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Abstract The classical assumption in generalized linear measurement error mod-
els (GLMEMs) is that measurement errors (MEs) for covariates are distributed as a
fully parametric distribution such as the multivariate normal distribution. This paper
uses a centered Dirichlet process mixture model to relax the fully parametric distri-
butional assumption of MEs, and develops a semiparametric Bayesian approach to
simultaneously obtain Bayesian estimations of parameters and covariates subject to
MEs by combining the stick-breaking prior and the Gibbs sampler together with the
Metropolis–Hastings algorithm. TwoBayesian case-deletion diagnostics are proposed
to identify influential observations in GLMEMs via the Kullback–Leibler divergence
and Cook’s distance. Computationally feasible formulae for evaluating Bayesian case-
deletion diagnostics are presented. Several simulation studies and a real example are
used to illustrate our proposed methodologies.

Keywords Cook’s distance · Dirichlet process prior · Generalized linear models ·
Kullback–Leibler divergence · Measurement error models

1 Introduction

Generalized linear models (GLMs) are widely used to fit responses that do not satisfy
the usual requirements of least-squares methods in biostatistics, epidemiology, and
many other areas. However, the real data fitted via a GLM often involve covariates
subject to measurement errors (Carroll et al. 2006; Singh et al. 2014). GLMs with
covariates having measurement errors (MEs), which are often referred to as gener-
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alized linear measurement error models (GLMEMs), have received a lot of attention
in past years. For example, Stefanski and Carroll (1985) developed a bias-adjusted
estimator, a functional maximum likelihood estimator and an estimator exploiting the
consequences of sufficiency for a logistic regression when covariates were subject to
MEs; Stefanski and Carroll (1987) studied parameter estimation in GLMwith canoni-
cal formwhen the explanatory vector wasmeasured with an independent normal error;
Buzas and Stefanski (1996) investigated instrumental variable estimation in GLMEMs
with canonical link functions; Aitkin and Rocci (2002) presented an EM algorithm
for maximum likelihood estimation in GLMs with continuous MEs in the explanatory
variables; Battauz (2011) developed a Laplace-based estimator for GLMEMs; Battauz
and Bellio (2011) proposed a structural analysis for GLMs when some explanatory
variables were measured with error and the ME variance was a function of the true
variables.

All the abovementioned studies assume that the covariateMEs inGLMEMs are dis-
tributed as a fully parametric distribution such as the multivariate normal distribution.
However, in some applications, the covariate MEs in GLMEMsmay not follow a fully
parametric distribution but follow a non-normal distribution such as the skew-normal
(Cancho et al. 2010) and skew-t (Lachos et al. 2010) and bimodal and heavy-tailed
distributions (Lachos et al. 2011). Moreover, the violation of the parametric assump-
tion on the covariate MEs may lead to unreasonable or even misleading conclusions.
Therefore, it is of practical interest to consider a flexible distributional assumption on
the covariate MEs in GLMEMs. The nonparametric method is one of the most widely
adopted approaches to specify a flexible probability distribution for random variables
or MEs in the Bayesian framework.

The Dirichlet process (DP) prior (Ferguson 1973) is the most popular nonpara-
metric approach to specify a probability distribution for random variables or MEs
in the Bayesian framework due to the availability of some efficient computational
techniques. The nonparametric method has been successfully used to make statistical
inference on various random effects models. For example, see Kleinman and Ibrahim
(1998), Dunson (2006), Guha (2008), Lee et al. (2008), Chow et al. (2011), Tang and
Duan (2012) and Tang et al. (2014). However, to the best of our knowledge, little
work is done on Bayesian analysis of GLMEMs with the covariate MEs following
a nonparametric distribution. Hence, this paper develops a semiparametric Bayesian
approach to simultaneously obtain Bayesian estimations of parameters and covariates
subject to MEs, and proposes two Bayesian case deletion diagnostics to detect the
potential influential observations under the centered DP mixture model specification
of the covariateMEs inGLMEMs. In this paper, a hybrid algorithm is presented to gen-
erate observations required for a Bayesian inference from the posterior distributions of
parameters and covariates subject to MEs by combining the stick-breaking prior and
the Gibbs sampler (Geman and Geman 1984) together with the Metropolis–Hastings
algorithm.

Bayesian case deletion approaches to detect influential observations (or sets of
observations) have been proposed for some statistical models such as linear regres-
sion models (Carlin and Polson 1991), GLMs (Jackson et al. 2012) and generalized
linear mixed models (Fong et al. 2010) based on the Kullback–Leibler divergence (K–
L divergence) and the conditional predictive ordinate. But, extending these existing
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Bayesian case deletion diagnostics to our considered GLMEMs is computationally
challenging because of the complexity of the considered models and the unknown dis-
tribution of the covariateMEs. To this end, the well-knownMarkov chainMonte Carlo
(MCMC) algorithm is employed to develop two computationally feasible Bayesian
case deletion diagnostics to assess the effect of cases (or sets of observations) on
posterior distributions or estimations of parameters based on the K–L divergence and
Cook’s distance in this paper.

The rest of this paper is organized as follows. Section 2 introduces GLMEMs by
using the centered DPmixture model to specify the distribution of covaraiteMEs. Sec-
tion 3develops aBayesianMCMCalgorithm tomakeBayesian inference onGLMEMs
by using the Gibbs sampler together with the Metropolis–Hastings algorithm. Two
Bayesian case deletion diagnostic measures are presented to detect influential obser-
vations based on theK–Ldivergence andCook’s distance in Sect. 3. Several simulation
studies and a real example are used to illustrate our proposed methodologies in Sect. 4.
Some concluding remarks are given in Sect. 5. Technical details are presented in the
Appendix.

2 Generalized linear measurement error models

For i = 1, . . . , n, let yi denote the observed outcome variable, xi be a r × 1 vector
of the unobserved covariate variables, and vi be a p × 1 vector of the observed
covariate variables for the i th individual. Generally, the unobserved components of
covariates may vary across different individuals. For simplicity, we assume that the
unobserved components of covariates have the same components for z1, . . . , zn , where
zi = (x�i , v�

i )
� for i = 1, . . . , n. Given zi , we assume that yi ’s are conditionally

independent of each other, and the conditional distribution of yi is a one-parameter
exponential family with a canonical parameter θi and a mean that is a function of zi .
That is, for i = 1, . . . , n, the conditional probability density function of yi given zi is
given by

p(yi |zi , φ) = exp

{
yiθi − b(θi )

φ
+ c(yi , φ)

}
(2.1)

with μi = E(yi |zi ) = ḃ(θi ) and Vi = var(yi |zi ) = φb̈(θi ), where φ is a scale
parameter, b(·) and c(·, ·) are specific differentiable functions, ḃ(θi ) = ∂b(θi )/∂θi
and b̈(θi ) = ∂2b(θi )/∂θ2i . The conditional mean μi is assumed to satisfy

ηi = h(μi ) = x�i βx + v�
i βv = z�i β, (2.2)

where h(·) is a monotonic differentiable link function, β = (β�
x ,β

�
v)

� is a (r + p)× 1
vector of unknown regression coefficients. Generally, there are two approaches to
specify the ME structure. One is the structural ME model, and the other is the func-
tional ME model. In a structural ME model, the special assumption is made on the
distributional structure of the unobserved covariates, whilst nothing is assumed on the
unobserved covariates in a functional ME model. Following Carroll et al. (2006), if
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the true covariate xi is measured m times for individual i , giving outcomes wi j for
j = 1, . . . ,m, the structural ME model can be expressed as

wi j = xi + ui j , (2.3)

where the MEs ui j ’s are assumed to follow an unknown distribution, and are indepen-
dent of xi .

Following Lee et al. (2008), we use the DPmixturemodel to specify the distribution

of ui j . That is, ui j
i.i.d.∼ ∑∞

g=1 πgNr (αg,�g)with (αg,�g) ∼ P andP ∼ DP(τ P0),
where πg is a random probability weight between 0 and 1 such that 0 ≤ πg ≤ 1 and∑∞

g=1 πg = 1, Nr (αg,�g) denotes the multivariate normal distribution with mean
αg and covariance matrix �g , P is a random probability with an unknown form, P0
is a base distribution that serves as a starting-point for constructing the nonparametric
distribution, and τ is a weight assigning a priori to the base distribution and represents
the certainty of P0 as the distribution ofP . The widely used distribution for P0 is the
multivariate normal distribution. The DP prior with the stick-breaking representation
may yield non-zero mean of MEs (Yang et al. 2010), which is inconsistent with the
classic assumption that mean of ui j is zero (Carroll et al. 2006).

