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Abstract Data in the form of a continuous vector function on a given interval are
referred to as multivariate functional data. These data are treated as realizations of
multivariate random processes. The paper is devoted to three statistical dimension
reduction techniques for multivariate data. For the first one, principal components
analysis, the authors present a review of a recent paper (Jacques and Preda in, Comput
Stat DataAnal, 71:92–106, 2014). For two others one, canonical variables and discrim-
inant coordinates, the authors extend existing works for univariate functional data to
multivariate. These methods for multivariate functional data are presented, illustrated
and discussed in the context of analyzing real data sets. Each of these techniques is
applied on real data set.

Keywords Multivariate functional data · Functional data analysis · Principal
component analysis · Discriminant coordinates · Canonical correlation analysis

1 Introduction

In recent years, methods for representing data by functions or curves have received
much attention. Such data are known in the literature as functional data (Bongiorno
et al. 2014; Ferraty and Vieu 2006; Horváth and Kokoszka 2012; Ramsay and Silver-
man 2005). Examples of functional data can be found in various application domains,
such as medicine, economics, meteorology and many others. In previous papers on
functional data analysis, objects are characterized only by one feature observed at
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many time points. Methods of functional data analysis are becoming increasingly
popular, e.g. in the cluster analysis (Jacques and Preda 2013; James and Sugar 2003;
Peng and Müller 2008), classification (Chamroukhi et al. 2013; Delaigle and Hall
2012; Mosler and Mozharovskyi 2015; Rossi and Villa 2006) and regression (Ferraty
et al. 2012; Goia and Vieu 2014; Kudraszow and Vieu 2013; Peng et al. 2015; Rachdi
and Vieu 2006; Wang et al. 2015). Unfortunately, multivariate data methods cannot
be directly used for functional data, because of the problem of dimensionality and
difficulty in putting functional data into order. In many applications there is a need to
use statistical methods for objects characterized by many features observed at many
time points (double multivariate data), and such data are called multivariate functional
data. A pioneering theoretical works were Besse (1979), Besse and Ramsay (1986),
where random variables take values in a general Hilbert space. Saporta (1981) presents
an analysis of multivariate functional data from the point of view of factorial methods
(principal components and canonical analysis). Berrenderoa et al. (2011), Jacques and
Preda (2014) and Panaretos et al. (2010) discussed principal component analysis for
multivariate functional data (MFPCA). In this paper we extend the construction of
principal component analysis to other projective dimension reduction techniques, i.e.
discriminant coordinates and canonical correlation analysis for multivariate functional
data.

Dimension reduction is a very active field of statistical research. We focused only
on projective dimension reduction techniques (Burges 2009): principal components
analysis (PCA), canonical correlation analysis (CCA) and Fisher discriminant analysis
(DCA). These procedures are a transformation that allows us to obtain a linear pro-
jection of our data, originally in Rp onto Rk , where k < p. Along with reducing the
data dimensions, the data are also projected in a different orientation. Altogether, this
transformation presents the data in amanner that stresses out the trends in it facilitating
its interpretation.

The rest of this paper is organized as follows. We first review the concept of trans-
formation of discrete data to multivariate functional data (Sect. 2). Section 3 contains a
review principal components analysis for multivariate functional data. Sections 4 and
5 contain our extension of existing works for univariate functional data to multivariate,
respectively for CCA and discriminant coordinates. Section 6 contains the results of
our experiments on the real data set. Conclusions are given in Sect. 7.

2 Transformation of discrete data to multivariate functional data

Let X (t) be a stochastic process with continuous parameter t ∈ I . Moreover, assume
that X ∈ L2(I ), where L2(I ) is a Hilbert space of square integrable functions on the
interval I and that the process X (t) has the following representation:

X (t) =
B∑

b=0

cbϕb(t), t ∈ I, (1)

where {ϕb} are orthonormal basis functions, and c0, c1, . . . , cB are the random coef-
ficients.
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Many financial, meteorological and other data are recorded at discrete moments in
time. Let x j denote an observed value of process X (t) at the j th time point t j , where
I is a compact set such that t j ∈ I , for j = 1, ..., J . Then our data consist of J pairs
(t j , x j ). This discrete data can be smoothed by continuous function x(t), where t ∈ I
(Ramsay and Silverman 2005).

Let xxx = (x1, x2, . . . , xJ )′, ccc = (c0, c1, . . . , cB)′ and���(t) be a matrix of dimension
J × (B + 1) containing the values ϕb(t j ), b = 0, 1, ..., B, j = 1, 2, ..., J . The
coefficient ccc in (1) is estimated by the least squares method, that is, so as to minimize
the function:

S(ccc) = (xxx − ���(t)ccc)′ (xxx − ���(t)ccc) .

Differentiating S(ccc) with respect to the vector ccc, we obtain the least squares method
estimator

ĉcc = (
���′(t)���(t)

)−1
���′(t)xxx .

Then

x(t) =
B∑

b=0

ĉbϕb(t), t ∈ I. (2)

The degree of smoothness of the function x(t) depends on the value B (a small
value of B causes more smoothing of the curves). The optimum value for B is selected
using the Bayesian information criterion (BIC):

BIC = ln

⎛

⎝
J∑

j=0

(
x j −

B∑

b=0

ĉbϕb(t j )
)2

⎞

⎠ + (B + 1)

(
ln J

J

)
.

Wedecided to use such criterion becauseAkaike Information Criterion (AIC) better
measures predictive accuracy while BIC better measures goodness of fit (Berk 2008;
Shmueli 2010; Sober 2002).

Let us assume that there are n independent pairs of values (ti j , xi j ), j = 1, ..., J ,
i = 1, ..., n. These discrete data are smoothed to continuous functions in the following
form:

xi (t) =
Bi∑

b=0

ĉibϕb(t), i = 1, ..., n, t ∈ I.

Among all the B1, B2, ..., Bn one common value of B is chosen, as the modal value
of the numbers B1, B2, ..., Bn .

The set of functions {x1(t), ..., xn(t) : t ∈ I }obtained in thisway is called functional
data (see Ramsay and Silverman 2005). Note that in some cases it could be interesting
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to discretize smooth functions. This is at the center of variable selection methods in
functional data analysis (Aneiros and Vieu 2014).

So far we have been dealing with data characterized by one feature. Our consid-
erations can be generalized to the case of p ≥ 2 features. Then our data consist
of n independent vector functions xxxi (t) = (xi1(t), xi2(t), ...., xip(t))′, t ∈ I ,
i = 1, ..., n. The data {xxx1(t), ..., xxxn(t) : t ∈ I } will be called multivariate functional
data. Multivariate functional data can conveniently be treated as realizations of a finite
multidimensional stochastic process XXX(t) = (X1(t), X2(t), ..., X p(t))′ with continu-
ous parameter t ∈ I .Wewill further assume, that XXX ∈ L p

2 (I ), where L2(I ) is a Hilbert
space of square integrable functions on the interval I equippedwith the following inner
product:

<uuu,vvv> =
∫

I
uuu′(t)vvv(t)dt.

