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Abstract In this paper, D-optimal chemical balance weighing designs with three
objects are considered. The error terms are assumed to form a first-order autoregressive
process, which implies that the covariancematrix of the vector of errors depends on the
known parameter ρ. It is shown that the designs constructed by Katulska and Smaga
(Metrika 76:393–407, 2013) are still D-optimal weighing designs with three objects
under a wider interval of possible values for parameter ρ than that considered in that
paper. Those designs are also proved to be highly D-efficient designs, when D-optimal
design is not known.

Keywords Autoregressive observations · Chemical balance weighing design ·
D-efficiency · D-optimality
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1 Introduction

We will denote by Mn×p(±1) the set of all n × p matrices whose elements are all
equal to −1 or 1. Let us introduce a model of chemical balance weighing design with
three objects. We use n measuring operations from a chemical balance to estimate
the true unknown weights w1, w2, w3 of three objects. Assume that y1, . . . , yn are
the observations in those n operations respectively. Let observations follow the linear
model y = Xw + e, where y = [y1, . . . , yn]′ is an n × 1 vector of observations,
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722 Ł. Smaga

X = (xi j ) ∈ Mn×3(±1) is so-called design matrix, w = [w1, w2, w3]′ is the vector
of true unknown weights of objects, and e = [e1, . . . , en]′ is the vector of error
components which form a first order autoregressive process. Therefore E(e) = 0n is
the n × 1 null vector, and Cov(e) = 1/(1 − ρ2)S, where

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 · · · ρn−2 ρn−1

ρ 1 ρ · · · ρn−3 ρn−2

ρ2 ρ 1 · · · ρn−4 ρn−3

...
...

...
. . .

...
...

ρn−2 ρn−3 ρn−4 · · · 1 ρ

ρn−1 ρn−2 ρn−3 · · · ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

and −1 < ρ < 1. The matrix S is positive definite for ρ ∈ (−1, 1). In a chemical
balance weighing design, if the j th object is placed on the left (right) pan during
the i th weighing operation, then xi j = −1 (xi j = 1). If the matrix X is of full
column rank, then the generalized least-squares estimator of the vector w is equal to
ŵ = (

X′S−1X
)−1 X′S−1y, and its covariance matrix equals 1/(1− ρ2)

(
X′S−1X

)−1
.

The matrix X′S−1X is the information matrix of the design X. In this paper, we only
consider nonsingular designs, i.e. the designs with nonsingular information matrix.

An example of experiment (chemical process) described by the aforementioned
model can be found in Jenkins andChanmugam (1962). There are also papers in the lit-
erature relating to designs with other forms of Cov(e) (see, for example, Ceranka et al.
2006; Graczyk 2009; Masaro and Wong 2008) and spring balance weighing designs
with (0, 1)-design matrices (see, for instance, Graczyk 2012; Lopez and Neubauer
2010). The applications of weighing designs (in chemistry, medicine, economics,
operations research etc.) are given in the following papers: Angelis et al. (2001);
Banerjee (1975); Beckman (1973); Cheng (2014) and Graczyk (2013).

Our purpose is to find the best design with respect to D-optimality criterion.
The design X̂ is D-optimal in the class of designs with three objects Mn×3(±1)
if det(X̂′S−1X̂) = max

{
det(X′S−1X) : X ∈ Mn×3(±1)

}
, i.e. it maximizes the deter-

minant of the information matrix among all designs with three objects. The inverse
of S is equal to 1/(1 − ρ2)A, where ρ ∈ (−1, 1) and A = In + ρ2K1 − ρK2, In
is the identity matrix of size n, K1 = diag(0, 1′

n−2, 0) and K2 is a tridiagonal n × n
matrix with 0 on the diagonal, 1 on the first superdiagonal and on the first subdiago-
nal. Since S−1 = 1/(1 − ρ2)A, the design X̂ is D-optimal in the class Mn×3(±1) if
det(X̂′AX̂) = max

{
det(X′AX) : X ∈ Mn×3(±1)

}
.