Inspired by Yang et al. (2010), we consider the following truncated and centered
DP (TCDP) mixture model for ui j :

ui j
i.i.d.∼

G∑
g=1

πgNr (αg,�g) with αg = α∗
g −

G∑
l=1

πlα
∗
l and (α∗

g,�g)
i.i.d.∼ P0, (2.4)

where G is the number of the truncated mixture components, πg is taken to be the
following stick-breaking procedure:

π1 = ν1 and πg = νg

g−1∏
l=1

(1 − νl) for g = 2, . . . ,G (2.5)

with νg
i.i.d.∼ Beta(1, τ ) for g = 1, . . . ,G − 1, and νG = 1 so that

∑G
g=1 πg = 1.

Based on the above specified TCDP mixture model, it is quite difficult to sample
observations from posterior distribution of ui j via the MCMC algorithm because of
the complicated posterior distribution involved. To this end, we generate ui j from
Nr (αLi j ,�Li j ) in terms of a latent variable Li j ∈ {1, . . . ,G}, where αLi j = α∗

Li j
−∑G

g=1 πgα
∗
g in which α∗

Li j
is sampled from the following reformulated model. Let

π = {π1, . . . , πG}, α∗ = {α∗
1, . . . ,α

∗
G} and � = {�1, . . . ,�G} in which �g =

diag(ωg1, . . . , ωgr ) for g = 1, . . . ,G. It follows from Lee et al. (2008) that Equation
(2.4) can be rewritten as

Li j |π i.i.d.∼
G∑

g=1

πgδg(·) and (π ,α∗,�) ∼ f1(π) f2(α
∗) f3(�), (2.6)
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where δg(·) is a discrete probability measure concentrated at g, f1(π) is specified by
the stick-breaking prior as given in Eq. (2.5), the prior distribution of α∗

g involved in

f2(α∗) = ∏G
g=1 p(α

∗
g) is given by

α∗
g|ξ ,�

i.i.d.∼ Nr (ξ ,�), ξ |ξ0,�0∼Nr (ξ
0,�0), ψ−1

j |c1, c2∼�(c1, c2) for j = 1, . . . , r,

(2.7)

where � = diag(ψ1, . . . , ψr ), ξ0,�0, c1 and c2 are hyperparameters whose values
are assumed to be known, �(c1, c2) denotes the Gamma distribution with parameters
c1 and c2, and the prior distribution for ωg j involved in f3(�) = ∏G

g=1
∏r

j=1 p(ωg j )

is given by

ω−1
g j |ϕa

j , ϕ
b
j ∼ �(ϕa

j , ϕ
b
j ) and ϕb

j |ϕc
j , ϕ

d
j ∼ �(ϕc

j , ϕ
d
j ), (2.8)

where ϕa
j , ϕ

c
j and ϕd

j are the pre-specified hyperparameters.
To complete specification of the covariate ME model, we require defining a true

covariate model. Following Aitkin and Rocci (2002) and Gustafson (2004), the true
covariate model for xki (k = 1, . . . , r ) can be defined as

xki = γk0 + γ�
kvvi + εki , εki

i.i.d.∼ N (0, σ 2
x ), (2.9)

where γk0 is an intercept, γ kv = (γk1, . . . , γkp)
� is a p × 1 vector of unknown

regression parameters, and εki ’s are residuals and assumed to be independent of the
covariates vi andMEs ui j ’s. The model defined in Eqs. (2.1)–(2.3) together with (2.9)
is referred to as a GLMEM.

The above defined model is not identifiable when there are no replicate measure-
ments, i.e., m = 1. In this case, some identification conditions on parameters are
required (Lee and Tang 2006), for example, we may set σ 2

x and γk0 to be some pre-
specified values.

Let y = {y1, . . . , yn}, x = {x1, . . . , xn}, v = {v1, . . . , vn}, u = {u1, . . . , un}
and w = {w1, . . . ,wn} in which xi = (x1i , . . . , xri )�,ui = {ui1, . . . , uim} and wi =
{wi1, . . . ,wim} for i = 1, . . . , n. Denote θ y = {β, φ}, θu = {τ,π ,α∗,�}, θγ =
{γ10, . . . , γr0, γ 1v, . . . , γ rv, σ

2
x } and θ = {θ y, θu, θγ }. Under the above assumptions,

the joint probability density function for { y,w, u, x} is given by

P( y,w, u, x|v, θ) =
n∏

i=1

{
p(yi |xi , vi ; θ y)p(wi |xi ; θu)p(xi |vi ; θγ )

}
. (2.10)

To make Bayesian inference on parameters in {τ, θ y, θγ }, it is necessary to specify
their corresponding priors. Similar to Lee and Tang (2006), we consider the following
priors for parameters τ , β, φ, γ ∗

k = (γk0, γ
�
kv)

� for k = 1, . . . , r , and σ 2
x :

τ |a1, a2 ∼ �(a1, a2), β|φ,β0, H0
β ∼ Nr+p(β

0, φ−1H0
β),

φ−1|a3, a4 ∼ �(a3, a4), γ ∗
k |γ 0

k, H
0
γ k ∼ Np+1(γ

0
k, H

0
γ k), σ−2

x |c3, c4 ∼ �(c3, c4),
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where a1, a2, a3, a4,β0, H0
β, γ 0

k, H
0
γ k, c3 and c4 are hyperparameters whose values

are assumed to be given by the prior information. Thus, we specify standard conjugate
priors for parameters τ , φ−1, γ ∗

k and σ−2
x . The associated hyperparameters can be

determined in a relatively straightforward manner based on previous applications or
data-dependent inputs (Raftery 1996; Richarson andGreen 1997; Lee and Tang 2006).
Particularly, the values of a1 and a2 should be selected carefully because they directly
affect the value of τ which controls the behavior of ui j . Detailed discussions on
selection of a1 and a2 can refer to Chow et al. (2011). Detailed comments on selection
of c3 and c4 are given in simulation studies and real example analysis.

Based on the above presented joint probability density function and priors, a
Bayesian approach is developed to make statistical inference on parameters in
{τ, θ y, θγ } by utilizing theGibbs sampler together with theMetropolis–Hastings algo-
rithm for our considered GLMEMs.

3 Bayesian inference on GLMEMs

From Eq. (2.10) and the above defined priors, it is easily seen that it is rather dif-
ficult to directly make Bayesian inference on parameters in {τ, θ y, θγ } because of
the intractable high-dimensional integrals involved. Owing to recent development
in statistical computing, the Gibbs sampler is employed to generate a sequence of
random observations from the joint posterior distribution p(ξ ,�, τ,ϕb,π , L,α∗,�,

u,β, φ, γ , σ 2
x , x| y,w, v), andBayesian estimates of unknown parameters and covari-

ates subject toMEs are obtained from the generated sequence of random observations,
where ϕb = {ϕb

1 , . . . , ϕ
b
r }, γ = {γ ∗

1, . . . , γ
∗
r } and L = {Li j : i = 1, . . . , n, j =

1, . . . ,m}. In this algorithm, observations {ξ ,�, τ,ϕb,π , L,α∗,�, u,β, φ, γ , σ 2
x ,

x} are iteratively drawn from the following conditional distributions: p(ξ |α∗,�),
p(�|α∗, ξ), p(τ |π), p(ϕb|�), p(π |L, τ ), p(L|π ,α,�, u), p(α∗|ξ ,�,�, L, u),
p(β| y, x, v, φ), p(�|α,ϕb, L, u), p(φ|β, y, x, v), p(γ |x, v, σ 2

x ), p(σ 2
x |x, v, γ ),

p(x| y, v, u,w,α,β, φ, σ 2
x , γ , L) and p(u|α,�, L, x,w, θu). These conditional dis-

tributions are presented in the Appendix.

3.1 Bayesian estimates

Let {(β(�), φ(�), γ (�), x(�), σ 2
x

(�)
) : � = 1, . . . ,L} be observations of {β, φ, γ , x, σ 2

x }
generated from p(ξ ,�, τ,ϕb,π , L,α∗,�, u,β, φ, γ , σ 2

x , x| y, v,w) via the preced-
ing presented algorithm. Thus, Bayesian estimates of {β, φ, γ , x, σ 2

x } can be obtained
by

β̂ = 1

L

L∑
�=1

β(�), φ̂ = 1

L

L∑
�=1

φ(�), γ̂ = 1

L

L∑
�=1

γ (�), x̂ = 1

L

L∑
�=1

x(�), σ̂ 2
x = 1

L

L∑
�=1

σ 2
x

(�)
.