We consider the case, where the dth component of process XXX(t) can be represented
by a finite number of orthonormal basis functions {ϕb}

Xd(t) =
Bd∑

b=0

cdbϕb(t), t ∈ I, d = 1, 2, ..., p,

where cdb are random variables. Let

ccc = (c10, ..., c1B1 , ..., cp0, ..., cpBp )
′,

���(t) =

⎡

⎢⎢⎢⎣

ϕϕϕ′
B1

(t) 000 . . . 000

000 ϕϕϕ′
B2

(t) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ′
Bp

(t)

⎤

⎥⎥⎥⎦ , (3)

where ϕϕϕBd (t) = (ϕ0(t), ..., ϕBd (t))
′, d = 1, ..., p. Then

XXX(t) = ���(t)ccc, t ∈ I.

3 Principal component analysis for multivariate functional data

The idea of principal component analysis is to reduce the dimensionality of a data
set consisting of a large number of correlated variables, while retaining as much
as possible of the variation present in the data set. This is achieved by transform-
ing to a new set of variables, the principal components, which are uncorrelated, and
which are ordered so that the first few retain most of the variation present in all of
the original variables. Suppose that we are observing a p-dimensional random vec-
tor XXX = (X1, X2, ..., X p)

′ ∈ R
p. In the first step we look for a linear combination

U1 = u11X1 + u12X2 + ...+ u1p X p = uuu′
1XXX of the elements of vector XXX having max-

imum variance. The variableU1 is called the first principal component. Next, we look
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for a linear combination U2 = uuu′
2XXX , uncorrelated with the first principal component

U1, having maximum variance, and so on, so that at the kth stage a linear combination
Uk = uuu′

kXXX , called the kth principal component, is found that has maximum variance
subject to being uncorrelated with the first k−1 principal components (Jolliffe 2002).
The observations can be presented graphically as points on a plane (U1,U2). The
functional case of PCA (FPCA) is a more informative way of looking at the vari-
ability structure in the variance-covariance operator for one dimensional functional
data (Górecki and Krzyśko 2012). In this section we present PCA for multivariate
functional data (Jacques and Preda 2014).

Without loss of generality we will further assume, that E(XXX) = 000. In principal
component analysis in the multivariate functional case, we are interested in finding
the inner product

U = <uuu, XXX> =
∫

I
uuu′(t)XXX(t)dt

having maximal variance for all uuu ∈ L p
2 (I ) such, that <uuu,uuu>= 1. Let

λ1 = sup
uuu∈L p

2 (I )

Var(<uuu, XXX>) = Var(<uuu1, XXX>),

where <uuu1,uuu1> = 1. The inner product U1 = <uuu1, XXX> will be called the first
principal component, and the vector function uuu1 will be called the first vector weight
function. Subsequently we look for the second principal component U2 = <uuu2, XXX>,
whichmaximizes Var(<uuu, XXX>), is such that<uuu2,uuu2> = 1, and is not correlated with
thefirst functional principal componentU1, i.e. is subject to the restriction<uuu1,uuu2> =
0.

In general, the kth functional principal component Uk = <uuuk, XXX> satisfies the
conditions:

λk = sup
uuu∈L p

2 (I )

Var(<uuu, XXX>) = Var(<uuuk, XXX>),

<uuuκ1 ,uuuκ2> = δκ1κ2 , κ1, κ2 = 1, ..., k,

where

δκ1κ2 =
{
1 if κ1 = κ2

0 if κ1 �= κ2.

The expression (λk,uuuk(t)) will be called the kth principal system of the process
XXX(t).

In sect. 2 we have shown, that the process XXX(t) can be represented as XXX(t) = ���(t)ccc,
t ∈ I . Now let us consider the principal components of the random vector ccc. From
E(XXX) = 000 we have E(ccc) = 000. Let us denote Var(ccc) = ���. The kth principal component
U∗
k = <ωωωk,ccc> of this vector satisfies the conditions:
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γk = sup
ωωω∈RK+p

Var(<ωωω,ccc>) = sup
ωωω∈RK+p

ωωω′ Var(ccc)ωωω

= sup
ωωω∈RK+p

ωωω′���ωωω = ωωω′
k���ωωωk,

ωωω′
κ1

ωωωκ2 = δκ1κ2 ,

where κ1, κ2 = 1, ..., k, K = B1 + ... + Bp. The expression (γk,ωωωk) will be called
the kth principal system of vector ccc.

Determining the kth principal system of vector ccc is equivalent to solving for the
eigenvalue and corresponding eigenvectors of the covariance matrix��� of that vector,
standardized so that ωωω′

κ1
ωωωκ2 = δκ1κ2 .

Theorem 1 The kth principal system (λk,uuuk(t)) of the stochastic process XXX(t) is
related to the kth principal system (γk,ωωωk) of the random vector ccc by the equations:

λk = γk, uuuk(t) = ���(t)ωωωk, t ∈ I,

where k = 1, ..., s and s = rank(���).

Proof It may be assumed (Ramsay and Silverman 2005), that the vector weight func-
tion uuu(t) and the process XXX(t) are in the same space, i.e. the function uuu(t) can be
written in the form:

uuu(t) = ���(t)ωωω,

where ωωω ∈ R
K+p. Then

<uuu, XXX> =
∫

I
uuu′(t)XXX(t)dt =

∫

I
ωωω′���′(t)���(t)cccdt

= ωωω′
∫

I
���′(t)���(t)dtccc = ωωω′III K+pccc = ωωω′ccc,

where

E(<uuu, XXX>) = ωωω′ E(ccc) = ωωω′000 = 0,

Var(<uuu, XXX>) = ωωω′ E(cccccc′)ωωω = ωωω′���ωωω.

Let us consider the first functional principal component of process XXX(t):

λ1 = sup
uuu∈L p

2 (I )

Var(<uuu, XXX>) = Var(<uuu1, XXX>),

where <uuu1,uuu1> = 1. This is equivalent to saying that

γ1 = sup
ωωω∈RK+p

Var(<ωωω,ccc>) = sup
ωωω∈RK+p

ωωω′ Var(ccc)ωωω = ωωω′
1���ωωω1,

where ωωω′
1ωωω1 = 1.
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This is the definition of the first principal component of the random vector ccc. On the
other hand, if we begin with the first principal system of the random vector ccc defined
by (γ1,ωωω1), we will obtain the first principal system for the process XXX(t) from the
equations

λ1 = γ1, uuu1(t) = ���(t)ωωω1.

We may extend these considerations to the second principal system and so on. ��
Principal component analysis for random vectors ccc is based on the matrix ���. In

practice this matrix is unknown. We estimate it on the basis of n independent realiza-
tions xxx1(t), xxx2(t), ...., xxxn(t) of the form xxxi (t) = ���(t)ĉcci of the random process XXX(t),
where the vectors ĉcci are centered, i = 1, 2, ..., n.