When ρ = 0, a lot of work has been done on developing optimal weighing design
theory (see, for instance, Banerjee 1975; Cheng 2014; Jacroux et al. 1983; Neubauer
1997). In the case ρ �= 0, it is harder to deal with optimality problems. Some results
concerning optimal designs in this case are given for example in Angelis et al. (2001);
Katulska and Smaga (2012, 2013); Li and Yang (2005); Smaga (2014) and
Yeh and Lo Huang (2005), but many problems are still unsolved. In this paper, we
extend the results ofKatulska andSmaga (2013),whereD-optimality of certain designs
was proven under ρ ∈ [0, 1/(n − 2)].
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A note on D-optimal chemical balance... 723

The remainder of this paper is organized as follows. In Sect. 2, we show that the
D-optimal designs for ρ ∈ [0, 1/(n − 2)] constructed by Katulska and Smaga (2013)
are still D-optimal under ρ belonging to wider interval than [0, 1/(n − 2)]. In Sect. 3,
we give the lower bound for D-efficiency of weighing designs and we use it to show
that the mentioned designs are highly D-efficient in cases, which are not included in
Sect. 2. Some preliminary technical results are outlined in the Appendix.

We follow the notation of Yeh and Lo Huang (2005). For each vector x =
[x1, . . . , xn]′ ∈ Mn×1(±1), we define the following numbers: cons(x) = #{i : xi =
xi+1, 1 � i � n − 1}, fcons(x) = min{i : xi = xi+1, 1 � i � n − 1}. For example,
for x = [1,−1, 1, 1,−1,−1]′ we have cons(x) = 2 and fcons(x) = 3.

2 D-optimal designs

In this section, we extend the following theorem.

Theorem 1 (Katulska and Smaga 2013) Let n ≡ 0 (mod 4), Cov(e) = 1/(1 − ρ2)S,
where S is given by (1) and ρ ∈ [0, 1/(n − 2)]. Then the design

X̃′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

< n >+
< n/2 >+< n/2 >−

< n/4 >+< n/2 >+< n/4 >−

⎤
⎦ if n

4 = 2k − 1

⎡
⎣

< n >+
< n/2 >+< n/2 >−

< n/4 >+< n/2 >−< n/4 >+

⎤
⎦ if n

4 = 2k,

(2)

where

< t >+ = [(−1)2, (−1)3, (−1)4, . . . , (−1)t+1],
< t >− = [(−1)1, (−1)2, (−1)3, . . . , (−1)t ],

and k = 1, 2, . . ., is D-optimal design in the class Mn×3(±1).

Unfortunately, it can be easily observed that 1/(n − 2) → 0 as n → ∞. However,
Theorem 1 in Katulska and Smaga (2013) implies the design X̃ given by (2) is D-
optimal for all ρ ∈ [0, 1) in large subclassMn×3(±1)\C, where C = {

X = [x, y, z] :
cons(x) = 0, cons(y) = 1, cons(z) = 1

}
. Furthermore, simulation studies suggest

the design X̃ is D-better than any design in C for all ρ ∈ [0, 1). But, it is not easy to
show this. We solve partially this problem in the following theorem.

Theorem 2 Assume that n ≡ 0 (mod 4), Cov(e) = 1/(1− ρ2)S, where S is given by
(1), and ρ ∈ [0, 1) if n = 4, 8, . . . , 28, and ρ ∈ [0, η) if n = 32, 36, . . ., where η is
the smallest positive root of the polynomial

p(ρ) = (7n2 − 22n − 48)ρ5 − (n3 − 41n2 + 124n + 240)ρ4

− (3n3 − 89n2 + 246n + 528)ρ3 − (3n3 − 87n2 + 192n + 592)ρ2 (3)
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724 Ł. Smaga

− (n3 − 40n2 + 56n + 320)ρ + 8n2 − 64.

Then the design X̃ given by (2) is D-better than any design X = [x, y, z] ∈ C.

Theorem 1 in Katulska and Smaga (2013) and Theorem 2 imply the following
important corollary.

Corollary 1 Under the assumptions of Theorem 2, the design X̃ given by (2) is D-
optimal in the classMn×3(±1).