(3.1)

The consistent estimates of the posterior covariance matrices var(β| y, v,w), var(φ| y,
v,w), var(γ | y, v,w) and var(σ 2

x | y, v,w) can be obtained from the sample covari-
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ance matrices of the above generated observations. For example, v̂ar(β| y, v,w) =
1

L−1�
L
�=1(β

(�) − β̂)(β(�) − β̂)�. The standard errors for components of β can be
obtained from the diagonal elements of the sample covariance matrix.

3.2 Bayesian case influence analysis

In this subsection, we consider Bayesian case-deletion influence analysis based on the
case-deletionmethod given inCook andWeisberg (1982). For notational simplicity, let
R = { y, v,w} be a full data set, and R(i) = {(y j , v j ,w j ) : j = 1, . . . , n, j �= i} be a
subset of R with the i th individual deleted. To assess the effect of the i th individual on
the posterior distribution of parameter vector ϑ = {τ, θ y, θγ }, we use the following
Kullback–Leibler (K–L) divergence

K L(i) =
∫

log

{
p(ϑ |R)

p(ϑ |R(i))

}
p(ϑ |R)dϑ,

as a Bayesian case influence measure, where p(ϑ |R) and p(ϑ |R(i)) are the posterior
distributions of ϑ for the full data set R and the reduced data set R(i), respectively.
Thus, K L(i) measures the distance (discrepancy) between two posterior distributions
p(ϑ |R(i)) and p(ϑ |R), which can be regarded as aBayesian analogue of the likelihood
displacement (Cook and Weisberg 1982).

To measure the effect of the i th individual on the posterior mean of ϑ , we use the
following Cook’s distance

CD(i) = (ϑ̂ − ϑ̂ (i))
�W−1

ϑ (ϑ̂ − ϑ̂ (i))

as another Bayesian case influence measure, where ϑ̂ = ∫
ϑ p(ϑ |R)dϑ and ϑ̂ (i) =∫

ϑ p(ϑ |R(i))dϑ are the posterior means of ϑ for the full data set R and the deleted
data set R(i), respectively, and Wϑ is selected to be the posterior covariance matrix
of ϑ . A large value of CD(i) corresponds to an influential observation with respect
to the posterior mean. Generally, we can use D̄ + d × SM as a benchmark (e.g., see
Lee and Tang 2006), where D̄ and SM are the mean and standard error of {CD(i) :
i = 1, . . . , n}, and d is a selected constant depending on the problem-by-problem.
Specifically, we set d = 3.0 in our conducted simulation studies and d = 5.0 in real
example analysis.

To compute K L(i), we require calculating the marginal posterior distributions
p(ϑ |R) and p(ϑ |R(i)). It is rather difficult to directly compute K L(i) because of the
MEs involved. It is desirable to develop a computationally feasible formula to reduce
computational burden. It is easily shown from independence of individuals that

p(ϑ |R(i)) = {pi (ϑ)}−1 p(ϑ |R)∫ {pi (ϑ)}−1 p(ϑ |R)dϑ
, (3.2)

where pi (ϑ) = p(yi , vi ,wi |ϑ). Substituting Eq. (3.2) into the definition of K L(i)
yields
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K L(i) = log Eϑ |R{pi (ϑ)}−1 + Eϑ |R{log pi (ϑ)},

which indicates that computation of K L(i) can be done using MCMC samples from
the full data posterior distribution p(ϑ |R) via the above developed Gibbs sampler.
Specifically, ifϑ (�) is the �th Gibbs sample afterJ burn-in iterations for � = 1, . . . ,L,
thus we get the MCMC approximation of K L(i) as

K L(i) ≈ log

⎡
⎣ 1

L

L∑
�=1

{pi (ϑ (�))}−1

⎤
⎦ + 1

L

L∑
�=1

log{pi (ϑ (�))}, (3.3)

where pi (ϑ (�)) = p(yi , vi ,wi |ϑ (�)).
On the other hand, to compute CD(i), we need evaluating ϑ̂ , ϑ̂ (i) and Wϑ . It

follows from Eq. (3.2) and the definitions of ϑ̂ , ϑ̂ (i) and Wϑ that ϑ̂ = Eϑ |R(ϑ),
ϑ̂ (i) = Eϑ |R[ϑ{pi (ϑ)}−1]/Eϑ |Y {pi (ϑ)}−1 and Wϑ = varϑ |R(ϑ). Similarly, the
MCMC approximations of ϑ̂ , ϑ̂ (i) and Wϑ are given by

ϑ̂= 1

L
L∑

�=1

ϑ (�), ϑ̂ (i)=
1
L

∑L
�=1 ϑ (�){pi (ϑ (�))}−1

1
L

∑L
�=1{pi (ϑ (�))}−1

, Wϑ = 1

L − 1

L∑
�=1

(ϑ (�) − ϑ̂)(ϑ (�) − ϑ̂)�,

(3.4)

respectively.
Regardless of K L(i) or CD(i), we need computing pi (ϑ (�)). From the definition

of our considered model, we obtain

pi (ϑ) =
∫

p(yi , vi ,wi , ui , xi |ϑ)dui dxi = Eui ,xi {p(yi , vi ,wi |ϑ, xi , ui )}, (3.5)

where Eui ,xi denotes the expectation taken with respect to the joint distribution of ui
and xi (denoted by p(ui , xi |θu)). Monte Carlo approximation of pi (ϑ (�)) in Eq. (3.5)
can be implemented by using the following steps:

• Step 0 Specifying the initial value x(0)
i of xi . Generally, we can take x

(0)
i to be the

mean of wi j ’s.

• Step1 Sampling Gibbs sample u(t)
i from the conditional distribution p(ui |

x(t−1)
i , θ (�)

u ).

• Step2DrawingGibbs sample x(t)
i from the conditional distribution p(xi |u(t)

i , θ (�)
u ).

• Step 3 Repeating Steps 1 and 2 for T times.
• Step 4 Getting the nested Gibbs samples {(u(t)

i , x(t)
i ) : t = 1, . . . , T } from

p(ui , xi |ϑu). Thus, the MCMC approximation of pi (ϑ (�)) is given by

pi (ϑ
(�)) ≈ 1

T

T∑
t=1

p
(
yi , vi ,wi |ϑ (�), x(t)

i , u(t)
i

)
. (3.6)
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Combining Eqs. (3.2)–(3.6) yields the values of K L(i) and CD(i) for all individuals.
Index plots of K L(i) and CD(i) can be used to identify influential cases.

4 Numerical examples

4.1 Simulation studies

To investigate the finite performance of the preceding proposed Bayesian approaches
under various distributional assumptions of the MEs ui j and prior specifications, we
conducted the following simulation studies by generating 100 replicated data sets from
our defined GLMEMs with sample size n = 200 together with m = 5.

In the first simulation study, each of 100 replicated data sets {(yi , vi ,wi , xi ) :
i = 1, . . . , n} was generated from a Poisson distribution with the probability den-
sity p(yi |μi ) = μ

yi
i exp(−μi )/yi ! and ηi = log(μi ) = x�i βx + v�

i βv , where
vi ’s were generated from a multivariate normal distribution with mean zero and
covariance matrix 0.25I3 and components x1i and x2i in xi were generated via Eq.
(2.9). In this case, φ = 1 relating to Eq. (2.1) is a constant. The true values of
βx = (β0, β1)

�, βv = (β2, β3, β4)
�, γ ∗

k = (γk0, γk1, γk2, γk3)
� and σ 2

x were taken
to be βx = (0.4,−0.3)�, βv = (0.4, 0.3, 0.4)�, γ ∗

k = (0.2, 0.2, 0.2, 0.5)� for k = 1
and 2, and σ 2

x = 1, respectively. To test the effectiveness of using the TCDP prior to
approximate distributions of MEs ui j = (ui j1, ui j2)�, we considered the following
eight distributional assumptions for ui jk .

Assumption 1 We assumed the distribution of ui jk to be ui jk
i.i.d.∼ N (0, 1.22) for

k = 1 and 2.

Assumption 2 We assumed the distribution of ui jk to be bimodal: ui jk
i.i.d.∼

0.6N (−0.4, 0.22) + 0.4N (0.6, 0.22) for k = 1 and 2.