Let ĈCC = (ĉcc1, ĉcc2, ..., ĉccn)′. Then

�̂�� = 1

n
ĈCC

′
ĈCC .

Let γ̂1 ≥ γ̂2 ≥ ... ≥ γ̂s be non-zero eigenvalues of matrix �̂��, and ω̂ωω1, ω̂ωω2, ..., ω̂ωωs

the corresponding eigenvectors, where s = rank(�̂��).
Moreover the kth principal system of the random process XXX(t) determined from a

sample has the following form:

(λ̂k = γ̂k, ûuuk(t) = ���(t)ω̂ωωk), k = 1, ..., s.

Hence the coefficients of the projection of the i th realization xxxi (t) of process XXX(t)
on the kth functional principal component are equal to:

Ûik = <ûuuk, xxxi> =
∫

I
ω̂ωω

′
k���

′(t)���(t)ĉcci dt

= ω̂ωω
′
k

∫

I
���′(t)���(t)dtĉcci = ω̂ωω

′
kĉcci ,

for i = 1, 2, ..., n, k = 1, 2, ..., s. Finally the coefficients of the projection of the i th
realization xxxi (t) of the process XXX(t) on the plane of the first two functional principal
components from the sample are equal to (ω̂ωω

′
1ĉcci , ω̂ωω

′
2ĉcci ), i = 1, 2, ..., n.

4 Discriminant coordinates for multivariate functional data

Now let us consider the case where the samples originate from L groups. We would
often like to present themgraphically, to see their configuration or to eliminate outlying
observations. However it may be difficult to produce such a presentation even if only
three features are observed. A differentmethodmust therefore be sought for presenting
multidimensional data originating from multiple groups. To make the task easier, in
the first step every p-dimensional observation XXX = (X1, X2, ..., X p)

′ ∈ R
p can

be transformed into a one-dimensional observation U1 = u11X1 + u12X2 + ... +
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u1p X p = uuu′
1XXX , and the resulting one-dimensional observations can be presented

graphically as points on a straight line. In the second step we can define a second
linear combinationU2 = uuu2XXX not correlatedwith the first, and present the observations
graphically as points on a plane (U1,U2). The space of discriminant coordinates is a
space convenient for the use of various classificationmethods (methods of discriminant
analysis). When L = 2 we obtain only one discriminant coordinate, coinciding with
the well-known Fisher’s linear discriminant function (Fisher 1936). The functional
case of discriminant coordinates analysis (FDCA) and its kernel variant (KFDCA)
are also well known (Górecki et al. 2014). In this section we propose FDCA for
multivariate functional data (MFDCA). Let xxxl1(t), xxxl2(t), ..., xxxlnl (t) be nl independent
realizations of a p-dimensional stochastic process XXX(t) belonging to the lth class,
where l = 1, 2, . . . , L . Our purpose is to construct the discriminant coordinate based
on multivariate functional data, i.e. to construct

U = <uuu, XXX> =
∫

I
uuu′(t)XXX(t)dt

such that their between-class variance is maximal compared with the total variance,
where uuu ∈ L p

2 (I ). The vector function uuu(t) = (u1(t), u2(t), ..., u p(t))′ is called the
vector weight function.

More precisely, the first functional discriminant coordinate U1 = <uuu1, XXX> is
defined as

λ1 = sup
uuu∈L p

2 (I )

VarB(<uuu, XXX>)

VarT (<uuu, XXX>)

= VarB(<uuu1, XXX>)

VarT (<uuu1, XXX>)
,

subject to the constraint

VarT (<uuu1, XXX>) = 1, (4)

whereVarB(<uuu, XXX>) andVarT (<uuu, XXX>) are respectively the between-class and total
variance of discriminant coordinate U1. Condition (4) ensures the uniqueness of the
first discriminant coordinate U1.

Similarly we can construct the kth functional discriminant coordinate

Uk = <uuuk, XXX>,

where the vector weight function uuuk(t) is defined as

λ1 = sup
uuu∈L p

2 (I )

VarB(<uuu, XXX>)

VarT (<uuu, XXX>)

= VarB(<uuuk, XXX>)

VarT (<uuuk, XXX>)
,
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subject to the constraint

VarT (<uuuk, XXX>) = 1.

Moreover the kth discriminant coordinate Uk is not correlated with the first k − 1
discriminant coordinates. The expression (λk ,uuuk(t))will be called the kth discriminant
system of the process XXX(t).

Let us recall that the process XXX(t) can be represented as XXX(t) = ���(t)ccc, t ∈ I .
Now let us consider the discriminant coordinates of the random vector ccc. The kth
discriminant coordinate U∗

k = <ωωωk,ccc> of this vector satisfies the condition:

γk = sup
ωωω∈RK+p

VarB(<ωωω,ccc>) = VarB(<ωωωk,ccc>)

= ωωω′
k VarB(ccc)ωωωk = ωωω′

kBBBωωωk,

subject to the restriction

VarT (<ωωωk,ccc>) = ωωω′
k VarT (ccc)ωωωk = ωωω′

kTTTωωωk = 1.

Additionally the kth discriminant coordinate U∗
k is not correlated with the first k − 1

discriminant coordinates, i.e.

ωωω′
κ1
TTTωωωκ2 = δκ1κ2 , κ1, κ2 = 1, ..., k.

The expression (γk,ωωωk) will be called the kth discriminant system of the random
vector ccc.

Theorem 2 The kth discriminant system (λk,uuuk(t)) of the stochastic process XXX(t) is
related to the kth discriminant system (γk,ωωωk) of the random vectorccc by the equations:

λk = γk, uuuk(t) = ���(t)ωωωk, t ∈ I,

where k = 1, ..., s, s = min(K + p, L − 1).

Proof We assume, that the vector weight function uuu(t) and the process XXX(t) are in the
same space, i.e. the function uuu(t) can be written in the form:

uuu(t) = ���(t)ωωω

where ωωω ∈ R
K+p. Than

<uuu, XXX> = ωωω′ccc.

Hence the between-class variance of the inner product <uuu, XXX> is

VarB(<uuu, XXX>) = ωωω′ VarB(ccc)ωωω,
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and the total variance

VarT (<uuu, XXX>) = ωωω′ VarT (ccc)ωωω,

where VarB(ccc) and VarT (ccc) are respectively the matrices of sum of squares and prod-
ucts of between-class and total variance.

For the first functional discriminant coordinate of the process XXX(t) we have:

λ1 = sup
uuu∈L p

2 (I )

VarB(<uuu, XXX>)

VarT (<uuu, XXX>)

= sup
ωωω∈RK+p

ωωω′ VarB(ccc)ωωω

ωωω′ VarT (ccc)ωωω
= ωωω′

1 VarB(ccc)ωωω1

ωωω′
1 VarT (ccc)ωωω1

,

where ωωω′
1 VarT (c)ωωω1 = 1. This is equivalent to

γ1 = sup
ωωω∈RK+p

VarB(<ωωω,ccc>) = sup
ωωω∈RK+p

ωωω′ VarB(ccc)ωωω = ωωω′
1BBBωωω1,

where ωωω′
1ωωω1 = 1.

