

for xTi θ0 ≥ 0 as

σ̃ (xi ;β) =

⎧⎪⎨
⎪⎩

xTi θ0−xTi β

�−1
τ (Fyi (x

T
i θ0|xi )) if xTi β ≤ 0,

xTi θ0−xTi β

�−1
τ (min{max{Fy(xTi θ0|xi )−Fy(xTi β|xi )+τ,0},1}) if xTi β > 0;

(14)

(̃σ(xi ;β) = 0 for xTi θ0 < 0).1 Since σ̃ (xi ;β) = σ(xi ;β) only if β = β0, (11) using
σ̃ (xi ;β) will hold only at β ≡ β0 and the parameter vector β can be identified (see
Lemma 1 for details). Further, as (14) becomes indeterminate if Fy(xTi θ0|xi ) = τ or
Fy(xTi θ0|xi ) = Fy(xTi β|xi ), we replace the definition of σ̃ (xi ;β) in such cases by
(13) so that σ̃ (xi ;β) is continuous in β:

σ̃ (xi ;β) =
φτ

{
�−1

τ

[
Fy

(
xTi θ0|xi

)]}

fy
(
xTi θ0|xi

) if Fy

(
xTi θ0|xi

)
= τ

or Fy

(
xTi θ0|xi

)
= Fy

(
xTi β|xi

)
, (15)

where φτ (·) is the density function of �τ (·) (note that the limit is the same for both
cases of (14)).

With the definition (14) and (15) of σ̃ (xi ;β), which assumes knowledge of the true
conditional distribution Fy(xTi θ0|xi ) at xTi θ0, we can define the infeasible indirect
inference (III) estimator β̂ I I I

n by

1 For xTi β ≤ 0 , σ̃ (xi ; β) might take a negative value. However, note that the data-generating process for
simulated data as well as the identification of β are invariant to the sign of σ̃ (xi ; β).
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β̂ I I I
n = argmin

β∈B

[
θ̂n − 1

S

S∑
s=1

θ̃ sn(β)

]T
�

[
θ̂n − 1

S

S∑
s=1

θ̃ sn(β)

]
, (16)

where θ̃ sn(β) = argmin
θ∈�

∑n
i=1 ρτ (ỹsi (β) − xTi θ) using simulated data ỹsi (β) =

max{0, xTi β + ε̃si }, ε̃si ∼ N (μτ · σ̃ (xi ;β0), σ̃ (xi ;β0)) for s = 1, . . . , S, and �

is a positive definite weighting matrix. For the sake of brevity, these distributions
N (μτ · σ̃ (xi ;β), σ̃ (xi ;β)) will be referred to as F̃̃ε(β) within the binding function
and its density will be denoted as f̃̃ε(β). The corresponding quantities for the response
variable are F̃ỹ(β) and f̃ ỹ(β).

To define a feasible indirect inference estimator, the simulated error distribution
defined by σ̃ (xi ;β) has to be estimated by N (μτ ·σ̂n(xi ;β0), σ̂n(xi ;β0)) using an esti-
mate σ̂n(xi ;β). Denoting θ̂n the linear QR estimate for the original data and F̂y,n(·|xi )
an estimate of Fy(·|xi ), we define σ̂n(xi ;β) as

σ̂n(xi ;β) =

⎧⎪⎨
⎪⎩

xTi θ̂n−xTi β

�−1
τ (F̂y,n(xTi θ̂n |xi )) if xTi β ≤ 0,

xTi θ̂n−xTi β

�−1
τ (min{max{F̂y,n(xTi θ̂n |xi )−F̂y,n(xTi β|xi )+τ),0},1}) if xTi β > 0.

(17)

Since the denominators in (17) might take value 0, we again extend the definition (17)
of σ̂n(xi ;β) in such a way that the variance function σ̂n(xi ;β) is continuous in xi .
For a given β and any sequence {cn}∞n=1 such that cn = O(n−k0), k0 > 0, suppose
that |F̂y,n(xTi θ̂n|x) − F̂y,n(xTi β|x)| < cn for xTi β > 0 or |F̂y,n(xTi θ̂n|xi ) − τ | <

cn for xTi β ≤ 0; we refer to this event as the “zero-denominator” ZDi,n(θ̂n, β). If
ZDi,n(θ̂n, β) occurs, then we use instead of (17) the linearly interpolated values

σ̂n(xi ;β) = xTi θ̂n − xTm θ̂n

xTM θ̂n − xTm θ̂n
σ̂n(xM ;β) + xTM θ̂n − xTi θ̂n

xTM θ̂n − xTm θ̂n
σ̂n(xm;β), (18)

where m = argmax j≤n{xTj θ̂n : xTj θ̂n < xTi θ̂n and I (ZDj,n(θ̂n, β)) = 0} and M =
argmin j≤n{xTj θ̂n : xTj θ̂n > xTi θ̂n and I (ZDj,n(θ̂n, β)) = 0}; if m = ∅ or M = ∅
(e.g., if θ̂n = β), σ̂n(xm;β) = 1 or σ̂n(xM ;β) = 1, respectively. Alternatively, one
can also use a straightforward analog of (15) and define

σ̂n(xi ;β) =
φτ

{
�−1

τ

[
F̂y,n

(
xTi θ̂n|xi

)]}

f̂ y,n
(
xTi θ̂n|xi

) , (19)

where f̂ y,n(·|xi ) is an estimate of the conditional density function fy(·|xi ). As this
requires an additional nonparametric estimator, we rely on definition (18). The corre-
sponding theoretical results in Sect. 4 are however valid also for (19) if the uniform
convergence of f̂ y,n(·|xi ) to fy(·|xi ) is imposed.
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Having an estimate σ̂n(xi ;β) defined by (17)–(18) (or (17) and (19)), the feasible
indirect inference (FII) estimator β̂F I I

n can be defined as

β̂F I I
n = argmin

β∈B

[
θ̂n − 1

S

S∑
s=1

θ̂ sn(β)

]T
�

[
θ̂n − 1

S

S∑
s=1

θ̂ sn(β)

]
, (20)

where θ̂ sn(β) = argmin
θ∈�

∑n
i=1 ρτ (ŷsi (β) − xTi θ) using ŷsi (β) = max{0, xTi β + ε̂si }

and ε̂si ∼ N (μτ · σ̂n(xi ;β), σ̂n(xi ;β)).

Finally, let us remark that the proposed estimator β̂F I I
n does not perform a selection

procedure as it is done in Khan and Powell (2001) and Chernozhukov and Hong
(2002), that is, the proposed estimation method is applied to all observations in the
sample. Furthermore, our estimation procedure corrects the downward bias of linear
QR caused by the censoring of the dependent variable and can be thus considered
as a bias-correction method. The bias-correction procedure is based, similar to two-
step estimators, on nonparametric estimates. Even though the bias-correction does not
seem to be overly sensitive to the (lack of) precision of these nonparametric estimates,
it could benefit from using some dimension reduction technique (e.g., Xia et al. 2002)
to estimate σ(xi , β) on a lower dimensional space in models with a large numbers
of explanatory variables, especially discrete ones. Finally, the linear QR includes
implicitly also quadratic and polynomial models since xi can contain both the values
of covariates as well as their powers. In the simulations (see Sect. 5), we used for
simplicity only the auxiliarymodel linear in variables as the quadratic auxiliarymodel,
which can better approximate the true quantile function, did not perform substantially
better than the linear one.

4 Large sample properties

In this section, the asymptotic properties of the indirect-inference estimators for the
censored regression model, β̂ I I I

n and β̂F I I
n , are derived. As our main result, we prove

that β̂ I I I
n and β̂F I I

n are asymptotically equivalent and asymptotically normally dis-
tributed. Let us first introduce conditions required for establishing the consistency and
asymptotic normality of the III estimator.

A.1 The parameter spaces� and B are compact subsets of Rk and the true parameter
values are θ0 ∈ �◦ and β0 ∈ B◦.

A.2 The parameter vector θ0 uniquely minimizes E[ρτ (yi − xTi θ)].
A.3 The random vectors {(xi , yi )}ni=1 are independent and identically distributed

with finite second moments. The support of xi ∈ X is assumed to be compact.
Moreover, the index xTi θ0 is continuously distributed, that is, there is at least one
continuously distributed explanatory variable with θ0j �= 0.

A.4 The τ th conditional quantile of εi is zero. The error term εi has the condi-
tional distribution Fε(t |xi ) with the conditional density function fε(t |xi ), which
is uniformly bounded both in t and xi , positive on its support, and uniformly
continuous with respect to t and xi .
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A.5 The following matrices are assumed to be finite and positive definite:
– Jcrq = E

[
I (xTi β0 > 0) fy(xTi β0|xi )xi xTi

]
,

– J = E[I (xTi θ0 > 0) fy(xTi θ0|xi )xi xTi ],
– J̃ = E

[
I (xTi θ0 > 0) f̃ ỹ(β0)(x

T
i θ0|xi )xi xTi

]
,

– 
 = E[{τ − I (yi < xTi θ0)}2xi xTi ],
– 
̃ = E[{τ − I (ỹsi (β

0) < xTi θ0)}2xi xTi ], and
– K = E[{Fy(xTi θ0|xi ) − τ }2xi xTi ].