Assumption 3 Wetook thedistributionofui jk to be trimodal:ui jk
i.i.d.∼ 0.3N (0.5, 0.1)

+ 0.2N (3, 0.1) + 0.5N (−1.5, 0.1) for k = 1 and 2.

Assumption 4 We set the distribution of ui jk to be multimodal: ui jk
i.i.d∼ 0.3N (0.5,

0.1) + 0.2N (3, 0.1) + 0.1N (−3.5, 0.1) + 0.4N (−1, 0.1) for k = 1 and 2.

The above four assumptions were used to illustrate that even when the assumed
distribution is multimodal, our presented TCDP prior can still capture their character-
istics.

Assumption 5 We took ui jk = u∗
i jk − 1 with u∗

i jk
i.i.d.∼ �(1, 1).

Assumption 6 We specified the distribution of ui jk to be ui jk
i.i.d.∼ 0.5N (−0.5, 0.1)+

0.5�(1, 2).

Assumption 7 We set ui jk = 0.75(u∗
i j1−0.5)+0.25(u∗

i j2−1)with u∗
i j1

i.i.d.∼ �(4, 8)

and u∗
i j2

i.i.d.∼ �(1, 1).
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Assumption 8 We took ui jk = u∗
i jk − 0.5 with u∗

i jk
i.i.d.∼ Beta(4, 4).

The above presented four assumptions were designed to generate the skewed dis-
tribution for ui jk . Based on the generated ui jk’s, we obtained data set {wi jk : i =
1, . . . , n, j = 1, . . . ,m, k = 1, 2} via Eq. (2.3).

The hyperparameter values of the prior distributions for τ and σ 2
x were specified

as follows. To ensure that our presented DP mixture approximations were not biased
with respect to the selection of our hyperparameters, we set ϕa

j = 3, ϕc
j = 150 and

ϕd
j = 20 for j = 1, . . . , r , c1 = 5 and allowed c2 to be generated randomly from a

uniform distributionU (2, 6). For the hyperparameters relating to the prior distribution
of τ , we set a1 = 200 and a2 = 10 to generate large values of τ which lead to more
unique covariate MEs. For the conjugate prior of σ−2

x , we set c3 = 10 and randomly
generated c4 from a uniformdistributionU (9, 10). For the hyperparameters ξ 0 and�0,
we took ξ0 = 0 and �0 = Ir to satisfy the condition of the centered DP procedure.
Also, to investigate sensitivity of Bayesian estimates to prior inputs, we considered
the following three types of priors for β and γ k .

• Type A The hyperparameters corresponding to the priors of β and γ k were taken to
be β0 = (0.4,−0.3, 0.4, 0.3, 0.4)�, H0

β = 0.25I5, γ 0
k = (0.2, 0.2, 0.2, 0.5)� and

H0
kγ = 0.25I4. This can be regarded as a situation with good prior information.

• Type B The hyperparameters corresponding to the priors of β and γ k were
taken to be β0 = 1.5 × (0.4,−0.3, 0.4, 0.3, 0.4)�, H0

β = 0.75I5, γ 0
k =

1.5 × (0.2, 0.2, 0.2, 0.5)� and H0
kγ = 0.75I4. This can be regarded as a situ-

ation with inaccurate prior information.
• Type C The hyperparameters corresponding to the priors of β and γ k were taken
to be β0 = (0, 0, 0, 0, 0)�, H0

β = 10I5, γ 0
k = (0, 0, 0, 0)�and H0

kγ = 10I4. This
can be regarded as a situation with noninformative prior information.

For each of the generated 100 data sets, the preceding proposed MCMC algorithm
with G = 50 was used to evaluate Bayesian estimates of unknown parameters and
covariates subject to MEs for each of three types of priors based on three different
starting values of unknownparameters. The estimated potential scale reduction (EPSR)
values (Gelman et al. 1996) for all unknown parameters were computed. For the first
five test runs, we observed that the EPSR values of all unknown parameters were less
than 1.2 after 10,000 iterations. Hence, L = 5000 observations after 10,000 burn-in
iterations were collected to evaluate Bayesian estimates via Eq. (3.1). Results under
eight assumptions together with three types of prior inputs were presented in Table 1,
where ‘Bias’ was the absolute difference between the true value and the mean of the
estimates based on 100 replications and ‘RMS’ was the root mean square between
the estimates based on 100 replications and its true value. Also, for comparison, we
calculated Bayesian estimates of β for each of the above generated 100 data sets under
eight distributional assumptions of ui jk on the basis of aGLMwithout errormodelling.
The corresponding results were given in Table 2.

Examination of Tables 1 and 2 indicated that (i) Bayesian estimateswere reasonably
accurate regardless of distributional assumptions of ui j and prior inputs of unknown
parameters because their Bias values were less than 0.10 and their RMS values were
less than 0.20; (ii) Bayesian estimates were not sensitive to prior inputs of β and γ k
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Table 1 Performance of parameter estimates in the first simulation study