For n = 4, 8, . . . , 28, we significantly extend Theorem 1 for all ρ ∈ [0, 1)
that is important, because we often do not need a large number of observations
for three objects. When n = 32, 36, . . ., Lemma 3 in the Appendix shows that
the root η of the polynomial p given by (3) belongs to (1/(n − 2), 1), and hence
Theorem 1 is also improved for such n. The root η can be derived numerically.
For example, numerical approximation for this root for n = 32, 36, . . . , 60 is
0.7599, 0.4841, 0.3754, 0.3103, 0.2657, 0.2329, 0.2076, 0.1875 respectively.

It is also worth mentioning that slight changes in the proofs of the necessary and
sufficient conditions given in Katulska and Smaga (2013) under which the design
with three objects is D-optimal actually show that those conditions still hold under
the assumptions of Theorem 2. Unfortunately, it failed to prove D-optimality of the
design X̃ given by (2) for all ρ ∈ [0, 1). However, in Sect. 3 we show that the design
X̃ is highly D-efficient, when the assumptions of Theorem 2 do not hold.

In the following proof of Theorem 2, we use Budan–Fourier Theorem and an
inequality given in Li (2013) which we recall in the Appendix.

Proof of Theorem 2 The main idea of the proof is to show that the inequality
det(X̃′AX̃) � det(X′AX) holds for all designs X = [x, y, z] such that cons(x) = 0,
cons(y) = 1 and cons(z) = 1. By Lemma 3 in Katulska and Smaga (2013), we
can suppose without loss of generality that x1 = y1 = z1 = 1 and fcons(y) >

fcons(z). Lemmas 4 and 5 in Katulska and Smaga (2013) yield det(X̃′AX̃) =
�(�−4ρ)(�−8ρ)−4ρ2(1+ρ)2(�−4ρ) and x′Ax = �, y′Ay = z′Az = �−4ρ,
x′Ay = (2fcons(y) − n)(1 + ρ)2, x′Az = (2fcons(z) − n)(1 + ρ)2 and y′Az =
(n−2fcons(y)+2fcons(z)−2)(1+ρ)2+2(1+ρ),where� = (n−2)(1+ρ)2+2(1+ρ).
If ρ = 0, then by Hadamard’s inequality det(X̃′X̃) = n3 � det(X′X). So assume that
ρ > 0. When n = 4, there are three possible matrices exact to permuting columns:

X1 =

⎡
⎢⎢⎣

1 1 1
−1 1 −1
1 −1 −1

−1 1 1

⎤
⎥⎥⎦ , X2 =

⎡
⎢⎢⎣

1 1 1
−1 1 −1
1 −1 1

−1 1 1

⎤
⎥⎥⎦ , X3 =

⎡
⎢⎢⎣

1 1 1
−1 −1 −1
1 −1 1

−1 1 1

⎤
⎥⎥⎦ .

Hence det(X′
iAXi ) = 32(ρ + 1) for i = 1, 2, 3, and det(X̃′AX̃) = 32ρ3 + 64ρ2 +

96ρ + 64. Thus det(X̃′AX̃) > det(X′
iAXi ) for i = 1, 2, 3. From now on we make the

assumption: n � 8. We have divided the proof into two cases.
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Case 1 Let fcons(y) �= n/2, fcons(y) �= n/2 ± 1, fcons(z) �= n/2 and fcons(z) �=
n/2 ± 1. Lemma 2 in the Appendix implies the following inequality

det(X′AX) �(x′Ax)
(

y′Ay − (x′Ay)2/(x′Ax)
) (

z′Az − (x′Az)2/(x′Ax)
)

=�
(
� − 4ρ − (x′Ay)2/�

) (
� − 4ρ − (x′Az)2/�

)
.

By assumptions, (2fcons(a) − n)2(1 + ρ)4 � 16(1 + ρ)4 for a ∈ {y, z}. Moreover
� � n(1 + ρ)2. By the above, the following inequality holds

det(X′AX) �
(
�(� − 4ρ) − 16(1 + ρ)4

) (
� − 4ρ − 16(1 + ρ)4/

(
n(1 + ρ)2

))
.