A.6 Denoting F̃0 = F̃ỹ(β0), the link function b(F̃0, β) is a one-to-one mapping.
Moreover, b(F, β) is assumed to be continuous in β and F (with respect to the
supremumnorm) atβ0 and F̃0. Finally, b(F̃ỹ(β), β) is continuously differentiable
in β ∈ U (β0, δb), δb > 0, and D = ∂b(F̃ỹ(β0), β

0)/∂βT has a full column rank.
A.7 P(	(xi , θ0, β0) = 0) = 0 and P(xTi θ0 = v) = 0 for any v ∈ R.

Let us provide a few remarks regarding the necessity of these assumptions. Assump-
tions A.1, A.2, and A.3 are essential for establishing the consistency and asymptotic
normality of the QR estimates θ̂n as argued in Angrist et al. (2006) as well as the
consistency and asymptotic normality of β̂ I I I

n . As shown in Angrist et al. (2006),
compactness of the support of X , which is typically achieved by trimming in semipara-
metric estimation and is also required byKhan and Powell (2001), can be relaxed to the
existence of finite (2+δ)th moment of xi . In our proofs of the asymptotic properties of
β̂ I I I
n , relaxing the compactness of X would additionally requiremaxi≤n‖xi‖ = op(nα)

for some 0 < α < 1/2 (this is an assumption closely related to the existence of finite
(2+ δ)th moments; see Čížek 2006, Proposition 2.1). Moreover, we assume the exis-
tence of one continuous explanatory variable.

Next, Assumption A.4 is the standard assumption in quantile regression models
(e.g., Powell 1986a), although the density function fε(t |xi ) is usually assumed to be
positive only in a neighborhood of 0. Given the misspecification of the linear QR, it
is convenient to assume non-zero density everywhere as fε(t |xi ) is evaluated for any
t = xTi θ0. Concerning Assumption A.5, it contains usual full-rank conditions used
in censored and quantile regression models and is necessary for the identification of
parameter vectors, see for example Khan and Powell (2001). In the case of J , J̃ , and
Jcrq , it rules out collinearity among the explanatory variables restricted to regions
with xTi θ0 > 0 and xTi β0 > 0, respectively (e.g., collinearity could arise if xi with a
bounded support contains a dummyvariable di with so small coefficient that xTi β0 < 0
whenever di = 1). Further, the first part of Assumption A.7 is imposed to simplify
the proof of the consistency and asymptotic normality of the proposed estimator: it
rules out the data without any censoring. The results remain valid even if there is no
censoring, although some proofs would slightly differ. The second part of Assumption
A.7 just formalizes the continuous-regressor Assumption A.3.

Finally, Assumption A.6 is the standard assumption necessary for defining the
indirect inference estimator: the population QR estimates θ̃ (β) and θ̃ ′(β ′) for data
simulated from the censored regression model with parameters β and β ′ should differ
if β �= β ′. Note though that we require the link function to be one-to-one only at the
distribution F̃0 = F̃ỹ(β0) corresponding to the true parameter values β0. This should
however not be very restrictive in practice. On the one hand, the uniqueness of the
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population QR estimates θ0 and θ̃ (β) for some β requires, apart from the full-rank
conditions in A.5, that the distribution of the responses and linear regression function
is continuous with strictly positive conditional densities at xTi θ0 for xTi θ0 > 0 (cf.
Assumption A.5). For the simulated data (xTi θ0, ỹsi (β)), the continuity follows from
the presence of at least one continuously distributed explanatory variable (Assumption
A.3 and A.7) and from the latent errors εi being Gaussian with uniformly bounded
variances (see Appendix 2), which follows primarily from the compactness of the
parameter and variable spaces (Assumptions A.1 and A.3). For the real data, which
follow an unknown distribution, we however have to impose the uniqueness of θ0

(Assumption A.2). On the other hand, the one-to-one link function also means that
any change in β results in a change of θ̃ (β). This holds trivially in the model without
any censoring as the data generating process defined by β then leads to the population
QR estimates θ = b(F̃0, β) = β. If the censoring is present, b(F̃0, β) �= β, but the
link function is still usually one-to-one: any change in β, for example an increase of the
intercept, is reflected by the corresponding change in the censored population data, for
example by shifting non-censored population data up. This is a direct consequence of
the error distribution defining F̃0 being independent of β and its conditional Gaussian
density of εi given xi being everywhere positive—the population data therefore always
contain some non-censored responses at any xi .

Although it is difficult to provide a more specific general condition which ensures
that the link function is a bijection, one can detect the violation of this condition at
least locally. Due to the local identification condition under model misspecification,
which is represented here by the full rank of matrix D (cf. Theorem 3.1 of White
1982), singularity or near singularity of the estimated derivative of the link function
will indicate that Assumption A.6 is violated. If one suspects that Assumption A.6 is
violated, a possible approach is to enhance the auxiliary model in such a way that it
better approximates the true model (the closer the auxiliary model is to the true model,
the less likely Assumption A.6 is violated). In particular for the censored regression
model, we can use, for example, quadratic functions of regressors and fit an auxiliary
quadratic QR model rather than the linear one.

These assumptions are sufficient to derive the asymptotic distribution of the infea-
sible estimator. For the sake of simplicity of some proofs, we will additionally assume
that the conditional error distribution Fε(·|xi ) has an infinite support (see Appendix 1
for details), but the stated results are valid in the general case as well.

Theorem 2 Let quantile τ ∈ (0, 1),� be a non-singular k×k matrix, and S ∈ N be a
fixed number of simulated samples. Under Assumptions A.1–A.7, β̂ I I I

n is a consistent
estimator of β0 and it is asymptotically normal:

√
n(β̂ I I I

n − β0) → N
(
0, D−1V (S)(DT )−1

)
(21)

as n → +∞, where V (S) = J−1
 J−1 + 1
S J̃

−1
̃ J̃−1 + (1 − 1
S ) J̃−1K J̃−1 −

2J−1K J̃−1.

123
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Proof See Appendix 3. 
�
The asymptotic variance matrix of β̂ I I I

n derived in Theorem 2 consists of several
parts. First, the matrices 
 and 
̃ are the variances of the QR first-order conditions in
the real and simulated data, respectively. Next, J and J̃ are the corresponding Jacobian
matrices defined in AssumptionA.5. Finally, matrix K characterizes the unconditional
covariance between the real and simulated data.

The next theorem shows that the feasible estimator β̂F I I
n is asymptotically equiva-

lent to the infeasible one β̂ I I I
n provided that one extra assumption holds: the conditional

distribution function and its nonparametric estimates, which are used in (17) to define
σ̂n(xi ;β), have to be smooth functions of the data. Additionally, the nonparametric
estimate F̂y,n(zi |xi ) has to be consistent and to converge at a faster rate than the
sequence cn = O(n−k0), k0 > 0, used in the definition of σ̂n(xi ;β). This is however
not a constraint as k0 is arbitrary.

A.8 For any compact sets Cx ⊂ Rk and Ct ⊂ R+, supx∈Cx
supt∈Ct

|F̂y,n(t |xi ) −
Fy(t |xi )| = Op(n−k1) for some k1 > k0 > 0 and supx∈Cx

supt∈Ct
|E{F̂y,n(t |xi )

− Fy(t |xi )}| = op(n−1/2). Moreover, F̂y,n(t |xi ) is monotonic in t and
F̂y,n(t |xi ) = 0 for t < 0 and any xi ∈ X .

A.9 The conditional distribution functions Fy(z|xi = x) are piecewise Lipschitz
functions in x for any z ∈ R.

Assumption A.8 is satisfied for many bias-corrected estimators of conditional distri-
bution functions. Assumption A.9 on the conditional distribution function then states
explicitly a minimum requirement that facilitates a consistent estimation and hence
validity of Assumption A.8, although stronger assumptions on the smoothness of
Fy(z|xi ) are usually used (cf. Li and Racine 2008).

Theorem 3 Let the assumptions of Theorem 2 be satisfied. If Assumptions A.8–A.9
also hold,

√
n(β̂F I I

n − β̂ I I I
n ) → 0 in probability as n → +∞.