This meets the definition of the first discriminant coordinate of the random vector ccc.
On the other hand, if the first discriminant system (γ1,ωωω1) defines the first discriminant
coordinate of the random vector ccc, we will obtain the first discriminant system for the
process XXX(t) from the equations

λ1 = γ1, uuu1(t) = ���(t)ωωω1.

We may extend these considerations to the second discriminant system and so on.
��

The matrices VarB(ccc) and VarT (ccc) are unknown and must be estimated based on
the sample. Let xxxl1(t), xxxl2(t), ..., xxxlnl (t) be a sample belonging to the lth class, where
l = 1, 2, . . . , L . The function xxxli (t) has the form

xxxli (t) = ���(t)ĉccli ,

where ĉccl j =
(
ĉ(l j)
10 , ..., ĉ(l j)

1K1
, ..., ĉ(l j)

p0 , ..., ĉ(l j)
pK p

)′
, i = 1, 2, ..., nl , l = 1, 2, ..., L . Let

c̄ccl = 1

nl

nl∑

i=1

ĉccli .
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Then

V̂arB(ccc) = B̂BB = 1

L

L∑

l=1

nlc̄cclc̄cc
′
l ,

V̂arT (ccc) = T̂TT = 1

n

L∑

l=1

nl∑

i=1

nlĉccli ĉcc
′
li ,

where n = ∑L
l=1 nl . Next we find non-zero eigenvalues γ̂1 ≥ γ̂2 ≥ ... ≥ γ̂s and

the corresponding eigenvectors ω̂ωω1, ω̂ωω2, ..., ω̂ωωs of matrix T̂TT
−1

B̂BB, where s = min(K +
p, L − 1). Furthermore the kth discriminant system of the random process XXX(t) has
the following form:

(λ̂k = γ̂k, ûuuk(t) = ���(t)ω̂ωωk), k = 1, ..., s = min(K + p, L − 1).

Hence the coefficients of the projection of the i th realization xxxli (t) of process XXX(t)
belonging to the lth class on the kth functional discriminant component are equal to:

Ûlik = <ûuuk(t), xxxli (t)> = ω̂ωω
′
kĉccli ,

for i = 1, 2, ..., nl , k = 1, 2, ..., s, l = 1, 2, ..., L .

5 Canonical correlation analysis for multivariate functional data

Suppose now that we are observing two random vectors YYY = (Y1,Y2, ..., Yp)
′ ∈ R

p

and XXX = (X1, X2, ..., Xq)
′ ∈ R

q and looking for the relationship between them.
This is the one of the main problems of canonical correlation analysis. We search
for weight vectors uuu ∈ R

p and vvv ∈ R
q , such that the linear combinations U1 =

u11Y1 + u12Y2 + ... + u1pYp = uuu′
1YYY and V1 = v11X1 + v2X12 + ... + v1q Xq = vvv′

1XXX ,
called the first pair of canonical variables, are maximally correlated.

Canonical correlation analysis has been extended to the case of multivariate time
series (Brillinger 2001), under the assumption of stationarity, and extension of canon-
ical correlation to functional data has been proposed in Leurgans et al. (1993), where
the need for regularization was pointed out. He et al. (2000) showed that random
processes with finite basis expansion have simple canonical structures, analogously to
the case of random vectors. This motivates to implement regularization by projecting
random processes on a finite number of basis function. The idea to project processes
on the finite k basis functions has been discussed in He et al. (2004). This projection is
on a prespecified orhonormal basis. In this Section, we consider the canonical correla-
tions for the multivariate functional data. The proposed method is a generalization of
the method presented in He et al. (2004). Other generalization is presented by Dubin
and Müller (2005).

LetYYY (t) and XXX(t) are stochastic processes.Wewill further assume thatYYY ∈ L p
2 (I1),

XXX ∈ Lq
2(I2) and each component Yg(t) of process YYY (t) and Xh(t) of process XXX(t)
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can be represented by a finite number of orthonormal basis functions {ϕe} and {ϕ f }
respectively:

Yg(t) =
Eg∑

e=0

αgeϕe(t), t ∈ I1, g = 1, 2, ..., p,

Xh(t) =
Fh∑

f =0

βh f ϕ f (t), t ∈ I2, h = 1, 2, ..., q.

Moreover let E(YYY ) = 000, E(XXX) = 000. This fact does not cause loss of generality, because
functional canonical variables are calculated based on the covariance functions of
processes YYY (t) and XXX(t).

We introduce the following notation:

ααα = (α10, ..., α1E1 , ..., αp0, ..., αpEp )
′,

βββ = (β10, ..., β1F1 , ..., βq0, ..., βqFq )
′,

���1(t) =

⎡

⎢⎢⎢⎣

ϕϕϕ′
E1

(t) 000 . . . 000

000 ϕϕϕ′
E2

(t) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ′
Ep

(t)

⎤

⎥⎥⎥⎦ ,

���2(t) =

⎡

⎢⎢⎢⎣

ϕϕϕ′
F1

(t) 000 . . . 000

000 ϕϕϕ′
F2

(t) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ′
Fq

(t)

⎤

⎥⎥⎥⎦ ,

where ϕϕϕE1, ...,ϕϕϕEp and ϕϕϕF1 , ...,ϕϕϕFq are orthonormal basis functions of space L2(I1)
and L2(I2), respectively, and K1 = E1 + E2 + ... + Ep, K2 = F1 + F2 + ... + Fq .
Using the above matrix notation the processes YYY (t) and XXX(t) can be represented as:

YYY (t) = ���1(t)ααα, XXX(t) = ���2(t)βββ.

Functional canonical variablesU and V for stochastic processes YYY (t) and XXX(t) are
defined as follows

U = <uuu,YYY> =
∫

I1
uuu′(t)YYY (t)dt, V = <vvv, XXX> =

∫

I2
vvv′(t)XXX(t)dt,

where the vector functions uuu(t) and vvv(t) are called the vector weight functions. The
weight functions uuu(t) and vvv(t) are chosen to maximize the coefficients

ρ = Cov(U, V )√
Var(U )Var(V )

∈ (0, 1],
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subject to the constraint that

Var(U ) = Var(V ) = 1. (5)

The coefficient ρ is called the canonical correlation coefficient. However, simply
carrying out this maximization does not produce a meaningful result. The correlation
ρ achieved by the function uuu(t) and vvv(t) is equal to 1. The canonical variate weight
functions uuu(t) and vvv(t) do not give any meaningful information about the data and
clearly demonstrate the need for a technique involving smoothing. A straightforward
way of introducing smoothing is to modify the constraints (5) by adding roughness
penalty terms to give (Ramsay and Silverman 2005):

Var
(
U (N )

)
= Var

(∫

I1
uuu′(t)YYY (t)dt

)
+ λPEN2(uuu) = 1, (6)

Var
(
V (N )

)
= Var

(∫

I2
vvv′(t)XXX(t)dt

)
+ λPEN2(vvv) = 1, (7)

where the roughness function PEN2 is the integrated squared second derivative

PEN2(uuu) =
∫

I1

(
∂2uuu(t)

∂t2

)′
∂2uuu(t)

∂t2
dt.