Therefore

det(X̃′AX̃) − det(X′AX) � det(X̃′AX̃) −
(
�(� − 4ρ) − 16(1 + ρ)4

)

·
(
� − 4ρ − 16(1 + ρ)2/n

)

=4(1 + ρ)p(ρ)/n,

where p(ρ) is given by (3). So, to prove the inequality det(X̃′AX̃) > det(X′AX) we
have to show that p(ρ) > 0 for all ρ. It is easy to calculate that

p(ρ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

224ρ5 + 880ρ4 + 1664ρ3 + 1904ρ2 + 1280ρ + 448 if n = 8
696ρ5 + 2448ρ4 + 4152ρ3 + 4448ρ2 + 3040ρ + 1088 if n = 12
1392ρ5 + 4176ρ4 + 6032ρ3 + 6320ρ2 + 4928ρ + 1984 if n = 16
2312ρ5 + 5680ρ4 + 6152ρ3 + 6368ρ2 + 6560ρ + 3136 if n = 20
3456ρ5 + 6576ρ4 + 3360ρ3 + 3440ρ2 + 7552ρ + 4544 if n = 24
4824ρ5+ 6480ρ4+ ρ(7520 − 3496ρ2)+ (6208 − 3616ρ2) if n = 28.

Thus p(ρ) > 0 for all ρ ∈ (0, 1) when n = 8, 12, . . . , 28. For n = 32, 36, . . . , by
Lemma 3 in the Appendix the polynomial p has exactly one root η in the interval
(0, 1), and hence p(ρ) > 0 for all ρ ∈ (0, η), because p(0) = 8n2 − 64 > 0.

Case 2 Let fcons(y) = n/2 or fcons(y) = n/2±1 or fcons(z) = n/2 or fcons(z) =
n/2 ± 1. We give the proof only for the case fcons(y) = n/2; the proofs for the other
cases are similar. Let a = fcons(z). We have

det(X′AX) =�(� − 4ρ)2 − (2a − n)2(1 + ρ)4(� − 4ρ)

− 4(1 + ρ)2[(a − 1)(1 + ρ) + 1]2�.

Hence det(X̃′AX̃) − det(X′AX) = (1 + ρ) f (a), where

f (a) =8(1 + ρ)3[(n − 2)ρ2 + 2(n − 2)ρ + n]a2
− 4(1 + ρ)3[(n2 − 4)ρ2 + 2n(n − 2)ρ + n2]a + n2(n − 2)ρ5
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726 Ł. Smaga

+ n(5n2 − 16n + 16)ρ4 + (10n3 − 36n2 + 48n − 32)ρ3

+ n(10n2 − 32n + 32)ρ2 + n2(5n − 10)ρ + n3.

We consider f as a quadratic function of the variable a. The discriminant of f is equal
to −16(1 + ρ)3w(ρ), where

w(ρ) = (n4 − 8n3 + 16n2 − 16)ρ7

+ (7n4 − 60n3 + 152n2 − 96n − 48)ρ6

+ (21n4 − 180n3 + 496n2 − 480n + 80)ρ5

+ (35n4 − 280n3 + 736n2 − 736n + 240)ρ4

+ n(35n3 − 240n2 + 512n − 352)ρ3

+ n2(21n2 − 108n + 136)ρ2 + n3(7n − 20)ρ + n4.

Using Budan–Fourier Theorem (see Theorem 4 in the Appendix), we can show that
all coefficients of the polynomial w(ρ), considered as polynomials of variable n, do
not have any roots in the interval (7,∞) (for more detailed argumentation of this kind
we refer to the proof of Lemma 3 in the Appendix). Therefore all these coefficients
are positive for n ∈ (7,∞). Hence the discriminant of f is negative. So, f (a) > 0
for all a, since the coefficient of a2 in f is positive. This finishes the proof. �	

3 D-efficiency of design ˜X

In this section, we show that the design X̃ of the form (2) is highly D-efficient, when
D-optimal designs inMn×3(±1) are not known.

Following the definition of Bulutoglu and Ryan (2009), the D-efficiency of a design
X ∈ Mn×p(±1) is defined by the formula

D-eff(X) =
[

det(X′AX)

maxY∈Mn×p(±1) det(Y′AY)

]1/p

(4)

under Cov(e) = 1/(1 − ρ2)S, where S is given by (1). Under the assumptions of
Theorem 2, maxY∈Mn×3(±1) det(Y′AY) = det(X̃′AX̃) by Corollary 1, and hence
D-eff(X̃) = 1. However, when the assumptions of Theorem 2 do not hold, value of
the denominator of D-eff(X) is unknown and we can not compute the D-efficiency of
X ∈ Mn×3(±1). But, in the following lemma, we give the lower bound for it. Next we
use this lower bound for the D-efficiency of weighing design to show that the design
X̃ of the form (2) has high D-efficiency when n � 32 and ρ � η, where η is defined
in Theorem 2.