Proof See Appendix 3. 
�
Theorem 3 shows that the feasible and infeasible II estimates, β̂F I I

n and β̂ I I I
n ,

are asymptotically equivalent, and consequently, the asymptotic variance-covariance
matrix of β̂F I I

n is given by (21). All elements of matrix V (S) can be readily esti-
mated in practice (after replacing θ0 by θ̂n) as we explain now. First, let us note
that, as a by-product of constructing estimate σ̂n(xi , β̂F I I

n ) of σ̃ (xi , β0) in the FII
estimation procedure, we obtain along with the FII estimate β̂F I I

n also estimates
θ̂n , F̂y,n(xTi θ̂n|xi ), and f̂ y,n(xTi θ̂n|xi ) of θ0, Fy(xTi θ0|xi ), and fy(xTi θ0|xi ), respec-
tively, for all i = 1, . . . , n; see formulas (18) and (19). Moreover, all these estimates
are consistent by Lemmas 5, 2, and 3. Another by-product of the estimation pro-
cedure are S simulated samples (xi , ỹsi (β̂

F I I
n ))ni=1 used to compute S auxiliary

estimates θ̂ sn(β̂
F I I
n ) in (20). Since random vectors (xi , yi ) are independent and iden-

tically distributed, i = 1, . . . , n, most elements of the asymptotic variance matrix
D−1[J−1
 J−1 + S−1 J̃−1
̃ J̃−1 + (1− S−1) J̃−1 K̃ J̃−1 − 2J−1 K̃ J̃−1](DT )−1 can
be consistently estimated due to the law of large numbers by (cf. Assumption A.5)

– Ĵn = n−1∑n
i=1 I (x

T
i θ̂n > 0) f̂ y,n(xTi θ̂n|xi )xi xTi ;
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– ̂̃Jn = n−1∑n
i=1 I (x

T
i θ̂n > 0) f̃ ỹ(β0)(x

T
i θ̂n|xi )xi xTi , where f̃ ỹ(β0)(·|xi ) denotes

the density of N (μτ , σ̂n(xi , β̂F I I
n ));

– 
̂n = n−1∑n
i=1{τ − I (yi < xTi θ̂n)}2xi xTi ;

– ̂̃
n = n−1S−1∑n
i=1
∑S

s=1{τ − I (ỹsi (β̂
F I I
n ) < xTi θ̂n)}2xi xTi , and

– K̂n = n−1∑n
i=1{F̂y,n(xTi θ̂n|xi ) − τ }2xi xTi .

The only exception is the matrix D = ∂b(F̃ỹ(β0), β
0)/∂βT , which represents the

derivative of the link function. As this derivative is defined in terms of the simulated
model with ŷsi (β) being drawn from N (xTi β, σ̂n(xi , β)) given xi and censored at 0, we
can draw an arbitrarily large sample representing thewhole population and evaluate the
link function and its derivative numerically as suggested by Gouriéroux et al. (1993).
In particular, let 1 � δ > 0, an integer N � n, and x̃k and ε̃k be randomly drawn from
the empirical distribution of {xi }ni=1 and N (0, 1) for k = 1, . . . , N . Denoting θ̂N (β)

the auxiliary QR estimate obtained for data (x̃k,max{0, x̃ Tk β + ε̃k σ̂n(x̃k, β)})Nk=1, the

derivative of the link function can be estimated by matrix D̂n = (d̂i j,n)
k,k
i, j=1 with the

i j th element equal to

d̂i j,n = θ̂i,N (β + δe j ) − θ̂i,N (β)

δ
,

where θ̂i,N (β) denotes the i th element of θ̂N (β) and e j = (0, . . . , 0, 1, 0, . . . , 0)T

is the vector with the j th element equal to 1 and all other elements equal to 0. Note
though that, given the discussion in Sect. 5.2, it can be advisable to use a better approx-
imation of the estimator’s variance in small samples than the asymptotic distribution;
for example, the bootstrap.

5 Monte Carlo simulations

Although we characterized the asymptotic properties of the proposed bias-corrected
QR estimator, it is primarily aimed to improve the finite-sample performance of exist-
ing estimators. To analyze the benefits of the bias-correction performed by means of
the indirect inference, this method is now compared with many existing estimators by
means of Monte Carlo simulations. The simulation setting is described in Sect. 5.1
and the results are discussed in Sect. 5.2.

5.1 Simulation design

The data-generating process is similar to the one considered by Khan and Powell
(2001):

yi = max{α + x1i + · · · + xki + εi , 0}

with the slope parameters equal to 1 and α chosen in each sample so that the censoring
level is always the same; unless stated otherwise, the censoring level equals 50%.
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The k regressors x1i , . . . , xki are uniformly distributed on
〈
−√

3,
√
3
〉
, but the results

are qualitatively rather similar across other data distributions (e.g., xi being normally
distributed). Further, we focus on the median regression case τ = 0.5. The error term
εi can thus follow various error distributions with the median equal to zero, such as
the normal N (0, σx ), Student td , and double exponential DExp(λ) ones.

For this data-generating process, we consider the following estimators: (i) the
standard Tobit MLE constructed for normal homoscedastic errors; (ii) the CLAD
estimator; (iii) the two-step LAD of Khan and Powell (2001) based on their three
initial estimators—the maximum score estimator (2S-MSC), the Nadaraya-Watson
estimator of the propensity score (2S-NW), and the conditional quantile estimator
(2S-LQR); (iv) the ‘infeasible’ LAD (IFLAD) defined as the QR estimator applied
only to data points with α + βxi ≥ 0; (v) the three-step estimator of Chernozhukov
and Hong (2002) based on the initial logit estimator (3S-LOG); (vi) the proposed QR
estimator with bias corrected by indirect inference (FII); and (vii) the corresponding
infeasible indirect inference (III) estimator, which does not estimate the conditional
error distribution, but ‘knows’ the true one.

The QR estimates were in all cases computed by the Barrodale and Roberts (BR)
algorithm as implemented in the R package “quantreg.” The same package was also
used for computing CLAD by an adapted BR algorithm; given that it only finds local
minima, we searched the global minimum by exhaustive search of all elemental sub-
sets if k = 1, and due to infeasibility of this in higher dimensional models, started
the adapted BR algorithm from the naive QR regression estimate if k ≥ 1. For the
indirect-inference based methods, we use the Nelder-Mead simplex method with mul-
tiple starting points as an optimization algorithm;2 the number of simulated samples
is S = 50 by default. Further, many of the considered methods depend on some initial
nonparametric estimators of the conditional mean, conditional quantile, and condi-
tional distribution and density functions. The nonparametric estimators considered
here are those by Racine and Li (2004) for the conditional mean and distribution
function estimation, by Li and Racine (2008) for the conditional quantile estimation,
and by Hall et al. (2004) for the conditional density estimation; we use their imple-
mentation in the R package “npreg,” which also includes the bandwidth choice by the
least-squares cross-validation. The estimation and the bandwidth choice were based
in all cases on the Gaussian kernel (the results are however insensitive to the kernel
choice).

Finally, the bias-corrected QR estimator using the estimated values of the con-
ditional distribution function can sometimes exhibit multiple minima in very small
samples (in such cases, there are usually two minima found irrespective of the number
of starting points). This concerns only the feasible estimator, but not the infeasible one:
given the consistency of the nonparametric estimators, of the proposed II method, and
the identification result in Lemma 1, multiple minima thus disappear as the sample
size increases (as we practically observed in the simulation study). In the presence of
multiple local minima, we simply use the average of the found local minima as the

2 Note that multiple starting points are relevant only for the feasible II estimator in small samples as
discussed later. The III method does not exhibit multiple minima at any sample size.
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Table 1 The bias and root mean
squared error of the indirect
inference estimators based on S
simulated samples in a model
with the standard normal errors

Estimator III FII

S Bias RMSE Bias RMSE

5 0.001 0.189 −0.086 0.252

10 0.005 0.187 −0.084 0.255

25 0.009 0.191 −0.071 0.267

50 0.008 0.185 −0.065 0.278

100 0.010 0.188 −0.057 0.286

250 0.008 0.186 −0.051 0.297

estimate. Unreported simulations indicate that multiple minima in small samples do
not occur at all if the quadratic auxiliary model is used.

The results for all methods are obtained using 1000 simulations for k ∈ {1, 3, 5}
variables and sample sizes n = 50, 100, and 200 and are summarized using the bias
and root mean squared error (RMSE) of the slope estimates (the absolute bias is
reported if k > 1).

5.2 Simulation results

Let us first discuss the number S of simulated samples and its influence on the estimates
for standardnormal errors, k = 1, andn = 100.AsTable 1documents, the II estimators
are consistent for any fixed and finite S: the III estimator performs equally well for any
S = 5, . . . , 250 and one could expect similar performance of FII in large samples once
the bias of nonparametric estimation becomes small. At n = 100 however, FII based
on an increasing number S of simulated samples shows a diminishing negative finite-
sample bias and an increasing RMSE (RMSE does not increase further for S > 250).
While the trade-off is not too large andwe choose S = 50 here, S should be set larger if
one is concerned about the bias and can be set smaller if RMSE is important. A similar
trade-off—a larger negative bias connected to a lower variance of estimates—will be
also observed later in the case of some existing estimators.