Par. Type A Type B Type C Type A Type B Type C

Bias RMS Bias RMS Bias RMS Bias RMS Bias RMS Bias RMS

Assumption 1 Assumption 2

γ10 0.003 0.079 0.001 0.085 0.003 0.087 0.002 0.055 0.003 0.071 0.003 0.078

γ11 0.000 0.144 0.004 0.126 0.017 0.167 0.010 0.116 0.003 0.130 0.007 0.141

γ12 0.013 0.154 0.043 0.160 0.021 0.162 0.001 0.122 0.010 0.140 0.001 0.129

γ13 0.025 0.145 0.002 0.159 0.001 0.164 0.012 0.123 0.010 0.147 0.004 0.133

γ20 0.003 0.089 0.011 0.085 0.003 0.081 0.000 0.073 0.009 0.067 0.012 0.080

γ21 0.011 0.142 0.010 0.165 0.018 0.164 0.010 0.133 0.001 0.124 0.007 0.136

γ22 0.015 0.154 0.021 0.175 0.008 0.154 0.002 0.126 0.007 0.159 0.002 0.140

γ23 0.001 0.135 0.015 0.156 0.010 0.170 0.023 0.133 0.015 0.127 0.019 0.143

β0 0.007 0.064 0.006 0.068 0.008 0.066 0.003 0.055 0.007 0.059 0.006 0.065

β1 0.012 0.080 0.011 0.077 0.005 0.081 0.010 0.065 0.000 0.060 0.002 0.063

β2 0.017 0.107 0.087 0.154 0.007 0.147 0.004 0.125 0.096 0.156 0.007 0.133

β3 0.003 0.118 0.023 0.134 0.007 0.142 0.020 0.142 0.004 0.123 0.012 0.132

β4 0.022 0.122 0.021 0.127 0.002 0.137 0.001 0.108 0.017 0.134 0.017 0.138

σ 2
x 0.011 0.077 0.027 0.092 0.015 0.090 0.003 0.071 0.004 0.071 0.007 0.070

Assumption 3 Assumption 4

γ10 0.000 0.070 0.003 0.076 0.001 0.071 0.001 0.064 0.010 0.068 0.020 0.070

γ11 0.009 0.133 0.032 0.150 0.017 0.143 0.015 0.151 0.000 0.148 0.005 0.149

γ12 0.008 0.126 0.006 0.133 0.012 0.157 0.000 0.140 0.000 0.134 0.018 0.153

γ13 0.012 0.147 0.013 0.142 0.009 0.144 0.002 0.125 0.011 0.125 0.003 0.149

γ20 0.004 0.075 0.000 0.078 0.009 0.080 0.009 0.068 0.018 0.077 0.006 0.069

γ21 0.015 0.134 0.004 0.148 0.008 0.156 0.010 0.126 0.020 0.134 0.005 0.132

γ22 0.001 0.124 0.019 0.136 0.001 0.142 0.002 0.150 0.009 0.121 0.016 0.136

γ23 0.014 0.135 0.024 0.146 0.017 0.141 0.009 0.121 0.005 0.152 0.007 0.129

β0 0.005 0.056 0.001 0.054 0.001 0.055 0.008 0.063 0.005 0.063 0.001 0.055

β1 0.015 0.061 0.004 0.074 0.004 0.058 0.003 0.060 0.012 0.060 0.003 0.064

β2 0.017 0.114 0.085 0.154 0.008 0.128 0.002 0.120 0.020 0.131 0.015 0.128

β3 0.009 0.119 0.007 0.117 0.017 0.133 0.004 0.117 0.012 0.132 0.006 0.147

β4 0.009 0.129 0.010 0.140 0.010 0.141 0.018 0.132 0.022 0.133 0.006 0.147

σ 2
x 0.004 0.068 0.008 0.075 0.013 0.067 0.012 0.072 0.011 0.064 0.019 0.069

Assumption 5 Assumption 6

γ10 0.011 0.071 0.006 0.081 0.005 0.074 0.002 0.061 0.007 0.073 0.014 0.075

γ11 0.002 0.137 0.014 0.135 0.002 0.144 0.015 0.130 0.015 0.144 0.019 0.137

γ12 0.014 0.126 0.005 0.157 0.013 0.130 0.016 0.121 0.000 0.136 0.014 0.132

γ13 0.004 0.136 0.003 0.131 0.007 0.138 0.029 0.127 0.014 0.139 0.009 0.127

γ20 0.001 0.069 0.002 0.080 0.008 0.073 0.008 0.061 0.001 0.063 0.010 0.086

γ21 0.018 0.138 0.008 0.158 0.010 0.135 0.002 0.116 0.005 0.141 0.019 0.120

γ22 0.013 0.148 0.009 0.125 0.017 0.134 0.001 0.128 0.010 0.153 0.014 0.152

γ23 0.009 0.148 0.015 0.148 0.003 0.149 0.005 0.126 0.032 0.151 0.026 0.141
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Table 1 continued

Par. Type A Type B Type C Type A Type B Type C

Bias RMS Bias RMS Bias RMS Bias RMS Bias RMS Bias RMS

β0 0.006 0.063 0.000 0.065 0.008 0.065 0.012 0.058 0.008 0.051 0.013 0.058

β1 0.000 0.064 0.000 0.067 0.004 0.064 0.008 0.059 0.003 0.066 0.019 0.068

β2 0.010 0.123 0.113 0.173 0.004 0.120 0.011 0.112 0.082 0.141 0.010 0.137

β3 0.006 0.107 0.013 0.137 0.001 0.135 0.011 0.120 0.001 0.119 0.002 0.109

β4 0.003 0.115 0.017 0.148 0.018 0.157 0.003 0.128 0.013 0.142 0.020 0.122

σ 2
x 0.019 0.067 0.015 0.074 0.007 0.077 0.014 0.067 0.005 0.066 0.010 0.057

Assumption 7 Assumption 8

γ10 0.000 0.062 0.009 0.082 0.015 0.067 0.000 0.074 0.014 0.065 0.012 0.069

γ11 0.008 0.134 0.021 0.120 0.007 0.142 0.014 0.133 0.000 0.156 0.040 0.154

γ12 0.006 0.112 0.005 0.114 0.002 0.113 0.007 0.110 0.006 0.102 0.026 0.126

γ13 0.008 0.119 0.019 0.126 0.030 0.140 0.004 0.121 0.009 0.102 0.007 0.127

γ20 0.001 0.081 0.002 0.072 0.012 0.067 0.007 0.066 0.002 0.064 0.005 0.074

γ21 0.000 0.134 0.014 0.122 0.001 0.133 0.022 0.113 0.044 0.128 0.007 0.137

γ22 0.000 0.107 0.027 0.129 0.007 0.127 0.008 0.124 0.007 0.109 0.011 0.128

γ23 0.002 0.144 0.034 0.159 0.011 0.135 0.016 0.135 0.036 0.144 0.016 0.136

β0 0.000 0.056 0.002 0.049 0.012 0.060 0.008 0.057 0.001 0.060 0.001 0.054

β1 0.013 0.067 0.008 0.066 0.010 0.062 0.002 0.068 0.006 0.060 0.000 0.083

β2 0.011 0.128 0.122 0.158 0.022 0.118 0.011 0.111 0.079 0.143 0.024 0.125

β3 0.011 0.109 0.024 0.114 0.016 0.115 0.000 0.117 0.018 0.111 0.036 0.115

β4 0.000 0.112 0.003 0.135 0.015 0.124 0.004 0.112 0.021 0.113 0.011 0.114

σ 2
x 0.002 0.075 0.008 0.069 0.008 0.066 0.000 0.062 0.018 0.061 0.001 0.066

under our considered three prior inputs; (iii) Bayesian estimates obtained from the
type A prior input behaved better than those obtained from the type B and type C
prior inputs in terms of Bias and RMS, but their differences were minor; (iv) Bayesian
estimates obtained from the type A and type B prior inputs were slightly better than
those obtained from the type C prior input, but their differences were negligible; (iv)
our proposed semiparametric Bayesianmethod produced smaller bias andRMSvalues
than a Bayesian approach to a GLM without error modelling.

To investigate the accuracy of using TCDP prior to approximate distribution of ui jk ,
we calculated means and standard deviations of ûi jk’s across individuals and plotted
the true densities of ui jk’s against their corresponding approximated densities for a
randomly selected replication. Table 3 presented the estimated means and standard
deviations of ui jk’s for our considered eight assumptions. To save space, we only
plotted densities of ui jk and ûi jk for Assumption 4 in Fig. 1. Examination of Table 3
and Fig. 1 implied that (i) the TCDP prior approximations to distributions of ui jk’s
were flexible enough to recover the shapes of ui jk’s distributions for our considered
eight distributional assumptions of ui jk ; (ii) the mean and standard deviation of the
true distribution of ui jk can be estimated well by our proposed method.

123



Semiparametric Bayesian inference on generalized linear... 1103

Table 2 Performance of parameter estimates for a GLM without error modelling in the first simulation
study

Par. Type A Type B Type C Type A Type B Type C

Bias RMS Bias RMS Bias RMS Bias RMS Bias RMS Bias RMS

Assumption 1 Assumption 2

β0 0.009 0.108 0.016 0.118 0.007 0.115 0.022 0.222 0.044 0.224 0.099 0.220

β1 0.014 0.128 0.010 0.135 0.016 0.136 0.009 0.232 0.075 0.240 0.018 0.245

β2 0.005 0.113 0.005 0.118 0.005 0.120 0.018 0.133 0.013 0.138 0.021 0.144

β3 0.012 0.112 0.017 0.119 0.014 0.121 0.008 0.125 0.011 0.130 0.007 0.135

β4 0.020 0.112 0.021 0.116 0.024 0.120 0.001 0.132 0.005 0.137 0.001 0.141

Assumption 3 Assumption 4

β0 0.013 0.200 0.066 0.283 0.015 0.348 0.018 0.156 0.005 0.224 0.052 0.285

β1 0.003 0.251 0.048 0.342 0.001 0.416 0.017 0.178 0.014 0.244 0.047 0.308

β2 0.003 0.134 0.008 0.140 0.002 0.144 0.004 0.128 0.003 0.133 0.008 0.138

β3 0.011 0.117 0.014 0.121 0.009 0.124 0.001 0.142 0.006 0.147 0.001 0.152

β4 0.005 0.115 0.002 0.121 0.008 0.125 0.012 0.144 0.003 0.151 0.011 0.155

Assumption 5 Assumption 6

β0 0.029 0.132 0.025 0.139 0.032 0.144 0.019 0.225 0.001 0.283 0.041 0.327

β1 0.008 0.148 0.013 0.158 0.008 0.163 0.004 0.234 0.028 0.297 0.001 0.341

β2 0.007 0.120 0.010 0.126 0.006 0.129 0.004 0.112 0.007 0.118 0.003 0.120

β3 0.003 0.119 0.007 0.125 0.002 0.128 0.001 0.127 0.001 0.133 0.001 0.137

β4 0.011 0.142 0.015 0.148 0.010 0.153 0.018 0.126 0.015 0.129 0.022 0.136

Assumption 7 Assumption 8

β0 0.013 0.125 0.019 0.133 0.011 0.138 0.014 0.211 0.075 0.238 0.096 0.260

β1 0.047 0.165 0.058 0.182 0.051 0.188 0.023 0.209 0.128 0.242 0.069 0.242

β2 0.020 0.133 0.015 0.139 0.022 0.143 0.006 0.145 0.001 0.152 0.008 0.155

β3 0.006 0.114 0.010 0.120 0.006 0.122 0.001 0.116 0.003 0.122 0.002 0.126

β4 0.012 0.125 0.015 0.132 0.011 0.134 0.021 0.128 0.025 0.135 0.019 0.138

To illustrate our proposedBayesian case-deletion influencemeasures,we conducted
the second simulation study. In this simulation study, the data set {(yi , vi ,wi , xi ) : i =
1, . . . , 200} was generated by using the same setup as specified in the first simulation
study, but outliers were created by changing yi as yi + 30 for i = 1, 100 and 150. We
calculated the corresponding values of diagnostics K L(i) and CD(i) for the above
generated data set including outliers. Results were presented in Fig. 2. Examination of
Fig. 2 indicated that cases 1, 100 and 150 were detected to be influential as expected.