Assuming that the vector weight function uuu(t) and the process Y (t) are in the same
space, i.e. the function uuu(t) can be written in the form:

uuu(t) = ���1(t)ωωω

we have

PEN2(uuu) =
∫

I1

(
∂2���1(t)ωωω

∂t2

)′
∂2���1(t)ωωω

∂t2
dt

= ωωω′
∫

I1

(
∂2���1(t)

∂t2

)′
∂2���1(t)

∂t2
dt ωωω

= ωωω′RRR1ωωω,

where

RRR1 =
∫

I1

(
∂2���1(t)

∂t2

)′
∂2���1(t)

∂t2
dt. (8)

Similarly assuming that

vvv(t) = ���2(t)ννν
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we can obtain

PEN2(vvv) = ννν′RRR2ννν,

where

RRR2 =
∫

I2

(
∂2���2(t)

∂t2

)′
∂2���2(t)

∂t2
dt. (9)

Now the first functional canonical correlation ρ1 and corresponding vector weight
functions uuu1(t) and vvv1(t) are defined as

ρ1 = sup
uuu∈L p

2 (I1),vvv∈Lq
2 (I2)

Cov(<uuu,YYY>,<vvv, XXX>)√
Var(U (N ))Var(V (N ))

,

subject to the constraint that

Var
(
U (N )

)
= Var

(
V (N )

)
= 1.

In general, the kth functional canonical correlation ρk and the associated vector
weight functions uuuk(t) and vvvk(t) are defined as follows:

ρk = sup
uuu∈L p

2 (I1),vvv∈Lq
2 (I2)

Cov(<uuu,YYY>,<vvv, XXX>)

= Cov(<ukukuk,YYY>,<vkvkvk, XXX>),

where uuuk(t) and vvvk(t) are subject to the restrictions (6) and (7), and the kth pair of
canonical variables (Uk, Vk) is not correlated with the first k − 1 canonical variables,
where

Uk = <uuuk,YYY>, Vk = <vvvk, XXX>

are canonical variables. We refer to this procedure as smoothed canonical correlation
analysis. The expression (ρk,uuuk(t),vvvk(t)) will be called the kth canonical system of
the pair of processes YYY (t) and XXX(t).

Let

Var(ααα) = E(αααααα′) = ���11,

Var(βββ) = E(ββββββ ′) = ���22,

Cov(ααα,βββ) = E(αααβββ ′) = ���12.

Let us consider the canonical variables U∗ = <ωωω,ααα> and V ∗ = <ννν,βββ> of
random vectors ααα and βββ respectively. The kth canonical correlation γk and associated
vector weights ωωωk and νννk are defined as
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γk = sup
ωωω∈RK1+p,ννν∈RK2+q

Cov(<ωωω,ααα>,<ννν,βββ>) = ωωω′
k���12νννk,

subject to the restriction

ωωω′
k(���11 + λRRR1)ωωωk = 1,

ννν′
k(���22 + λRRR2)νννk = 1,

where RRR1 and RRR2 are given by (8) and (9) respectively, and the kth canonical variables
(U∗

k , V ∗
k ) are not correlated with the first k − 1 canonical variables. The expression

(γk,ωωωk, νννk) will be called the kth canonical system of the random vectors ααα and βββ.

Theorem 3 The kth canonical system (ρk,ukukuk(t),vkvkvk(t)) of the pair of random
processes YYY (t) and XXX(t) is related to the kth canonical system (γk,ωωωk, νννk) of the
pair of the random vectors ααα and βββ by the equations:

ρk = γk, uuuk(t) = ���1(t)ωωωk, t ∈ I1, vvvk(t) = ���2(t)νννk, t ∈ I2,

where 1 ≤ k ≤ min(K1 + p, K2 + q), K1 = E1 + ...Ep, K2 = F1 + ... + Fq.

Proof Without loss of generality we may assume that the covariance matrices ���11
and ���22 are of full column rank. As in the proof of Theorem 1 it may be assumed,
that the vector weight function uuu(t) and the process YYY (t) are in the same space, i.e.
the function uuu(t) can be written in the form:

uuu(t) = ���(t)ωωω,

where ωωω ∈ R
K1+p. Than

<uuu,YYY> = ωωω′ααα.

Similarly for vvv ∈ Lq
2(I2)

<vvv, XXX> = ννν′βββ,

where ννν ∈ R
K2+q . Hence

E(<uuu,YYY>) = ωωω′ E(ααα) = ααα′000 = 0,

E(<vvv, XXX>) = ννν′ E(βββ) = βββ ′000 = 0,

Var(<uuu,YYY>) = ωωω′���11ωωω,

Var(<vvv, XXX>) = ννν′���22ννν,

Cov(<uuu,YYY>,<vvv, XXX>) = ωωω′���12ννν.
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Let us consider the first canonical correlation between the processes YYY (t) and XXX(t):

ρ1 = sup
uuu∈L p

2 (I1),vvv∈Lq
2 (I2)

Cov(<uuu,YYY>,<vvv, XXX>)

= Cov(<uuu1,YYY>,<vvv1, XXX>),

where uuu(t) and vvv(t) are subject to the restrictions (6) and (7). This is equivalent to
saying that

γ1 = sup
ωωω∈RK1+p,ννν∈RK2+q

ωωω′���12ννν = ωωω′
1���12ννν1,

subject to the restriction

ωωω′
1(���11 + λRRR1)ωωω1 = 1,

ννν′
1(���22 + λRRR2)ννν1 = 1,

where RRR1 and RRR2 are given by (8) and (9) respectively. This is the definition of the
first canonical correlation between the random vectors ααα and βββ.

On the other hand, if we beginwith the first canonical system (γ1,ωωω1, ννν1) of the pair
of random vectors ααα and βββ, we will obtain the first canonical system for the processes
YYY (t) and XXX(t) from the equation

ρ1 = γ1, uuu1(t) = ���1(t)ωωω1, vvv1(t) = ���2(t)ννν1.

We may extend these considerations to the second canonical system and so on. ��

Canonical correlation analysis for the random vectors ααα and βββ is based on the
matrices ���11,���22 and ���12, which are unknown. We estimate them on the basis of
n independent realizations yyy1(t), yyy2(t), ...., yyyn(t) of the form yyyi (t) = ���1(t)α̂ααi of
random process YYY (t), and xxx1(t), xxx2(t), ...., xxxn(t) of the form xxxi (t) = ���2(t)β̂ββ i of
random process XXX(t), i = 1, 2, ..., n, where

α̂ααi = (
α̂

(i)
10 , ..., α̂

(i)
1E1

, ..., α̂
(i)
p0, ..., α̂

(i)
pEp

)′
,

β̂ββ i = (
β̂

(i)
10 , ..., β̂

(i)
1F1

, ..., β̂
(i)
q0 , ..., β̂

(i)
qFq

)′
.