The first comparison of estimators is obtained for εi ∼ N (0, 1), k = 1, and n =
50, 100, and 200; see Table 2. The MLE estimator serves as a parametric benchmark,
and given normality, performs best in all cases. First, CLAD exhibit large biases and
RMSEs in small samples, especially with n = 50 observations; this is due to the heavy
right-tail of the CLAD distribution. Next, the existing two-step estimators exhibit
relatively large RMSEs, which are however smaller than those of CLAD (except for
2S-MSC), and negative biases, which vary with the choice of the initial estimator.
The fact that 2S-LQR performs better than the infeasible IFLAD in terms of RMSE
is related to the difference in definitions: IFLAD uses data points with α + βxi ≥ 0,
whereas the two-step estimators rely on data points with α + βxi ≥ c (e.g., c is
set to 0.05 here as done in Khan and Powell 2001). Increasing c reduces the bias,
but increases the variance of estimates (especially for 2S-LQR) and vice versa. In
comparison, the three-step estimator 3S-LOG has usually larger RMSEs than 2S-NW
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Table 2 The bias and root mean squared error of all estimators in a model with the standard normal errors
at different sample sizes n = 100, 200, and 400

Estimator n = 50 n = 100 n = 200

Bias RMSE Bias RMSE Bias RMSE

MLE −0.010 0.199 −0.004 0.138 −0.001 0.097

CLAD 0.402 1.228 0.140 0.481 0.078 0.292

IFLAD −0.109 0.438 −0.090 0.298 −0.061 0.204

2S-MSC −0.182 0.641 −0.196 0.506 −0.124 0.388

2S-NW −0.114 0.538 −0.103 0.396 −0.060 0.269

2S-LQR −0.146 0.412 −0.121 0.294 −0.084 0.220

3S-LOG −0.050 0.506 −0.049 0.373 −0.028 0.267

III 0.037 0.276 0.008 0.191 0.005 0.132

(0.303) (0.214) (0.151)

FII −0.040 0.398 −0.066 0.276 −0.051 0.218

The values in brackets represent the standard deviations based on the asymptotic distribution of the II
estimators
The results for the infeasible estimators are in italics

or 2S-LQR, but rather small finite-sample bias compared to all other semiparametric
methods.

Looking at the two infeasible estimators, III exhibits always smaller RMSE than
IFLAD, although the difference decreases with an increasing sample size. It is also
interesting to note that IFLAD exhibits systematically a larger negative bias, whereas
III leads to a smaller, but positive bias (or almost zerobias forn = 200).This is reflected
by the performance of the proposed FII estimator, which exhibits smaller biases and
RMSEs than any of the existing semiparametric methods. One can also notice that,
even though FII exhibits generally a smaller bias than the methods of Khan and Powell
(2001), the bias of FII is negative in contrast to the bias of III. Finally, let us mention
the variance of the II estimates implied by the asymptotic distribution in Theorem 2.
While the simulated and asymptotic RMSE are approaching each other in the case of
III, the asymptotic standard deviations differ substantially in the case of the feasible
estimator FII. Given that the small-sample variance of FII is additionally related to the
number S of simulated samples in the opposite way than in Theorem 2, see Table 1,
it is not advisable to use the asymptotic distribution in small samples.

The next set of results is obtained for five different error distributions, see Table 3 for
k = 1 and n = 100. The first three distributions are homoscedastic—N (0, 1), t5, and
DExp(1), whereas the remaining two distribution are heteroscedastic—N (0, ce0.75x )
in the case of “positive” heteroscedasticity and N (0, ce−0.75x ) in the case of “negative”
heteroscedasticity (c is always chosen so that the unconditional variance equals 1). The
“Gaussian”MLE estimator serves again as a parametric benchmark, and in the case of
homoscedasticity, performs very well across the tested (symmetric and unimodal) dis-
tributions. The performance of the semiparametric estimators under homoscedasticity
does not substantially differ from the case with normal errors. Besides 2S-MSC, the
semiparametric estimators possess smaller RMSEs than CLAD. The two-step esti-
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Table 3 The bias and root mean squared error of all estimators in a model with the standard normal,
student, and double exponential errors; n = 100

Estimator ε ∼ N (0, 1) ε ∼ t5 ε ∼ DExp(1) ε ∼ N
(0, e0.75x )

ε ∼ N
(0, e−0.75x )

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

MLE −0.004 0.138 0.050 0.179 0.079 0.200 0.606 0.655 −0.445 0.458

CLAD 0.140 0.481 0.183 0.524 0.116 0.448 0.292 0.951 0.036 0.186

IFLAD −0.090 0.298 −0.081 0.296 −0.089 0.281 −0.048 0.334 −0.032 0.151

2S-MSC −0.196 0.506 −0.158 0.517 −0.174 0.495 −0.110 0.604 −0.076 0.326

2S-NW −0.103 0.396 −0.092 0.417 −0.096 0.360 −0.023 0.416 −0.062 0.202

2S-LQR −0.121 0.294 −0.118 0.309 −0.133 0.304 −0.050 0.310 −0.120 0.241

3S-LOG −0.049 0.373 −0.012 0.396 −0.045 0.351 0.037 0.451 −0.034 0.210

III 0.008 0.191 0.031 0.224 0.034 0.239 0.013 0.265 0.023 0.185

FII −0.066 0.276 −0.034 0.304 −0.002 0.313 0.076 0.348 0.032 0.198

The results for the infeasible estimators are in italics

Table 4 The absolute bias and root mean squared error of all estimators in a model with the standard
normal errors and k = 1, 3, and 5 explanatory variables; n = 100

Estimator k = 1 k = 3 k = 5

Bias RMSE Bias RMSE Bias RMSE

MLE 0.004 0.138 0.005 0.238 0.007 0.315

CLAD 0.140 0.481 0.070 0.434 0.034 0.502

IFLAD 0.090 0.298 0.067 0.346 0.081 0.444

2S-MSC 0.196 0.506 0.156 0.486 0.160 0.534

2S-NW 0.103 0.396 0.336 0.513 0.488 0.643

2S-LQR 0.121 0.294 0.414 0.515 0.523 0.662

3S-LOG 0.049 0.373 0.091 0.403 0.131 0.486

III 0.008 0.191 0.067 0.353 0.073 0.482

FII 0.066 0.276 0.065 0.385 0.067 0.487

The results for the infeasible estimators are in italics

mators however exhibit relatively large negative biases compared to the three step
estimator and the II estimator. The FII estimator is thus preferable in all cases.

The comparison substantially changes once the heteroscedastic errors are consid-
ered. The MLE estimates are now severely biased. In the “positive” heteroscedasticity
scenario, CLAD exhibits large bias and RMSE. The existing two- and three-step esti-
mators thus provide better estimates than CLAD in terms of RMSEs, and moreover,
their biases increase (becoming less negative or even positive). The best performance
can be attributed to 2S-LQRfollowedbyFII. In the case of the “negative” heteroscedas-
ticity, the differences among semiparametric estimators are much smaller and CLAD
becomes the best performing estimator due to the fact that the observations with con-
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ditional median above zero have now very low variance (cf. Khan and Powell 2001).
Note that the proposed FII is again the second best, now after CLAD.

Furthermore, let us consider a model with standard normal errors and multiple
regressors, k = 1, 3, 5; in Table 4, the sample size n = 100 is used irrespective of
the dimension k. Let us first state that the results obtained for k = 1 in previous
experiments for CLAD and 2S-MSC are not fully comparable to the results for k = 3
and k = 5 as the earlier ones (k = 1) search for global minima while the latter
ones (k > 1) correspond to the local minima obtained by starting from the linear QR
estimates. This of course reduces variability of the corresponding estimates, and in
this experimental design, makes CLAD and 2S-MSC competitive. Nevertheless, one
can observe that the semiparametric methods based on some initial k-dimensional
nonparametric smoothing tend to increase their RMSE with k faster than methods
based purely on one-dimensional (non)parametric estimation. The large part of this
effect is related to the increases in the total absolute bias—see the biases of 2S-NWand
2S-LQR, which are similar for each individual parameter irrespective of k, but the total
bias of k estimated parameter thus growswith k. The II bias-correction procedure is not
affected by this and FII thus performs substantially better than 2S-NW and 2S-LQR
for larger k. On the other hand, the performance of FII is matched by the three-step
method of Chernozhukov and Hong (2002) at k = 5 and also by the “local-minimum”
CLAD.

Finally, let us shortly mention how the estimators are affected by the amount of
censored observations in the data. Using standard normal errors, k = 1, and n = 100,
we studied performance under the assumption that 50% observations are censored. If
the fraction of censored observations decreases towards zero, the asymptotic theory
predicts that all considered semiparametric estimates will converge to the simple linear
QR estimates. This is confirmed by the simulation results in Table 5: we see that, at
lower levels of censoring and in particular for 25% censored observations, the RMSEs
of all semiparametric estimators are very close to each other (with the exception of
2S-MSC).