4.2 An example

To illustrate our proposed methods, we considered a data set from Framingham heart
study, which has been analyzed by Carroll et al. (2006, Section 9.10) and Muff et al.
(2015) via a logistic ME model with the normality assumption of covariate ME. The
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Table 3 Means and standard deviations (SD) of ui jk and ûi jk in the simulation studies

Assump. Mean SD Type A Type B Type C

EMean ESD EMean ESD EMean ESD

ui j1 ûi j1

1 0.0 1.200 0.002 1.110 0.002 1.108 0.002 1.113

2 0.0 0.583 0.000 0.522 0.001 0.522 0.000 0.521

3 0.0 1.761 −0.001 1.756 −0.001 1.756 0.000 1.758

4 0.0 1.962 0.007 1.899 0.009 1.896 0.010 1.896

5 0.0 1.000 −0.001 0.970 0.000 0.970 −0.001 0.958

6 0.0 0.612 −0.008 0.636 −0.007 0.642 −0.007 0.636

7 0.0 0.882 0.001 0.844 0.001 0.845 0.002 0.846

8 0.0 0.167 0.000 0.150 0.000 0.150 0.000 0.150

ui j2 ûi j2

1 0.0 1.200 0.000 1.108 −0.001 1.112 −0.002 1.106

2 0.0 0.583 0.000 0.524 0.001 0.521 0.000 0.522

3 0.0 1.761 −0.001 1.756 −0.001 1.757 0.000 1.756

4 0.0 1.962 0.007 1.897 0.009 1.897 0.009 1.899

5 0.0 1.000 −0.001 0.972 −0.001 0.975 −0.001 0.975

6 0.0 0.612 −0.007 0.638 −0.007 0.639 −0.008 0.636

7 0.0 0.882 0.001 0.839 0.000 0.824 0.001 0.833

8 0.0 0.167 0.000 0.149 0.000 0.150 0.000 0.149

Mean and SD denote empirical mean and standard deviation of the generated random samples, respectively;
EMean and ESD represent mean and standard deviation of the sampled posterior samples, respectively

data set consisted of a series of exams taken over two years. Here, we only analyzed
the data set from exam 3 with n = 1615 men aged between 31 and 65. We took
yi to be the indicator for coronary heart disease, which was assumed to follow a
Bernoulli distribution, vi to be the indicator for smoking and xi to be the transformed
(unobserved) long-term blood pressure (i.e., xi = log(SBPi − 50)), where SBP was
an abbreviation of the systolic blood pressure. Since it is impossible to measure the
long-term SBP, measurements at single clinical visits had to be used as a proxy (Muff
et al. 2015). Also, due to daily variations or deviations in the measurement instrument,
the single-visit measures might considerably differ from the long-term blood pressure
(Carroll et al. 2006). Hence, to estimate the magnitude of the error, SBP had been
measured twice at different examinations. The two proxymeasures for xi were denoted
as wi1 and wi2, respectively. Following Muff et al. (2015), we fitted the data set via
the following logistic ME model (LOGMEM):

logit{Pr(yi = 1|xi , vi )} = β0 + xiβx + viβv, wi j = xi + ui j , xi = γ0 + γvvi + εi

for i = 1, . . . , n and j = 1, 2, where εi
i.i.d.∼ N (0, σ 2

x ).
To make Bayesian analysis for the above considered LOGMEM, we assumed the

following prior distributions for γ = (γ0, γv)
� and β = (β0, βx , βv)

�: p(γ ) ∼
N2(γ

0, 0.25I2) and p(β) ∼ N3(β
0, 0.25I3), where the hyperparameters γ 0 and
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Table 4 Bayesian estimates (Est) and standard errors (SE) of parameters in the real example

Parameter Full data set Reduced data set Without ME

Est SE Est SE Est SE

β0 4.409 0.018 4.394 0.018 −2.877 0.478

βx −0.047 0.021 −0.034 0.020 0.038 0.115

βv 8.032 0.460 3.039 0.453 0.342 0.211

γ0 −1.305 0.324 −0.174 0.115 – –

γv −0.289 0.201 −0.151 0.193 – –

σ 2
x 0.118 0.004 0.112 0.004 – –

β0 were taken to be their corresponding Bayesian estimates obtained from the non-
informative priors on γ and β (e.g., p(γ ) ∼ N2(0, 20I2) and p(β) ∼ N3(0, 20I3)).
For the hyperparameters a1 and a2, we took a1 = 250 and set a2 to be a value generated
randomly from a uniform distribution U (25, 30) to yield large values of τ leading to
more unique covariate MEs. For the hyperparameters c3 and c4, we randomly gener-
ated c3 from a uniform distributionU (1, 10) and randomly sampled c4 from a uniform
distributionU (1, 100) to yield relatively diffuse values of σ 2

x . For the hyperparameters
ξ0 and �0, we took ξ0 = 0 and �0 = I2 to satisfy the condition of the centered DP
procedure. Similar to simulation studies, we set ϕa

j = 3, ϕc
j = 100 and ϕd

j = 20
for j = 1, . . . , r , c1 = 5 and allowed c2 to be generated randomly from a uniform
distribution U (2, 6). The preceding presented MCMC algorithm with G = 250 was
used to obtain Bayesian estimates of parameters and MEs ui j ’s. Similarly, the EPSR
values of all unknown parameters were computed by using three parallel sequences
of observations generated from three different starting values of unknown parame-
ters. Their EPSR values were less than 1.2 after about 20,000 iterations. We collected
10,000 observations after 20,000 burn-in iterations to evaluate Bayesian estimates
of parameters. Results were given in Table 4. Examination of Table 4 showed that
the SBP has a positive effect on the coronary heart disease, whilst smoking has a
slightly negative effect on the coronary heart disease and the SBP. Also, for compar-
ison, we evaluated Bayesian estimates of parameters in the following logistic model:
logit{Pr(yi = 1|xi , vi )} = β0+xiβx+viβv for i = 1, . . . , n under the above specified
prior of β = (β0, βx , βv)

�, where xi = (wi1+wi2)/2. The corresponding results were
presented in Table 4, which showed that our considered logistic ME model leaded to
a smaller estimate and a smaller SE of parameter βx than the logistic model without
ME.

To illustrate our proposed case deletion influencemeasures, we computed the values
of diagnostics K L(i) andCD(i), whichwere presented in Fig. 3. Examination of Fig. 3
indicated that cases 10, 59, 207, 208, 222, 362, 367, 386, 391, 456, 501, 530, 533, 709,
976, 1093, 1096, 1162, 1187, 1336, 1430 and 1502 were detected to be influential by
diagnostics K L(i) andCD(i). To investigate the effect of these influential observations
on Bayesian estimates of unknown parameters, we also calculated Bayesian estimates
of unknown parameters for our considered data set with these influential cases deleted.
The corresponding results were given in Table 4. Examination of Table 4 indicated that

123



1108 N.-S. Tang et al.

these influential individuals have a relatively large influence on Bayesian estimates of
βx and βv .

5 Discussion

We discussed Bayesian estimates of unknown parameters and Bayesian case-deletion
diagnostics for generalized linearmixedmodels with covariates subject toMEs. Under
the unknown distribution assumptions of random MEs, we used the TCDP mixture
model to approximate the distribution of random ME. We also obtained Bayesian
estimates of unknown parameters and random MEs and their standard errors, and
presented two Bayesian case-deletion influence diagnostics to detect influential obser-
vations. Simulation studies and a real example were used to illustrate our proposed
methodologies. The empirical results showed that (i) the TCDPmixturemodel approx-
imation can well capture characteristics of the distribution for random ME; and (ii)
our proposed methods can be used to effectively detect influential observations.