Let

ÂAA = (α̂αα1, ..., α̂ααn)
′,

B̂BB = (β̂ββ1, ..., β̂ββn)
′.
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Finally the estimators of the matrices���11,���22 and���12 have the form:

�̂��11 = 1

n
ÂAA

′
ÂAA,

�̂��22 = 1

n
B̂BB

′
B̂BB,

�̂��12 = 1

n
ÂAA

′
B̂BB.

Let ĈCC = �̂��
−1
11 �̂��12 and D̂DD = �̂��

−1
22 �̂��21, where �̂��21 = �̂��

′
12. The matrices ĈCCD̂DD and D̂DDĈCC

have the same nonzero eigenvalues γ̂ 2
k , and their corresponding eigenvectors ω̂ωωk and

ν̂ννk are given by the equations:

(ĈCCD̂DD − γ̂ 2
k III K1+p)ω̂ωωk = 000,

(D̂DDĈCC − γ̂ 2
k III K2+q)ν̂ννk = 000.

1 ≤ k ≤ min(K1 + p, K2 + q).
Hence the coefficients of the projection of the i th realization yyyi (t) of process YYY (t)

on the kth functional canonical variable are equal to

Ûik = <û̂ûuk, yiyiyi> =
∫

I1
û̂ûuk(t)yiyiyi (t)dt = α̂αα

′
iω̂ωωk,

Analogously the coefficients of the projection of the the i th realization xxxi (t) of process
XXX(t) on the kth functional canonical variable are equal to

V̂ik = β̂ββ
′
i ν̂ννk,

where i = 1, 2, . . . , n, k = 1, . . . ,min(K1 + p, K2 + q).

6 Example

The following data (Fig. 1) come from the online database of the World Bank (http://
data.worldbank.org/). For the analysis, fifty-four countries of the world were chosen
(n = 54). These were recorded in the years 1972–2009 (J = 38). Each country
belongs to one of four classes (L = 4):

1. Low-income economies (GDP $1,025 or less), n1 = 3
2. Lower-middle-income economies (GDP $1,026 to $4,035), n2 = 19
3. Upper-middle-income economies (GDP $4,036 to $12,475), n3 = 14
4. High-income economies (GDP $12,476 or more), n4 = 18

and was characterized by four variables:

1. X1: GDP growth (annual %)—Annual percentage growth rate of GDP at market
prices based on constant local currency. Aggregates are based on constant 2000
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Fig. 1 Data set trajectories

U.S. dollars. GDP is the sum of gross value added by all resident producers in
the economy plus any product taxes and minus any subsidies not included in the
value of the products. It is calculated without making deductions for depreciation
of fabricated assets or for depletion and degradation of natural resources.

2. X2: Energy use (rate of growth in kg of oil equivalent per capita)—Energy use
refers to use of primary energy before transformation to other end-use fuels, which
is equal to indigenous production plus imports and stock changes, minus exports
and fuels supplied to ships and aircraft engaged in international transport.

3. X3: CO2 emissions (rate of growth in kt)—Carbon dioxide emissions are those
stemming from the burning of fossil fuels and the manufacture of cement. They
include carbon dioxide produced during consumption of solid, liquid, and gas fuels
and gas flaring.

4. X4: Population in urban agglomerations of more than 1 million (% of total
population)—Population in urban agglomerations of more than one million is
the percentage of a country’s population living in metropolitan areas that in 2000
had a population of more than one million people.

The datawere transformed to functional data by themethod described in Sect. 2. The
calculations were performed using the Fourier basis systemwhat is a typical selection.
But others such as splines, polynomials or wavelets can also be used. Optimum values
of B, selected using the BIC criterion, for X1, X2, X3 and X4 take the values 2, 2, 2
and 6 respectively. The time interval [0, T ] = [0, 38] was divided into moments of
time in the following way: t1 = 0.5(1972), t2 = 1.5(1973), ..., t38 = 37.5(2009).

We used the R package fda (Ramsay et al. 2009) to create Fourier system and in
order to convert raw data into a functional object. Other procedures were implemented
by us (Table 1).
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6.1 Multivariate functional principal component analysis (MFPCA)

The statistical objects in the functional principal component analysis are 54
countries (n = 54) characterized by four (p = 4) pieces of functional data
xxxi (t) = (xi1(t), xi2(t), xi3(t), xi4(t))′, t ∈ [0, 38], i = 1, 2, ..., 54. No account is
taken of an objects membership of one of the four defined groups of countries. The
vector functions xxx1(t), xxx2(t), ..., xxx54(t) have the form

xxxi (t) = ���(t)ĉcci ,

where���(t) is a matrix with the form of (3), and the vector ĉcci has the form

ĉcci = (ĉi10(t), ..., ĉi1B1 , ..., ĉi40(t), ..., ĉi4B4)
′,

where B1 = B2 = B3 = 2, B4 = 6, i = 1, 2, ..., 54. In the first step, from the
vectors ĉcc1, ĉcc2, ..., ĉcc54 we build the matrix �̂��, and next we find its eigenvalues γ̂k and
the corresponding vectors ω̂ωωk . The ratios of the particular eigenvalues to the sum of all
eigenvalues, expressed as percentages, are shown in Fig. 2. It can be seen from Fig. 2
that 94.8% of the total variation is accounted for by the first functional principal
component. In the second step we form the vector weight functions

ûuuk(t) = ���(t)ω̂ωωk,

where k = 1, ..., 16, and the corresponding functional principal components in the
form

Ûk = <ûuuk, XXX>.