Table 5 The bias and root mean squared error of all estimators in a model with the standard normal errors
and 25%, 37.5, and 50% censored observations; n = 100

Estimator 25% 37.5% 50%

Bias RMSE Bias RMSE Bias RMSE

MLE −0.009 0.113 −0.005 0.125 −0.004 0.138

CLAD 0.037 0.192 0.050 0.262 0.140 0.481

IFLAD −0.041 0.153 −0.061 0.210 −0.090 0.298

2S-MSC −0.108 0.245 −0.152 0.340 −0.196 0.506

2S-NW −0.093 0.185 −0.088 0.244 −0.103 0.396

2S-LQR −0.114 0.183 −0.115 0.225 −0.121 0.294

3S-LOG −0.025 0.189 −0.030 0.262 −0.049 0.373

III 0.010 0.144 0.004 0.166 0.008 0.191

FII −0.011 0.186 −0.027 0.243 −0.066 0.276

The results for the infeasible estimators are in italics
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Altogether, all semiparametric alternatives to CLAD perform better than CLAD,
although the differences are likely to be small for very large data sets. The proposed
FII estimator performs equally well in large samples and is in many cases preferable
to existing semiparametric methods in small and moderate samples.

6 Conclusion

We proposed a new estimation method for the censored regression models that—
contrary to existing methods—relies on the linear QR estimates for the whole sample
and that applies a bias-correction technique to obtain consistent estimates. For the bias
correction, the indirect inference technique is applied and extended so that it allows
sampling from a nonparametrically estimated distribution function. The consistency
and asymptotic distribution of the proposed estimator were found and shown to be
first-order independent of the initial nonparametric estimates of the auxiliary error
distribution. Finally, one of the important benefits of this estimation approach is its
small-sample performance aswas demonstrated bymeans ofMonteCarlo simulations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Proof of Theorem 1

Proof of Theorem 1 The proof is almost identical to the proof of Theorem 2 in Angrist
et al. (2006). We need to prove that the solution of

θ0 = argmin
θ∈�

E
[
ρτ (yi − xTi θ)

]
(22)

is equal to the solution of

θ̄ = argmin
θ∈�

E
[
w(xi , β

0, θ̄ ) · 	2(xi , β
0, θ)

]
. (23)

Since the objective function in (23) is convex, any fixed point θ = θ̄ is a solution of
the corresponding first-order condition:

F(θ) = 2 · E
[
w(xi , β

0, θ) · 	(xi , β
0, θ) · xi

]
= 0. (24)

On the other hand, the first order condition for (22) is given by (cf. the proof of Theorem
2 in Angrist et al. 2006)

D(θ) = E
[{

I
(
ui ≤ 	(xi , β

0, θ)
)

− τ
}

· xi
]

= 0. (25)
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By the law of iterated expectations, D(θ) can be written as

D(θ) = E
[{

Fui

(
	
(
xi , β

0, θ
)|xi
)

− τ
}

· xi
]

= 0. (26)

Further, it follows from the definition of w(xi , β0, θ) that Fui (	(xi , β0, θ)|xi ) −
τ = 2 · w(xi , β0, θ) · 	(xi , β0, θ) for any value of 	

(
xi , β0, θ

) �= 0. As
P(	(xi , β0, θ) = 0|xi ) = 0 and both Fui (	(xi , β0, θ)|xi ) and xi are uniformly
bounded by Assumption A.3, it holds that E[{Fui (	(xi , β0, θ)|xi ) − τ } · xi ·
I {	(xi , β0, θ) = 0}] = 0, and consequently,

D(θ) = E
[{

Fui

(
	
(
xi , β

0, θ
)|xi
)

− τ
}

· xi
]

= E
[{

Fui

(
	
(
xi , β

0, θ
)|xi
)

− τ
}

· xi · I
{
	(xi , β

0, θ) �= 0
}]

= 2 · E
[
w(xi , β

0, θ) · 	
(
xi , β

0, θ
) · xi

]
= F(θ).

Because θ0 is the unique solution of (22), it also uniquely solves (23) since the objective
function in (23) is convex in θ. Therefore, θ = θ0 = θ̄ solves both (22) and (23). 
�

Appendix 2: Auxiliary lemmas

For the rest of the proofs, we introduce necessary notation. The norms ‖ · ‖ and ‖ · ‖∞
will refer to the Euclidean norm on Rd and to the supremum norm in functional spaces,
respectively. The δ-neighborhood of a vector t ∈ Rd is denoted U (t, δ) = {t ′ ∈ Rd :
‖t ′ − t‖ < δ}. The probability distribution and density functions of N (−μτ , 1) are
denoted �τ and φτ , respectively. Additionally, recall that ρτ (z) = {τ − I (z ≤ 0)}z
and its derivative is denoted ϕτ (z) = τ − I (z ≤ 0).

Next, for wi = xi or wi = (yi , xi ), let En[ f (wi )] denote n−1∑n
i=1 f (wi ) and let

Gn[ f (wi )] denote n−1/2∑n
i=1{ f (wi )−E[ f (wi )]}. If we need to indicate a particular

data distribution P of wi , Gn,P [ f (wi )] = n−1/2∑n
i=1{ f (wi )− EP [ f (wi )]} is used,

assuming that wi ∼ P . For easier reading, we also use a simplified notation for the
simulated distributions F̃(β) = F̃ỹ(β) and F̂(β) = F̂ŷ(β).

For the sake of simplicity of some proofs, we will additionally assume that the
conditional error distribution Fε(·|xi ) has (uniformly) an infinite support in order
to guarantee that supx∈X Fε(K |x) < 1 for any K < ∞, and by Assumption A.3,
that supx∈X supθ∈� Fy(xT θ |x) < KF < 1. Consequently, the conditional variance
σ̃ (xi ;β0) defined in (14)–(15) is everywhere positive at the true β0, and given the
compactness of B, �, X , and A.7, σ̃ (xi ;β0) > Cσ > 0 for all xi ∈ X . If the limit
expression (15) and Assumption A.4 are taken into account, one can observe that the
variance function is also bounded from above: σ̃ (xi ;β) < Kσ for any β ∈ B and all
xi ∈ X .

First, the following identification result is derived.
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Lemma 1 Under Assumptions A.1–A.5 and A.7, b(F̃(β0), β0) �= b(F̃(β1), β1) for
any β1 ∈ B such that β1 �= β0.

Proof First, note that under the listed assumptions, b(F̃0, β) is one-to-one, where
F̃0 = F̃(β0). Suppose that b(F̃0, β0) = b(F̃(β0), β0) = b(F̃(β1), β1). Since
b(F̃0, β) is one-to-one, the vector β0, which satisfies b(F̃0, β0) = b(Fy, β

0) = θ0

by Theorem 1, uniquely solves the QR moment condition

E[Fy(b(F̃
0, β0)|xi ) − τ) · xi ] = 0 (27)

[see Eq. (26)]. As Fy(t |xi ) = 0 for any t < 0 and P(xTi θ0 = 0) = 0 by Assumption
A.7, (27) can be written as

E[I (xTi b(Fy, β
0) > 0) · {Fy(x

T
i b(Fy, β

0)|xi ) − τ } · xi ]
= E[I (xTi b(Fy, β

0) < 0) · τ · xi ] = k0. (28)

Next, the QR moment condition for the simulated data {ỹsi (β1), xi }ni=1 is [see Eqs.
(25)–(26)]

E[(F̃ỹ(β1)(x
T
i b{F̃(β1), β1}|xi ) − τ) · xi ] = 0. (29)

Because the censored distribution F̃ỹ(β1)(t |xi ) = 0 for all t < 0, we can again rewrite
it as

E[I (xTi b{F̃(β1), β1} > 0) · (F̃ỹ(β1)(x
T
i θ0|xi ) − τ) · xi ]

= E[I (xTi b{F̃(β1), β1} < 0)τ · xi ].

Recalling that θ0 = b(Fy, β
0) = b(F̃0, β0) = b(F̃(β0), β0) = b(F̃(β1), β1) and

that F̃ỹ(β)(t |xi ) = �τ {(t − xTi β)̃σ−1(xi , β)|xi } for t > 0, (29) becomes

E[I (xTi b(F̃0, β0) > 0) · (�τ {[xTi b(F̃(β1),

β1) − xTi β1] · σ̃−1(xi , β
1)|xi } − τ) · xi ] = k0.