Lemma 1 If n ≡ 0 (mod 4),Cov(e) = 1/(1−ρ2)S, whereS is given by (1),ρ ∈ (0, 1)
and � = (n − 2)(1 + ρ)2 + 2(1 + ρ), then the D-efficiency of nonsingular design
X ∈ Mn×3(±1) is greater than
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[
det(X′AX)

�(� − 4ρ)2

]1/3
.

Proof Let Y = [y1, y2, y3] ∈ Mn×3(±1) be an arbitrary nonsingular design.
Hadamard’s inequality implies the determinant of the matrix Y′AY is less than or
equal to the product of diagonal elements of this matrix, i.e.

det(Y′AY) � (y′
1Ay1)(y′

2Ay2)(y′
3Ay3).

ByLemma 4 in Katulska and Smaga (2013), we have y′
iAyi = �−4ξρ for i = 1, 2, 3,

where ξ = cons(yi ). For a ∈ Mn×1(±1), it is easy to see that a′Aa = � if and only
if a is the vector of ones or the vector of minus ones. Since Y is nonsingular, there
exists at most one i such that y′

iAyi = �. Therefore det(Y′AY) � �(� − 4ρ)2, and
hence

max
Y∈Mn×3(±1)

det(Y′AY) � �(� − 4ρ)2.

So, by (4),

D-eff(X) �
[

det(X′AX)

�(� − 4ρ)2

]1/3
. (5)

We now show that the equality in (5) never holds. Suppose that the equality in (5)
holds. Then det(Y′AY) = �(� − 4ρ)2 for some nonsingular Y = [y1, y2, y3] in
the classMn×3(±1). By Hadamard’s inequality, the last equality holds if and only if
Y′AY is diagonal matrix and its diagonal elements are equal to �, � − 4ρ, � − 4ρ,
in any order (see Theorem 7.8.1 in Horn and Johnson 2013, p.505). Without loss of
generality, we can assume that y′

1Ay1 = � and y′
2Ay2 = y′

3Ay3 = �−4ρ. By Lemma
4 in Katulska and Smaga (2013), cons(y1) = 0 and cons(yi ) = 1 for i = 2, 3. Hence
the equalities y′

1Ay2 = 0 and y′
1Ay3 = 0 imply that fcons(yi ) = n/2 for i = 2, 3

(see Lemma 5 (c) in Katulska and Smaga 2013). But, then the design Y is singular.
Contradiction. �	

Theorem 3 Let n ≡ 0 (mod 4), n � 32, Cov(e) = 1/(1 − ρ2)S, where S is given by
(1) and ρ ∈ [η, 1), where η is defined in Theorem 2. Then with an increase in ρ, the
lower bound for the D-efficiency of X̃ becomes smaller. Moreover,D-eff(X̃) is greater
than 0.988.

Proof From Lemma 1 and from the proof of Theorem 2, we conclude that the lower
bound for the D-efficiency of X̃ is equal to

[
�(� − 8ρ) − 4ρ2(1 + ρ)2

�(� − 4ρ)

]1/3
. (6)
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728 Ł. Smaga

Since � = (n − 2)(1 + ρ)2 + 2(1 + ρ), it can be written as follows

[(
(n − 2)(1 + ρ) + 2

)
(� − 8ρ) − 4ρ2(1 + ρ)(

(n − 2)(1 + ρ) + 2
)
(� − 4ρ)

]1/3

. (7)

Denote it by f (ρ) and consider as a function of ρ ∈ (0, 1). Its derivative is equal to

4n(1 + ρ)w(ρ) − 64ρ4

3(nρ + n − 2ρ)2
(
n(ρ + 1)2 − 2ρ(ρ + 3)

)2(
f (ρ)