The graphs of the four components of the vector weight functions for the first and
second functional principal components appear in Fig. 3. The values of the coefficients
of the vectorweight functions corresponding to thefirst and second functional principal
components are given in Table 2. At a given time point t the greater is the absolute
value of a component of the vector weight function, the greater is the contribution,
in the structure of the given functional principal component, from the process X (t)
corresponding to that component. From Fig. 3 (left) it can be seen that the greatest
contribution in the structure of the first functional principal component comes from
process X4(t), and this holds for all of the observation years considered. Figure 3
(right) shows that, on specified time intervals, the greatest contribution in the structure
of the second functional principal component comes alternately from the processes
X2(t) and X1(t). The total contribution of a particular original process Xi (t) in the
structure of a given functional principal component is equal to the area under the
module weighting function corresponding to this process. These contributions for
the four components of the vector process XXX(t), and the first and second functional
principal components are given in Table 2. The relative positions of the 54 countries
in the system of the first two functional principal components are shown in Fig. 4.
The system of the first two functional principal components retains 96.3% of the total
variation. From Fig. 4, we see that 54 countries form a relatively homogeneous group,
with the exception of Singapore (SGP), Korea Rep. (KOR) and China (CHN).
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6.2 Multivariate functional discriminant coordinates (MFDCA)

In the construction of functional discriminant coordinates, by contrast with the con-
struction of functional principal components, we take account additionally of the
information concerning the division of the 54 countries into four disjoint groups
(L = 4). From the vectors ĉcci we build the estimator B̂BB of the matrix of between-
class variation, and the estimator T̂TT of the matrix of total variation, and then we

find the non-zero eigenvalues γ̂k of the matrix T̂TT
−1

B̂BB and the corresponding vectors
ω̂ωωk, k = 1, 2, 3. The ratios of particular eigenvalues to the sum of all eigenvalues,
expressed as percentages, are shown in Fig. 5. It can be seen from Fig. 5 that 74.7%
of the total variation is accounted for by the first functional discriminant coordinate.
In the second step we form the vector weight functions

ûuuk(t) = ���(t)ω̂ωωk,

where k = 1, 2, 3, and the corresponding functional discriminant coordinates in the
form

Ûk = <ûuuk, XXX>.

The graphs of the four components of the vector weight function for the first and
second functional discriminant coordinates appear in Fig. 6. The values of the coeffi-
cients of the vector weight functions corresponding to the first and second functional
discriminant coordinates are given in Table 3. At a given time point t the greater is
the absolute value of a component of the vector weight function, the greater is the
contribution, in the structure of the given functional discriminant coordinate, from the
process X (t) corresponding to that component. Figure 6 (left) shows that the greatest
contribution in the structure of the first and second functional discriminant coordinates
comes from process X4(t), and this holds for all of the observation years considered.
Similarly as in the case of the functional principal components, the total contribution
of a particular original process Xi (t) in the structure of a particular functional discrim-
inant coordinate can be estimated using the area under the module weighting function
corresponding to this process. These contributions for the four components of the
vector process XXX(t) and the first and second functional discriminant coordinates are
given in Table 3. The relative positions of the 54 countries in the system of the first two
functional discriminant coordinates are shown in Fig. 7. The system of the first two
functional discriminant coordinates retains 93.9% of the total variation. Compared
with the projection onto the first two functional principal components, the division
into four groups is better visible here. State clearly different from the other countries
is the Democratic Republic of Kongo (COD). In the group of developed countries,
Finland (FIN) is clearly different from other countries.

6.3 Multivariate functional canonical analysis (MFCCA)

In the construction of functional canonical variables we do not take account of the
division of the 54 countries into four groups, and we divide the four-dimensional
stochastic process into two parts:YYY (t) = (X2(t), X3(t))′ and XXX(t) = (X1(t), X4(t))′.
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In our case p = q = 2. We are interested in the relationship between the processes
YYY (t) and XXX(t).We build estimators of thematrices���11,���22 and���12, andwe then find
the non-zero eigenvalues γ̂ 2

k and corresponding vectors ω̂ωωk of the matrix ĈCCD̂DD, and the

eigenvalues γ̂ 2
k and corresponding vectors ν̂ννk of the matrix D̂DDĈCC , where ĈCC = �̂��

−1
11 �̂��12

and D̂DD = �̂��
−1
22 �̂��21, �̂��21 = �̂��

′
12, k = 1, ..., 6. The eigenvalues γ̂k , called canonical

correlations, are shown in Fig. 8. In the second step we form vector weight functions

ûuuk(t) = ���1(t)ω̂ωωk, v̂vvk(t) = ���2(t)ν̂ννk,

corresponding to the processes YYY (t) and XXX(t), where k = 1, ..., 6.. Corresponding to
these functions are the functional canonical variables in the form

Ûk = <ûuuk,YYY>, V̂k = <v̂vvk, XXX>,

corresponding to the processes YYY (t) and XXX(t). The graphs of the two components of
the vector weight function for the first and second functional canonical variables of
the processesYYY (t) and XXX(t) are shown in Figs. 9, 10. Table 4 contains the values of the
coefficients of the vector weight functions, together with the total contribution from
each process in the structure of the corresponding functional canonical variable. The
relative positions of the 54 countries in the systems (Û1, V̂1) of functional canonical
variables are shown in Fig. 11. The strong correlation (ρ1 = 0.951) between the
processes XXX(t) and YYY (t) means that in the system of canonical variables (Û1, V̂1)
points representing individual countries are almost on a straight line. In terms of
the correlation between the processes XXX(t) and YYY (t), 54 countries form a relatively
homogeneous group with the exception of Singapore (SGP) and Saudi Arabia (SAU).

7 Conclusions and future work

This paper introduces and analyzes a newmethods of constructing canonical variables
and discriminant coordinates for multivariate functional data. In addition, we reviewed
principal components analysis for such data (Jacques and Preda 2014). FDA is an
important tool that can be used for exploratory data analysis. A primary advantage is
the ability do assess continuous datawithout reducing the signal into discrete variables.
By representing each curve as a function, it is possible to use functional analogue
of classical methods. Functional methods (1) allow more complex dynamics than
classical methods; (2) they utilize a nonparametric smoothing technique to reduce
the observational error; and (3) they solve the inverse and multicollinearity problems
caused by the ”curse of dimensionality”.

Proposed methods was applied to geographic economic multivariate time series.
Our research has shown, on this example, that the use of a multivariate projective
dimension reduction techniques gives good results and provide an attractive method
for flexibly analyse such data. Of course, the performance of the algorithms needs to
be further evaluated on additional real and artificial data sets.

In a similar way, we would like to extend manifold dimension reduction techniques
like multidimensional scaling (Borg and Groenen 2005), isometric feature mapping
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(Tenenbaum et al. 2000) or maximum variance unfolding (Weiss 1999) for univariate
functional data to multivariate case. This is the direction of our future research.

Acknowledgements We would like to thank the editor and two anonymous reviewers for the very useful
comments and suggestions which help us improve the quality of our paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

See Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and Tables 1, 2, 3, 4.
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û1(t)
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Fig. 4 Projection of the 54 selected countries on the plane (Û1, Û2)—multivariate functional principal
components (MFPCA)
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Fig. 5 Proportions of variance for multivariate functional discriminant coordinates (MFDCA)
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û3(t)
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functional discriminant coordinate Û2 (right)
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Fig. 7 Projection of the 54 selected countries on the plane (Û1, Û2) – multivariate functional discriminant
coordinates (MFDCA)
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Fig. 8 Canonical correlation for
multivariate functional canonical
variables (MFCCA)
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Fig. 9 Weight functions for first functional canonical variable Û1 (left). Weight functions for second
functional canonical variable Û2 (right)
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Fig. 11 Projection of the 54 selected countries on the plane (Û1, V̂1)—multivariate functional canonical
variables (MFCCA)
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Table 1 Country prefix and class description

Class Country code Country name Class Country code Country name

1 COD Congo, Dem. Rep. 3 CRI Costa Rica

KEN Kenya CUB Cuba

TGO Togo DOM Dominican Republic

2 BOL Bolivia ECU Ecuador

CMR Cameroon IRN Iran, Islamic Rep.