By substituting (14),3 where θ0 is replaced by b(F̃0, β0), we get

E

[
I
(
xTi b

(
F̃0, β0

)
> 0
)
I
(
xTi β1 ≤ 0

)

×
⎧⎨
⎩�τ

⎛
⎝ xTi b

{
F̃
(
β1
)
, β1
}

− xTi β1

xTi b
(
F̃0, β0

)
− xTi β1

· �−1
τ

{
Fy

(
xTi b

(
F̃0, β0

)
|xi
)}⎞⎠− τ

⎫⎬
⎭ xi

+ I
(
xTi b

(
F̃0, β0

)
> 0
)
I
(
xTi β1 > 0

)

3 We drop min and max conditions in (14) since σ(xi ; β0) = σ̃ (xi ; β0) > Cσ > 0 by definition.
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×
⎧⎨
⎩�τ

⎛
⎝ xTi b

{
F̃
(
β1
)
, β1
}

− xTi β1

xTi b
(
F̃0, β0

)
− xTi β1

· �−1
τ

{
Fy

(
xTi b

(
F̃0, β0

)
|xi
)

− Fy

(
xTi β1|xi

)
+ τ
})

− τ

⎫⎬
⎭ xi

⎤
⎦ = k0.

Recalling again b(F̃0, β0) = b(F̃(β0), β0) = b(F̃(β1), β1), we obtain

E[I (xTi b(F̃0, β0) > 0) · I (xTi β1 ≤ 0) · {Fy(x
T
i b(F̃

0, β0)|xi ) − τ } · xi
+ I (xTi b(F̃

0, β0) > 0) · I (xTi β1 > 0) · {Fy(x
T
i b(F̃

0, β0)|xi )
− Fy(x

T
i β1|xi )} · xi ] = k0. (30)

Using identity (28), (30) can be simplified to

E[I (xTi b(F̃0, β0) > 0) · I (xTi β1 > 0) · (Fy(x
T
i β1|xi ) − τ) · xi ] = 0. (31)

By Powell (1986a), under Assumptions A.1–A.5 we know that E[I (xTi β0 > 0) ·
(Fy(xTi β0|xi ) − τ) · xi ] = 0 which implies

E[I (xTi b(F̃0, β0) > 0) · I (xTi β0 > 0) · (Fy(x
T
i β0|xi ) − τ) · xi ] = 0

since
{
xi ∈ Rk |I (xTi β0 > 0)I (xTi b(F̃

0, β0) > 0)
}⊂ {xi ∈ Rk |I (xTi β0 > 0)

}
.Thus,

we should have β0 = β1 because Jcrq is positive definite by Assumption A.5. 
�
The further auxiliary results presented in this section are proved in the discussion

paper of Čížek and Sadikoglu (2014).

Theorem 4 Let J = E[I (x�
i θ > 0) fy(xTi θ |xi )xi xTi ]. Under Assumptions A.1–A.5

and A.7, it holds that

1. Qn(θ) = En[ρτ (yi − xTi θ) − ρτ (yi − xTi θ0)] → Q∞(θ) = E[ρτ (yi − xTi θ) −
ρτ (yi − xTi θ0)] as n → ∞ for any θ ∈ �;

2. θ̂n is a consistent estimator of θ0, θ̂n
P→ θ0 as n → ∞;

3. for any sequence θn
P→ θ0, n1/2(θn − θ0) = −J−1Gn{ϕτ (yi − xTi θ0)xi } + op(1)

converges to a Gaussian process with covariance function 
 = E[(τ − I (yi <

xTi θ0))(τ − I (yi < xTi θ0))xi xi ].
Additionally, suppose that, for sample size n ∈ N, data are independently and identi-
cally distributed according to probability distributions Pn, which satisfy Assumptions
A.1–A.5 and A.7 uniformly in n. Denoting

r(y, x, θ) =

⎧⎪⎨
⎪⎩

[ρτ (y − xT θ) − ρτ (y − xT θ0)

− (θ − θ0)T (τ − I {y ≤ xT θ0}) · x]/‖θ − θ0‖ if θ �= θ0,

0 if θ = θ0,
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let us assume that

sup
θ ′,θ ′′∈U (θ0,δ)

|EPn {r(yi , xi , θ ′) − r(yi , xi , θ
′′)}2

− EP0{r(yi , xi , θ ′) − r(yi , xi , θ
′′)}2| → 0 (32)

as n → ∞ for some δ > 0 and some distribution P0, which satisfies assumptionsA.1–

A.5 and A.7. Then for any sequence θn
P→ θ0, n1/2(θn − θ0) = −J−1Gn,Pn {ϕτ (yi −

xTi θ0)xi } + op(1) as n → ∞.

Proof See Čížek and Sadikoglu (2014, Theorem 5). 
�
Lemma 2 Under Assumptions A.1–A.5, A.7, and A.8, it holds for n → ∞ that

sup
x∈X

∣∣∣F̂y,n(x
T
i θ̂n|x) − Fy(x

T
i θ0|x)

∣∣∣ = Op
(
n−min{k1,1/2}).

Proof See Čížek and Sadikoglu (2014, Lemma 7). 
�
Lemma 3 Under Assumptions A.1–A.5, A.7, and A.8, it holds for any β ∈ B, suffi-
ciently small δ > 0, l ∈ {1, 2}, and n → ∞ that

|̂σn(xi ;β) − σ̃ (xi ;β)| = op(1), (33)

sup
β∈U (β0,δ)

|̂σn(xi ;β) − σ̃ (xi ;β)| = op(1), (34)

E |̂σn(xi ;β) − σ̃ (xi ;β)|l = o(1), (35)

E( sup
β∈U (β0,δ)

|̂σn(xi ;β) − σ̃ (xi ;β)|)l = op(1). (36)

Proof See Čížek and Sadikoglu (2014, Lemma 8). 
�
Corollary 1 Under Assumptions A.1–A.5, A.7, and A.8, it holds for some δ > 0 and
n → ∞:

sup
β∈U (β0,δ)

‖F̂(β) − F̃(β)‖∞ = sup
β∈U (β0,δ)

sup
t∈R

∣∣∣∣∣�τ

[
t − xTi β

σ̂n(xi ;β)

]
− �τ

[
t − xTi β

σ̃ (xi ;β)

]∣∣∣∣∣
= op(1),

sup
β∈U (β0,δ)

sup
t∈R

∣∣∣∣∣
1

σ̂n(xi ;β)
φτ

[
t − xTi β

σ̂n(xi ;β)

]
− 1

σ̃ (xi ;β)
φτ

[
t − xTi β

σ̃ (xi ;β)

]∣∣∣∣∣ = op(1).

Further, function F̃(β) is continuous in β on U (β0, δ):

lim
β ′→β

‖F̃(β ′) − F̃(β)‖∞ = lim
β ′→β

sup
t

∣∣∣∣∣�τ

[
t − xTi β ′

σ̃ (xi ;β ′)

]
− �τ

[
t − xTi β

σ̃ (xi ;β)

]∣∣∣∣∣ = op(1).
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Proof See Čížek and Sadikoglu (2014, Corollary 9). 
�
Lemma 4 Under Assumptions A.1–A.5, A.7, and A.8, it holds for any β ∈ B, 1 ≤
s ≤ S, and n → ∞ that

E{ŷsi (β) − ỹsi (β)}2 = o(1), (37)

and for any β ∈ B, θ ∈ �, and n → ∞, that

E
∣∣∣I (ŷsi (β) ≤ xTi θ) − I (ỹsi (β) ≤ xTi θ)

∣∣∣
2 = o(1). (38)

Furthermore, statements (37) and (38) along with

E
∣∣∣I (ŷsi (β ′) ≤ xTi θ ′)I (ŷsi (β) ≤ xTi θ) − I (ỹsi (β

′) ≤ xTi θ ′)I (ỹsi (β) ≤ xTi θ)

∣∣∣
2

= o(1), (39)

E
∣∣∣ρτ (ŷ

s
i (β

′) ≤ xTi θ ′)I (ŷsi (β) ≤ xTi θ) − ρτ (ỹ
s
i (β

′) ≤ xTi θ ′)I (ỹsi (β) ≤ xTi θ)

∣∣∣
2

= o(1), (40)

and

E
∣∣∣ρτ (ŷ

s
i (β

′) ≤ xTi θ ′)ρτ (ŷ
s
i (β) ≤ xTi θ) − ρτ (ỹ

s
i (β

′) ≤ xTi θ ′)ρτ (ỹ
s
i (β) ≤ xTi θ)

∣∣∣
2

= o(1) (41)

hold also uniformly with respect to β, β ′ ∈ U (β0, δ) and θ, θ ′ ∈ U (θ0, δ) for a
sufficiently small δ > 0.

Proof See Čížek and Sadikoglu (2014, Lemma 10). 
�
Lemma 5 Under Assumptions A.1–A.5 and A.6–A.8, it holds for any β ∈ B, 1 ≤
s ≤ S, and n → ∞ that

|θ̂ sn(β) − b(F̃(β), β)| = op(1),

and in particular, |θ̂ sn(β0) − θ0| = op(1).