This paper considered the balanced repeated measurement for the covariate subject
to ME so that we can use the TCDP mixture model to approximate the distribution of
random ME. When an unbalanced repeated measurement for the covariate subject to
ME is considered, other methods may be employed to address the issue, which is our
further work.
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Appendix: Conditional distributions

To obtain Bayesian estimates of unknown parameters and covariates subject to MEs
in our considered GLMEMs, the Gibbs sampler is adopted to draw a sequence of ran-
dom observations from the joint posterior distribution p(ξ ,�,ϕb,π ,α∗,�, L, τ,β,

φ, γ , σ 2
x , u, x| y,w, v). The Gibbs sampler is implemented by iteratively drawing

observations from the following conditional distributions: p(ξ |α∗,�), p(�|α∗, ξ),
p(τ |π), p(ϕb|�), p(π |L, τ ), p(L|π ,α,�, u), p(α∗|ξ ,�,�, L, u), p(β| y, x, v, φ),
p(�|α,ϕb, L, u), p(φ|β, y, x, v), p(γ |x, v, σ 2

x ), p(σ 2
x |x, v,γ ), p(x| y, v, u,w,α,β,

φ, σ 2
x , γ , L) and p(u|α,�, L, x,w, θu). The conditional distributions required in

implementing the above Gibbs sampler are summarized as follows.
Steps (a)–(h) Conditional distributions related to the nonparametric components
To sample ui j in terms of the latent variable Li j for i = 1, . . . , n and j = 1, . . . ,m,

wefirst generateα∗ = (α∗
1, . . . ,α

∗
G) and� = (�1, . . . ,�G) from their corresponding
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posterior distributions and then draw ui j from the multivariate normal distribution
Nr (αLi j ,�Li j ) with αLi j = α∗

Li j
− ∑G

g=1 πgα
∗
g . Since it is rather difficult to directly

sample observations from the posterior distribution of (ξ ,�,ϕb,π ,α∗,�, L, τ, u),
the blocked Gibbs sampler is employed to solve the above difficulties. The conditional
distributions relating to implement Gibbs sampling of the nonparametric components
are given as follows.

Step (a) The conditional distribution for ξ is p(ξ |α∗,�) ∼ Nr (αξ ,�ξ ), where

�ξ = (G�−1 + �0−1
)−1 and αξ = �ξ (�

0−1
ξ0 + �−1 ∑G

g=1 α∗
g).

Step (b) For j = 1, . . . , r , the j th diagonal element of � given (α∗, ξ ) is distrib-
uted as p(ψ−1

j |α∗, ξ) ∼ �(c1 +G/2, c2 + 1
2

∑G
g=1(α

∗
g j − ξ j )

2), where α∗
g j is the

j th element of α∗
g and ξ j is the j th element of ξ .

Step (c) Following the same argument of Chow et al. (2011), the conditional
distribution p(τ |π) is given by p(τ |π) ∼ � (a1+G−1, a2−∑G

g=1 log(1−ν∗
g)),

where ν∗
g is a random weight sampled from the beta distribution and is sampled in

step (e).
Step (d) For j = 1, . . . , r , the conditional distribution ofϕb

j is given by p(ϕb
j |�) ∼

� (ϕc
j , ϕ

d
j + ∑G

g=1 ω−1
g j ), where ω−1

g j is the j th diagonal element of �g .
Step (e) It can be shown that the conditional distribution p(π |L, τ ) follows a
generalized Dirichlet distribution, i.e., p(π |L, τ ) ∼ ℘(a∗

1 , b
∗
1, · · · , a∗

G−1, b
∗
G−1),

where a∗
g = 1+dg , b∗

g = τ +∑G
j=g+1 d j for g = 1, . . . ,G−1, and dg is the num-

ber of Li j ’s (and thus individuals) whose value equals g. Sampling observations
from the conditional distribution p(π |L, τ ) can be conducted by (1) sampling
ν∗
l from a Beta (a∗

l , b
∗
l ) distribution, (2) sampling π1, . . . , πG with the follow-

ing expressions: π1 = ν∗
1 , πg = ν∗

g
∏g−1

j=1(1 − ν∗
j ) for g = 2, . . . ,G − 1 and

πG = 1 − ∑G−1
l=1 πl .

Step (f) We consider the conditional distribution p(α∗|ξ ,�,�, L, u). Let
L∗
1, . . . , L

∗
d be the d unique values of {L11, . . . , L1r , . . . , Ln1, ...Lnr } (i.e., unique

number of “clusters”). For g = 1, . . . ,G, α∗
g is drawn from the following

conditional distribution: p(α∗
g|ξ ,�) ∼ Nr (ξ ,�) for g /∈ {L∗

1, . . . , L
∗
d}, and

p(α∗
g|ξ ,�,�, L, u) ∼ Nr (Ag, Bg) with Bg = (�−1 + ∑

{(i, j):Li j=g} �−1
Li j

)−1

and Ag = Bg(�
−1ξ + ∑

{(i, j):Li j=g} �−1
Li j

ui j ) for l ∈ {L∗
1, . . . , L

∗
d}. Given

α∗, αg = α∗
g − ∑G

j=1 π jα
∗
j for g = 1, . . . ,G, α∗ = {α∗

1, . . . ,α
∗
G} and

α = {α1, . . . ,αG}.
Step (g)The conditional distribution of� is similar to the step (f). For j = 1, . . . , r ,
the j th diagonal element of �g (g = 1, . . . ,G) is generated from the following
conditional distribution: p(ω−1

g j |α,ϕb, L, u) ∼ �(ϕc
j , ϕ

b
j ) for g /∈ {L∗

1, . . . , L
∗
d},

and p(ω−1
g j |α,ϕb, L, u) ∼ �(ϕc

j + dg/2, ϕb
j + 1

2

∑
{(i,�):Li�=g}(ui�j − αg j )

2) for
g ∈ {L∗

1, . . . , L
∗
d}, where ui�j is the j th element of ui�, αg j is the j th element

of αg and dg is the number of Li�’s whose value equals g for i = 1, . . . , n and
� = 1, . . . ,m.
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Step (h) The conditional distribution of Li j can be shown to be p(Li j |π ,

α,�, u)
i.i.d.∼ Multinomial(π∗

i j1, . . . , π
∗
i jG), whereπ∗

i jg is proportional toπg p(ui j |
αg,�g) and p(ui j |αg,�g) ∼ Nr (αg , �g) for g = 1, . . . ,G.
Step (i) Consider the conditional distribution of ui j . It is easily shown that
the conditional distribution p(ui j |α,�, Li j , θu,w, xi ) ∝ p(ui j |αLi j ,�Li j )

p(wi j |ui j , xi , θu) is a non-standard distribution. Thus, we cannot directly sample
ui j from its conditional distribution. Here, the Metropolis–Hastings algorithm
is employed to sample observation ui j from its conditional distribution via

the following steps. At the t th iteration with a current value u(t)
i , a new can-

didate ui j is generated from the normal distribution Nm(u(t)
i j , σ 2

uDui j ), where

Dui j = (�−1
Li j

+ Ci j )
−1 with Ci j = −∂2 log p(wi j |ui j , xi , θu)/∂ui j∂uTi j |ui j=u(t)

i j
.

Then, the new candidate ui j is accepted with probability

min

{
1,

p(ui j |αLi j ,�Li j )p(wi j |ui j , xi , θu)
p(u(m)

i j |αLi j ,�Li j )p(wi j |u(m)
i j , xi , θu)

}
.

The variance σ 2
u can be chosen such that the average acceptance rate is approxi-

mately 0.25 or more.
Step (j) The conditional distribution p(φ−1| y, x, v,β) is proportional to

φ−(a3+p+r−1) exp

{
− 1

φ

(
a4+ 1

2

(
β−β0)T (

H0
β

)−1(
β−β0)−

n∑
i=1

(yi θi − b(θi ))

)
+

n∑
i=1

c(yi , φ)

}
,

which is generally a non-standard or familiar distribution. In this case, the
Metropolized independence sampler algorithm (Liu 2001) can be employed to
sample observations from the posterior p(φ| y, x, v,β). At the t th iteration with a
current value φ(t), a new candidate φ is drawn from h(φ) ∼ N (φ(t), σ 2

φ )I (0,∞)

and is accepted with probability

min

{
1,

p(φ| y, x, v,β)h(φ(t))

p(φ(t)| y, x, v,β)h(φ)

}
.