COG Congo, Rep. PAN Panama

CIV Cote d’Ivoire PER Peru

EGY Egypt, Arab Rep. ZAF South Africa

SLV El Salvador THA Thailand

GHA Ghana 4 AUS Australia

HND Honduras AUT Austria

IND India CAN Canada

IDN Indonesia DNK Denmark

MAR Morocco FIN Finland

NIC Nicaragua FRA France

NGA Nigeria GRC Greece

PAK Pakistan HUN Hungary

PRY Paraguay ISR Israel

PHL Philippines ITA Italy

SEN Senegal JPN Japan

SDN Sudan KOR Korea, Rep.

SYR Syrian Arab Republic NLD Netherlands

3 DZA Algeria PRT Portugal

ARG Argentina SAU Saudi Arabia

CHL Chile SGP Singapore

CHN China ESP Spain

COL Colombia SWE Sweden
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Table 2 Values of coefficients of the vector weight function (MFPCA)

First functional principal component

Process ω̂0 ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Area |u(t)|
X1 −0.019 −0.005 0.015 0.12

X2 −0.030 −0.009 0.021 0.19

X3 0.042 0.008 −0.017 0.25

X4 −0.998 0.005 0.012 0.003 −0.006 0.003 0.004 6.07

Second functional principal component

Process ω̂0 ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Area |u(t)|
X1 0.661 0.144 −0.109 4.02

X2 0.676 0.231 −0.074 4.11

X3 0.010 0.009 −0.029 0.17

X4 −0.040 −0.080 −0.066 −0.025 −0.008 −0.024 −0.003 0.57

Table 3 Values of coefficients of the vector weight function (MFDCA)

First functional discriminant coordinate

Process ω̂0 ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Area |u(t)|
X1 0.062 −0.061 0.066 0.55

X2 −0.016 0.015 0.006 0.11

X3 0.078 0.057 −0.096 0.69

X4 −0.003 0.300 −0.013 0.002 0.469 −0.811 −0.019 4.92

Second functional discriminant coordinate

Process ω̂0 ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Area |u(t)|
X1 0.057 −0.131 −0.033 0.77

X2 0.000 0.109 0.052 0.66

X3 0.023 0.330 −0.021 1.81

X4 0.013 0.124 −0.047 0.183 0.150 0.217 0.856 4.95
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Table 4 Values of coefficients of the vector weight function (MFCCA)

First functional canonical variable (XXX(t))

Process ω̂0 ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Area |u(t)|
X1 0.010 0.034 0.056 0.36

X4 −0.001 −0.134 0.019 0.052 −0.380 0.271 0.303 2.74

First functional canonical variable (YYY (t))

Process ν̂0 ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6 Area |v(t)|
X2 −0.014 0.068 0.015 0.38

X3 0.078 0.071 −0.079 0.66
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Górecki T, Krzyśko M, Waszak Ł (2014) Functional discriminant coordinates. Commun Stat—Theory

Methods 43(5):1013–1025
He G, Müller HG, Wang JL (2000) Extending correlation and regression from multivariate to functional

data. Asymptotics in statistics and probability. VSP, Zeist, pp 197–210
He G, Müller HG, Wang JL (2004) Methods of canonical analysis for functional data. J Stat Plan Inference

122:141–159
Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

123



182 T. Górecki et al.

Jacques J, Preda C (2013) Funclust: a curves clustering method using functional random variables density
approximation. Neurocomputing 112:164–171

Jacques J, Preda C (2014) Model-based clustering for multivariate functional data. Comput Stat Data Anal
71:92–106

JamesGM, SugarCA (2003)Clustering for sparsely sampled functional data. JAmStatAssoc 98(462):397–
408

Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York
Kudraszow NL, Vieu P (2013) Uniform consistency of kNN regressors for functional variables. Stat Probab

Lett 83(8):1863–1870
Leurgans SE, Moyeed RA, Silverman BW (1993) Canonical correlation analysis when the data are curves.

J R Stat Soc 55(3):725–740
Mosler K, Mozharovskyi P (2015) Fast DD-classification of functional data. Stat Papers, doi:10.1007/

s00362-015-0738-3
Panaretos VM, Kraus D, Maddocks JH (2010) Second-order comparison of Gaussian random functions and

the geometry of DNA minicircles. J Am Stat Assoc 105(490):670–682
Peng J, Müller HG (2008) Distance-based clustering of sparsely observed stochastic processes, with appli-

cations to online auctions. Ann Appl Stat 2(3):1056–1077
PengQ, Zhou J, TangN (2015)Varying coefficient partially functional linear regressionmodels. Stat Papers,

doi:10.1007/s00362-015-0681-3
Rachdi M, Vieu P (2006) Nonparametric regression for functional data: automatic smoothing parameter

selection. J Stat Plan Inference 137:2784–2801
Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York
Ramsay JO, Hooker G, Graves S (2009) Functional data analysis with R and MATLAB. Springer, New

York
Rossi F, Villa N (2006) Support vector machine for functional data classification. Neurocomputing 69(7–

9):730–742
Saporta G (1981) Méthodes exploratoires d’analyse de données temporelles. Ph.D. thesis, Université Pierre

et Marie Curie (Paris)
Shmueli G (2010) To explain or to predict? Stat Sci 25(3):289–310
Sober E (2002) Instrumentalism, parsimony, and the Akaike framework. Philos Sci 69:112–123
Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality

reduction. Science 290:2319–2323
Wang G, Zhou J, Wu W, Chen M (2015) Robust functional sliced inverse regression. Stat Papers, doi:10.

1007/s00362-015-0695-x
Weiss Y (1999) Segmentation using eigenvectors: a unifying view. In: Proceedings of the IEEE international

conference on computer vision. Los Alamitos, pp 975–982

123

http://dx.doi.org/10.1007/s00362-015-0738-3
http://dx.doi.org/10.1007/s00362-015-0738-3
http://dx.doi.org/10.1007/s00362-015-0681-3
http://dx.doi.org/10.1007/s00362-015-0695-x
http://dx.doi.org/10.1007/s00362-015-0695-x

	Selected statistical methods of data analysis for multivariate functional data
	Abstract
	1 Introduction
	2 Transformation of discrete data to multivariate functional data
	3 Principal component analysis for multivariate functional data
	4 Discriminant coordinates for multivariate functional data
	5 Canonical correlation analysis for multivariate functional data
	6 Example
	6.1 Multivariate functional principal component analysis (MFPCA)
	6.2 Multivariate functional discriminant coordinates (MFDCA)
	6.3 Multivariate functional canonical analysis (MFCCA)

	7 Conclusions and future work
	Acknowledgements
	Appendix
	References