Proof See Čížek and Sadikoglu (2014, Lemma 11). 
�

Appendix 3: Proofs of the main asymptotic properties

The proofs in this section rely on the notation introduced at the beginning of Appen-
dix 2.
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Proof of Theorem 2 First, we show that β0 is identified. By definition (5), the instru-
mental criterion yields θ0 at the true value of the parameter β0, b(Fy, β

0) = θ0.
Theorem 1 and the construction of F̃ in (10) then imply b(F̃(β0), β0) = b(Fy, β

0) =
θ0. On the other hand, Lemma 1 indicates that, for any β1 �= β0, β1 ∈ B, the QR
yields different estimates: b(F̃(β1), β1) �= b(F̃(β0), β0) = θ0.

To prove consistency, note that θ̂n → θ0 = b(Fy, β
0) by Theorem 4. Similarly

for any s = 1, . . . , S, θ̃ sn(β
0) → b(F̃(β0), β0) = b(Fy, β

0) = θ0 and θ̃ sn(β) →
b(F̃(β), β) �= θ0 for β �= β0 since, for a given β ∈ B, the data (ỹsi (β), xi )ni=1 also

satisfy the assumptions of Theorem 4. The same holds also for
∑S

s=1 θ̃ sn(β
0)/S as the

limits of θ̃ sn(β) are independent of s and S is finite. The III criterion (16) is thus a
strictly convex function in θ̂n and

∑S
s=1 θ̃ sn(β

0)/S, which converges for any β to

argmin
β∈B

[
b(Fy, β

0) − b(F̃(β), β)
]T

�
[
b(Fy, β

0) − b(F̃(β), β)
]
. (42)

Hence by Assumption A.6, any minimizer β̂ I I I
n of (16) satisfies

∑S
s=1 θ̃ sn(β̂

I I I
n )/S →

θ0 in probability as n → ∞ (Newey and McFadden 1994, Theorem 2.7). As the link
function b is one-to-one continuous mapping (Assumption A.6) and the parameter
space B is compact (Assumption A.1), β̂ I I I

n has to converge in probability to β0,
which is the unique minimum of (42) (cf. the proof of Theorem 1 in Gouriéroux et al.
1993).

The proof for asymptotic normality of β̂ I I I
n is similar to the proof of Proposition 3

in Gouriéroux et al. (1993), which is however given for a twice continuously differ-
entiable instrumental criterion. By taking the first-order condition of the optimization
problem (16) with respect to β, the first-order condition is obtained almost surely:

[
1

S

S∑
s=1

∂θ̃ sn(β̂
I I I
n )T

∂β

]
�

[
θ̂n − 1

S

S∑
s=1

θ̃ sn(β̂
I I I
n )

]
= 0.

Applying the Taylor expansion around β0 to θ̂n − 1
S

∑S
s=1 θ̃ sn(β̂

I I I
n ), we obtain analo-

gously to Gouriéroux et al. (1993, Eq. (51)) for some linear combination ξn of β0 and
β̂ I I I
n and for n → ∞ that

[
1

S

S∑
s=1

∂θ̃ sn(β̂
I I I
n )T

∂β

]
�

[{
θ̂n − 1

S

S∑
s=1

θ̃ sn(β
0)

}
− 1

S

S∑
s=1

∂θ̃ sn(ξn)
T

∂β

{
β̂ I I I
n − β0

}]

= 0, (43)

and due to the full-rank Assumption A.6, that

n1/2(β̂ I I I
n − β0) =

(
∂bT

∂β
(F̃(β0), β0)�

∂b

∂βT
(F̃(β0), β0)

)−1

(44)
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×∂bT

∂β
(F̃(β0), β0)�n1/2

[
θ̂n − 1

S

S∑
s=1

θ̃ sn(β
0)

]
+ op(1),

(45)

where we used ∂θ̃ sn(β)/∂βT → ∂b(F̃(β), β)/∂βT and ∂b(F̃(β̂ I I I
n ), β̂ I I I

n )/∂βT →
∂b(F̃(β0), β0)/∂βT = D as n → ∞ in probability (the required continuity of the
derivative of the link function and the full rank of its derivative follow fromAssumption
A.6, whereas the continuity of F̃ in β follows from its Corollary 1).

Next, by Theorem 4, we have

n1/2(θ̂n − θ0) = −J−1Gn[ϕτ (yi − xTi θ0)xi ] + op(1). (46)

Since {ỹsi (β0), xi }ni=1 and ε̃si ∼ N (μτ · σ̃ (xi ;β), σ̃ (xi ;β)) satisfy Assumptions A.1–
A.5 and A.7, Theorem 4 also implies

n1/2(θ̃ sn(β
0) − θ0) = − J̃−1Gn[ϕτ (ỹ

s
i (β

0) − xTi θ0)xi ] + op(1) (47)

for any simulated path s = 1, . . . , S and n → ∞. Thus, combining (46) and (47)
yields

n1/2
[
θ̂n − 1

S

S∑
s=1

θ̃ sn
(
β0)
]

= −J−1Gn

[
ϕτ

(
yi − xTi θ0

)
xi
]

+ J̃−1 1

S

S∑
s=1

Gn

[
ϕτ

(
ỹsi
(
β0)− xTi θ0

)
xi
]

+ op(1)

=
[
−J−1,

J̃−1

S
, . . . ,

J̃−1

S

]

× 1√
n

n∑
i=1

⎡
⎢⎢⎢⎢⎣

ϕτ (yi − xTi θ0)

ϕτ (ỹ1i (β
0) − xTi θ0)
...

ϕτ (ỹSi (β0) − xTi θ0)

⎤
⎥⎥⎥⎥⎦

⊗ xi + op(1).

(48)

The random variables ϕτ (yi − xTi θ0)xi and ϕτ (ỹsi (β
0) − xTi θ0)xi have zero means

(by the definition of θ0) and finite variances and covariances (due to Assumption A.3),
which are computed below.By the central limit theorem, the randomvector in (48) thus
converges in distribution to a normally distributed randomvector. Using the notation


and 
̃ from Assumption A.5 and denoting K̃0s = cov{ϕτ (yi − xTi θ0)xi , ϕτ (ỹsi (β
0)−

xTi θ0)xi } and K̃rs = cov{ϕτ (ỹri (β
0) − xTi θ0)xi , ϕτ (ỹsi (β

0) − xTi θ0)xi }, which are

independent of r, s = 1, . . . , S, it follows that n1/2[θ̂n − S−1∑S
s=1 θ̃ sn(β

0)] is asymp-
totically normal with the variance-covariance matrix
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[
−J−1,

J̃−1

S
, . . . ,

J̃−1

S

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣


 K̃0s K̃0s · · · K̃0s

K̃0s 
̃ K̃rs · · · K̃rs

K̃0s K̃rs 
̃ · · · ...
...

...
...

. . . K̃rs

K̃0s K̃rs · · · K̃rs 
̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−J−1

J̃−1/S
...

J̃−1/S

⎤
⎥⎥⎥⎦ .

This matrix can be rewritten as

var

(
n1/2

{
θ̂n − 1

S

S∑
s=1

θ̃ sn
(
β0)
})

= J−1
 J−1 + 1

S
J̃−1
̃ J̃−1 +

(
1 − 1

S

)
J̃−1 K̃rs J̃

−1 − 2J−1 K̃0s J̃
−1, (49)

where

K̃rs = E[ϕτ (ỹ
r
i (β

0) − xTi θ0)xi · ϕτ (ỹ
s
i (β

0) − xTi θ0)xi ]
= Ex [E[ϕτ (ỹ

r
i (β

0) − xTi θ0)|xi ] · E[ϕτ (ỹ
s
i (β

0) − xTi θ0)|xi ]xi xTi )

= E[F̃ỹ(β0)(x
T
i θ0|xi ) − τ)(F̃ỹ(β0)(x

T
i θ0|xi ) − τ)xi x

T
i ]

due to the independence of simulated errors {̃εri }ni=1 and {̃εsi }ni=1, and consequently, of
the simulated paths {ỹri (β0)}ni=1 and {ỹsi (β0)}ni=1 (conditionally on xi ). Similarly, we
can obtain K̃0s = cov{[Fy(xTi θ0|xi )−τ)xi ][(F̃ỹ(β0)(x

T
i θ0|xi )−τ)xi ]}. By definition

(10) of F̃ỹ(β0), F̃ỹ(β0)(x
T
i θ0|xi ) = Fy(xTi θ0|xi ) and thus K̃0s = K̃rs = K . Combining

(44) and (49) then yields the asymptotic distribution of n1/2(β̂ I I I
n − β0), which is

normal with variance

(DT�D)−1DT�

×
{
J−1
 J−1+ 1

S
J̃−1
̃ J̃−1+

(
1− 1

S

)
J̃−1K J̃−1−2J−1K J̃−1

}
�D(DT�D)−1

(recall that D = ∂b(F̃(β0), β0)/∂βT ). Since D and� are full rank square matrices by
Assumption A.6, the final expression follows from (DT�D)−1 = D−1�−1(DT )−1.