The variance σ 2
φ can be chosen such that the average acceptance rate is

approximately 0.25 or more. Particularly, if c(yi , φ) = c(yi )/φ, we have
p(φ−1| y, x, v,β) ∼ �(r + p + a3, a4 + 0.5(β − β0)�(H0

β)−1(β − β0) −∑n
i=1(yiθi − b(θi ) + c(yi ))). Also, if c(yi , φ) = ζc(yi ), we obtain

p(φ−1| y, x, v,β) ∼ �(r + p + a3, a4 + 0.5(β − β0)�(H0
β)−1(β − β0) −∑n

i=1(yiθi − b(θi ))), where ζ is a constant that does not depend on φ and yi .
Step (k) The conditional distribution p(β| y, x, v, φ) can be expressed as

p(β| y, x, v, φ) ∝ exp

{
1

φ

n∑
i=1

(yiθi − b(θi )) − 1

2φ
(β − β0)

�(H0
β)−1(β − β0)

}
.
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Similarly, the Metropolis–Hastings algorithm for simulating observations from
the conditional distribution p(β| y, x, v, φ) is implemented as follows. Given the
current value β(t), a new candidate β is generated from Np+r (β

(t), σ 2
β�β) and

is accepted with probability min{1, p(β| y, x, v, φ)/p(β(t)| y, x, v, φ)}, where
�β = φ−1

(
1
2

∑n
i=1 ViC

�
i C i + (H0

β)−1
)−1

with C i = (xi , v�
i ) and Vi =

ḣ−2(μi )b̈−1(θi ) in which ḣ(a) = dh(a)/da and b̈(a) = d2b(a)/da2.
Step (l) The conditional distribution p(γ ∗

k |x, v, σ 2
x ) is given by p(γ ∗

k |x, v, σ 2
x ) ∼

N (μ∗
γ k , �∗

γ k), where �∗
γ k = (

∑n
i=1 v∗

i v
∗
i
�/σ 2

x + (H0
γ k)

−1)−1 and μ∗
γ k =

�∗
γ k(

∑n
i=1 v∗

i xki/σ
2
x + (H0

γ k)
−1γ 0

k) with v∗
i = (1, v�

i )
�.

Step (m) It is easily shown that the conditional distribution p(σ 2
x |x, v, γ ) is given

by p(σ−2
x |x, v, γ ) ∼ �(c3 + nr

2 , c4 + 1
2

∑n
i=1

∑r
k=1(xki − γk0 − γ�

kvvi )
2).

Step (n)The conditional distribution p(xi |yi , vi , γ ,wi ,α,�,β, σ 2
x , φ, Li ) is pro-

portional to

exp

⎧⎨
⎩

yi θi − b(θi )

φ
−

r∑
k=1

(xki − γk0 − γ�
kvvi )

2

2σ 2
x

− 1

2

m∑
j=1

(wi j − xi − αLi j )
��−1

Li j
(wi j − xi − αLi j )

⎫⎬
⎭ ,

where Li = {Li j : j = 1, . . . ,m}.
The Metropolis–Hastings algorithm for sampling observations from
p(xi |yi , vi , γ ,wi ,α,�, β, σ 2

x , φ, Li ) is implemented as follows. Given the cur-

rent value x(t)
i , a new candidate xi is generated from Nr (x

(t)
i , σ 2

a H xi ) and is
accepted with probability

min

{
1,

p(xi |yi , vi , γ ,wi ,α,�,β, σ 2
x , φ, Li )

p(x(t)
i |yi , vi , γ ,wi ,α,�,β, σ 2

x , φ, Li )

}
,

where H xi = (Viβxβ
�
x/φ + ∑m

j=1 �−1
Li j

+ σ−2
x Ir )−1 with Vi = ḣ−2(μi )

b̈−1(θi )|xi=xi (t) . The variance σ 2
a can be chosen such that the average acceptance

rate is approximately 0.25 or more.

References

Aitkin M, Rocci R (2002) A general maximum likelihood analysis of measurement error in generalized
linear models. Stat Comput 12:163–174

Battauz M (2011) Laplace approximation in measurement error models. Biom J 53:411–425
Battauz M, Bellio R (2011) Structural modeling of measurement error in generalized linear models with

rasch measures as covariates. Psychometrika 76:40–56
Buzas JS, Stefanski LA (1996) Instrumental variable estimation in generalized linear measurement error

models. J Am Stat Assoc 91:999–1006
Cancho VG, Lachos VH, Ortega EMM (2010) A nonlinear regression model with skew-normal errors. Stat

Pap 51:547–558
Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models: a

modern perspective, 2nd edn. Chapman and Hall/CRC, Boca Raton

123



Semiparametric Bayesian inference on generalized linear... 1113

Carlin BP, Polson NG (1991) An expected utility approach to influence diagnostics. J Am Stat Assoc
86:1013–1021

Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, New York
Chow SM, Tang NS, Yuan Y, Song XY, Zhu HT (2011) Bayesian estimation of semiparametric nonlinear

dynamic factor analysis models using the Dirichlet process prior. Br J Math Stat Psychol 64:69–106
Dunson DB (2006) Bayesian dynamic modeling of latent trait distributions. Biostatistics 7:551–568
Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230
Fong Y, Rue H, Wakefield J (2010) Bayesian influence for generalized linear mixed models. Biostatistics

11:397–412
Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized discrep-

ancies. Stat Sin 6:733–807
GemanS,GemanD (1984) Stochastic relaxation,Gibbs distribution, and theBayesian restoration of images.

IEEE Trans Pattern Anal Mach Intell 6:721–741
Guha S (2008) Posterior simulation in the generalized linear mixed model with semiparametric random

effects. J Comput Graph Stat 17:410–425
Gustafson P (2004) Measurement error and misclassification in statistics and epidemiology: impacts and

Bayesian adjustments. Chapman and Hall/CRC, Boca Raton
Jackson D, White IR, Carpenter J (2012) Identifying influential observations in Bayesian models by using

Markov chain Monte Carlo. Stat Med 31:1238–1248
KleinmanKP, Ibrahim JG (1998)A semi-parametric Bayesian approach to generalized linearmixedmodels.

Stat Med 17:2579–2596
Lachos VH, Angolini T, Abanto-Valle CA (2011) On estimation and local influence analysis for measure-

ment errors models under heavy-tailed distributions. Stat Pap 52:567–590
LachosVH,CanchoVG,AokiR (2010)Bayesian analysis of skew-t multivariate null interceptmeasurement

error model. Stat Pap 51:531–545
Lee SY, Lu B, Song XY (2008) Semiparametric Bayesian analysis of structural equation models with fixed

covariates. Stat Med 15:2341–2360
Lee SY, Tang NS (2006) Bayesian analysis of nonlinear structural equation models with nonignorable

missing data. Psychometrika 71:541–564
Liu JS (2001) Monte Carlo strategies in scientific computing. Springer, New York
Muff S, Riebler A, Held L, Rue H, Saner P (2015) Bayesian analysis of measurement error models using

integrated nested laplace approximations. J R Stat Soc Ser C 64:231–252
Raftery AE (1996) Approximate Bayes factors and accounting for model uncertainty in generalised linear

models. Biometrika 83:2510–266
Richarson S, Green DJ (1997) On Bayesian analysis of mixture with unknown numbers of components

(with discussion). J R Stat Soc Ser B 59:731–792
Singh S, Jain K, Sharma S (2014) Replicated measurement error model under exact linear restrictions. Stat

Pap 55:253–274
Stefanski LA, Carroll RJ (1985) Covariatemeasurement error in logistic regression. Ann Stat 13:1335–1351
Stefanski LA, Carroll RJ (1987) Conditional scores and optimal scores for generalized linear measurement-

error models. Biometrika 74:703–716
Tang NS, Duan XD (2012) A semiparametric Bayesian approach to generalized partial linear mixed models

for longitudinal data. Comput Stat Data Anal 77:4348–4365
Tang NS, Tang AM, Pan DD (2014) Semiparametric Bayesian joint models of multivariate longitudinal and

survival data. Comput Stat Data Anal 77:113–129
Yang M, Dunson DB, Baird D (2010) Semiparametric Bayes hierarchical models with mean and variance

constraints. Comput Stat Data Anal 54:2172–2186

123


	Semiparametric Bayesian inference on generalized linear measurement error models
	Abstract
	1 Introduction
	2 Generalized linear measurement error models
	3 Bayesian inference on GLMEMs
	3.1 Bayesian estimates
	3.2 Bayesian case influence analysis

	4 Numerical examples
	4.1 Simulation studies
	4.2 An example

	5 Discussion
	Acknowledgements
	Appendix: Conditional distributions
	References