)2/3 ,

wherew(ρ) = (n2−8n+20)ρ3+(n2−6n+4)ρ2−n(n−2)ρ−n2. For the polynomial
w, we have M(0) = M(1) = 1, where M(c) is defined in Theorem 4 in the Appendix.
So, by Budan–Fourier Theorem (see Theorem 4 in the Appendix), the polynomial
w does not have any roots in (0, 1). Since the numbers w(0) and w(1) are negative,
w(ρ) < 0 for all ρ ∈ (0, 1). Therefore ∂ f (ρ)/(∂ρ) < 0 for all ρ ∈ (0, 1), and hence
f (ρ) is decreasing. So, D-eff(X̃) is greater than the right hand side of (7) at ρ = 1, i.e.
D-eff(X̃) >

(
1−n/(n2−3n+2)

)1/3. Let the function g, g : (31,∞) → R be defined

by g(x) = (
1− x/(x2 − 3x + 2)

)1/3. We have g′(x) = (
x2 − 2

)
/
(
x2 − 3x + 2

)2
> 0

for all x > 31, so g is increasing. Thus D-eff(X̃) > g(32) = 0.9883963. �	
Theorem 3 implies the lower bound for the D-efficiency of X̃ given by (6)

becomes smaller with an increase in ρ. However, the decrease of it is at most 1.2%,
because D-eff(X̃) > 0.988. So, the design X̃ is highly D-efficient design in the class
Mn×3(±1), when n � 32 and ρ � η, where η is defined in Theorem 2. This result is
the next reason, which together with results of Sect. 2, confirms the conjecture that the
design X̃ is D-optimal in Mn×3(±1), when n ≡ 0 (mod 4), Cov(e) = 1/(1 − ρ2)S,
where S is given by (1) and ρ ∈ [0, 1).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

We first recall Budan–Fourier Theorem (see, for instance, Conkwright 1943), which
we use in the proofs of Theorems 2 and 3 and in the proof of Lemma 3.

Theorem 4 (Budan–Fourier) Assume that w is a polynomial of degree n with real
coefficients. Let M(c) denote the number of variations of sign in the sequence
w(x), w′(x), w′′(x), . . . , w(n)(x), when x = c, where c is any real number. Then the
number of roots of the polynomialw in the interval (a, b), a < b, is M(a)−M(b)−2k,
where k is a positive integer or zero.

In the proof of Theorem 2, we also use the following lemma, which follows directly
from Corollary 3.2 in Li (2013), since a positive definite matrix is a K0-matrix.
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Lemma 2 (Li 2013) If B = [bi j ] is real symmetric positive definite matrix of size n,
with

∏n
i=1 bii > 0, then det(B) � b11

∏n
i=2

(
bii − b21i/b11

)
.

We now consider the behavior of the root η of the polynomial p given by (3).

Lemma 3 Let n = 32, 36, . . . . The polynomial p given by (3) of variable ρ has
exactly one root in the interval (0, 1) and this root is greater than 1/(n − 2).

Proof It is easy to calculate that p(0) = 8n2−64, p′(0) = −(n3−40n2+56n+320),
p(2)(0) = −2(3n3 − 87n2 + 192n+ 592), p(3)(0) = −6(3n3 − 89n2 + 246n+ 528),
p(4)(0) = −24(n3 − 41n2 + 124n + 240), p(5)(0) = 120(7n2 − 22n − 48). For
n = 32, 36 the sequence of signs of the components of the above sequence equals
+ + − − ++. Consider each component of the above sequence as a polynomial of
variable n. It can be calculated that for each of these polynomials we have M(39) −
M(∞) = 0. By Budan–Fourier Theorem, each of these polynomials does not have
any roots in (39,∞). Hence p(0) > 0, p(i)(0) < 0, i = 1, . . . , 4, and p(5)(0) > 0 for
n = 40, 44, . . . . Thus when n = 40, 44, . . . , the sequence of signs of the components
of the above sequence is equal to + − − − −+. Therefore Mp(0) = 2. In much
the same way as above, we show that Mp(1/(n − 2)) = 2 and Mp(1) = 1. Hence
Budan–Fourier Theorem implies the polynomial p has exactly one root in the interval
(1/(n − 2), 1), and it does not have any roots in (0, 1/(n − 2)), which completes the
proof. �	
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