�
Proof of Theorem 3 To establish the asymptotic equivalence result, we first need to
prove that the feasible estimator β̂F I I

n is consistent. The argument is the same as in
the case of the infeasible estimator in Theorem 2 (the first two paragraphs of the
proof) provided that we establish θ̂ sn(β

0) → b(F̃(β0), β0) = b(Fy, β
0) = θ0 and

θ̂ sn(β) → b(F̃(β), β) �= θ0 for β �= β0. This however follows from Lemma 5, stating
that θ̂ sn(β) − b(F̃(β), β) = op(1) as n → ∞ for any β ∈ B and s = 1, . . . , S.
Theorem 2.7 of Newey and McFadden (1994) and the continuity of the one-to-one
link function thus again implies that β̂F I I

n → β0 in probability as n → ∞.
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Next, taking the first-order derivative of the optimization problem (20) with respect
to β, the first-order condition is obtained:

[
1

S

S∑
s=1

∂θ̂ sn(β̂
F I I
n )T

∂β

]
�

[
θ̂n − 1

S

S∑
s=1

θ̂ sn(β̂
F I I
n )

]
= 0. (50)

Applying the Taylor expansion around β0 to θ̂n −∑S
s=1 θ̃ sn(β̂

F I I
n )/S, we obtain for

some linear combination ξn of β0 and β̂F I I
n that

[
1

S

S∑
s=1

∂θ̂ sn(β̂
F I I
n )T

∂β

]
�

[{
θ̂n − 1

S

S∑
s=1

θ̂ sn(β
0)

}
− 1

S

S∑
s=1

∂θ̂ sn(ξn)
T

∂β

{
β̂F I I
n − β0

}]

= 0. (51)

We know from Lemma 5 that θ̂ sn(β) → b(F̃(β), β). As the consistency of β̂F I I
n and

Corollary 1 imply that F̃(β) is continuous in β ∈ U (β0, δ) and that ‖F̂(β̂F I I
n ) −

F̃(β0)‖ = op(1) as n → ∞, the continuity of the link function (Assumption
A.6) implies that θ̂ sn(β̂

F I I
n ) → b(F̃(β0), β0) = θ0; similarly, ∂θ̂ sn(β̂

I I I
n )/∂βT →

∂b(F̃(β0), β0)/∂βT , and ∂θ̂ sn(ξn)/∂β
T → ∂b(F̃(β0), β0)/∂βT in probability for

n → ∞.
Consequently, we have due to the full-rank Assumption A.6 that

n1/2(β̂F I I
n − β0)

=
(

∂bT

∂β
(F̃(β0), β0)�

∂b

∂βT
(F̃(β0), β0)

)−1
∂bT

∂β
(F̃(β0), β0)�

× n1/2
[
θ̂n − 1

S

S∑
s=1

θ̂ sn(β
0)

]
+ op(1). (52)

Recall that D denotes ∂b(F̃(β0), β0)/∂βT . Subtracting (44) from (52) yields

n1/2(β̂ I I I
n − β̂F I I

n ) = (DT�D)−1DT� · n1/2
[
1

S

S∑
s=1

θ̃ sn(β
0) − 1

S

S∑
s=1

θ̂ sn(β
0)

]

+ op (1) . (53)

To prove the theorem, we have to show that the difference
∑S

s=1 θ̃ sn(β
0)/S −∑S

s=1 θ̂ sn(β
0)/S is asymptotically negligible in probability. The estimates θ̃ sn(β

0) and
θ̂ sn(β

0) are obtained for data yi = max{xTi β0+εsi , 0}, where εsi ∼ N (μτσ (xi ), σ (xi ))
and σ(xi ) represent the conditional variance functions σ̃ (xi ;β0) and σ̂n(xi ;β0),
respectively. Thus, ε̃si (β

0)|xi follows a normal distribution with mean μτ σ̃ (xi ;β0)

and variance σ̃ (xi ;β0) and (xi , ε̃si (β
0)) follows their joint distribution P0. On the

other hand, ε̂si (β
0)|xi is characterized a different conditional distribution, which is a
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normal distribution with mean μτ σ̂n(xi ;β0) and variance σ̂n(xi ;β0); the joint distri-
bution of (xi , ε̂si (β

0)) is denoted Pn (it has the same marginal distribution of xi as P0).
We have already established that both θ̃ sn(β

0) and θ̂ sn(β
0) are consistent estimators

of θ0. As the variance functions atβ0 are bounded (see the introduction ofAppendix 2),
censored data simulated from P0 and Pn satisfy assumptions of Theorem 4 if condition
(32) is verified.As all termsof {r(yi , xi , θ ′)−r(yi , xi , θ ′′)}2 in condition (32)with their
expectations varying with Pn have the formC2(θ

′, θ ′′, θ0)ρτ (y−xT θ ′)ρτ (y−xT θ ′′),
C1(θ

′, θ ′′, θ0)ρτ (y − xT θ)I (y ≤ xT θ0), or C0(θ
′, θ ′′, θ0)I (y ≤ xT θ0)I (y ≤ xT θ0)

for some deterministic functions C0, C1, C2 and some θ ′, θ ′′ ∈ U (θ0, δ), Lemma 4
implies the validity of condition (32). Consequently, we canwrite using the asymptotic
linearity result of Theorem 4 for any s = 1, . . . , S

n1/2
[
θ̃ sn(β

0) − θ̂ sn(β
0)
]

= − J̃−1Gn,P0

[
ϕτ (max{0, xTi β0 + εsi } − xTi θ0)xi

]

+ J̃−1Gn,Pn

[
ϕτ (max{0, xTi β0 + εsi } − xTi θ0)xi

]
+ op(1)

as n → ∞. Let us denote g(xi , εsi ;β, θ) = ϕτ (max{0, εsi + xTi β} − xTi θ)xi . Then

n1/2
[
θ̃ sn(β

0) − θ̂ sn(β
0)
]

= J̃−1
{
Gn,Pn

[
g(xi , ε

s
i ;β0, θ0)

]
− Gn,P0

[
g(xi , ε

s
i ;β0, θ0)

]}
+ op(1).

To verify the claim n1/2
[
θ̃ sn(β

0) − θ̂ sn(β
0)
] = op(1), we have to prove that

Gn,Pn [g(xi , εsi ;β0, θ0)] − Gn,P0 [g(xi , εsi ;β0, θ0)] = (Gn,Pn − Gn,P0)[g(xi , εsi ;
β0, θ0)] P→ 0 as n → ∞. We only have to show that (Gn,Pn − Gn,P0)[g(xi , εsi ;
β0, θ0)] → 0 in distribution since this is equivalent to the convergence to 0 in prob-
ability (cf., the proof of Van der Vaart 2000, Lemma 19.24); see also Čížek and
Sadikoglu (2014) for details. This result follows from Van der Vaart and Wellner
(1996), Theorem 2.8.9 once we verify their assumptions:

1. The class of functions G = {g(x, ε;β, θ) : β ∈ U (β0, δ), θ ∈ U (θ0, δ)}, δ >

0, should satisfy the uniform entropy condition. Since g(x, ε;β, θ) = [τ −
I (max{0, xTβ + ε} − xT θ ≤ 0)]xi , the class G forms a VC class by Van der
Vaart and Wellner (1996, Lemma 2.6.18) and it thus satisfies the uniform entropy
condition by Van der Vaart and Wellner (1996, Theorem 2.6.7).

2. Next, Pnḡ has to be bounded for an envelope function ḡ of G and has to satisfy the
Lindenberg condition lim supn→∞ Pnḡ2{ḡ ≥ ε

√
n} = 0 for every ε > 0. As the

functions in G are bounded by a constant (see Assumption A.3), this requirement
is also satisfied.

3. Finally, it has to hold that supg,g′∈G |EPn (g−g′)2−EP0(g−g′)2| → 0 as n → ∞,
where EP (g − g′)2 = EP [I (max{0, xTi β + εi } − xTi θ ≤ 0) − I (max{0, xTi β ′ +
εi } − xTi θ ′ ≤ 0)]2xi xTi , (xi , εi ) ∼ P , and (β, θ) and (β ′, θ ′) correspond to func-
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tions g and g′, respectively. This however directly follows from Lemma 4 as xi
has a compact support by Assumption A.3.

Consequently, n1/2
[
θ̃ sn(β

0) − θ̂ sn(β
0)
] = op(1) for any s = 1, . . . , S and it follows

from Eq. (53) that n1/2(β̂ I I I
n − β̂F I I

n ) = (D
′
�D)−1D

′
�op(1) = op(1). 
�
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