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Abstract We derive optimal bounds on the bias of approximation of unknown mean
of the parent population by Tukey’s trimean defined as the weighted average of the
sample median and sample quartiles. The bounds are expressed in standard deviation
units and the distributions for which the bounds are attained are specified. The results
are illustrated with numerical example.

Keywords Bias · Trimean · L–statistic · Schwarz’ inequality

Mathematics Subject Classification 62G30 · 60E15

1 Introduction

Consider the random sample X1, . . . , Xn with common cumulative distribution
function (cdf) F and the quantile function F−1(u) = sup {x ∈ R : F(x) ≤ u} for
u ∈ [0, 1]. Assume that the mean μ = EX1 and the variance σ 2 = Var X1 of the
parent population are finite, so that

μ =
∫ 1

0
F−1(u) du,

and

σ 2 =
∫ 1

0

(
F−1(u) − μ

)2
du.
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366 M. Bieniek

Let X1:n ≤ . . . ≤ Xn:n denote the order statistics of the sample X1, . . . , Xn .Wecon-
sider the problem of estimation of unknownμ by L–statistics, i.e. linear combinations
of order statistics. Rychlik (1998) provided p–norm upper bounds on expectations of
L–statistics and Goroncy (2009) considered lower bounds on positive L–statistics. In
particular, Danielak and Rychlik (2003) considered single order statistics and trimmed
means, and their results were strengthened by Danielak (2003) for distributions with
decreasing density or failure rate. Raqab (2007) considered left–sided Winsorized
means and Bieniek (2014a) extended his results to two–sided Winsorized means. In
the context of generalized order statistics, optimal bounds on expectations of arbi-
trary L-statistic from bounded populations were derived by Rychlik (2010). Recently
Bieniek (2014b) provided bounds on the bias of quasimidranges

Mr,s = 1

2
(Xr :n + Xs:n) , 1 ≤ r < s ≤ n,

i.e. arithmetic means of two fixed order statistics.
In this paper we consider another L–statistic, namely the sample trimean Tn intro-

duced by Tukey (1977) as an element of a set of statistical techniques in descriptive
statistics called “exploratory data analysis”. The trimean Tn is defined as

Tn = 1

4
(H1 + 2M + H2) ,

where M is the sample median and H1 and H2 are lower and upper hinges of the
sample. The sample median is defined usually as

M =
{
X n+1

2 :n, if n is odd,
1
2

(
X n

2 :n + X n
2+1:n

)
, if n is even,

which can be written in a more compact way as

M = 1

2

(
X⌊

n+1
2

⌋
:n + X⌈

n+1
2

⌉
:n

)
,

where �x� and �x� denote the floor and the ceiling functions defined as

�x� = max {n ∈ Z : n ≤ x} , �x� = min {n ∈ Z : x ≤ n} .

The lower (upper) hinge is defined as the median of the lower (upper) half of the
sample including sample median. Formally, for simplicity we define

H1 = X� n
4 �+1:n, H2 = Xn−� n

4 �:n .

Therefore, the trimean of the sample is

Tn = 1

4

(
X� n

4 �+1:n + X⌊
n+1
2

⌋
:n + X⌈

n+1
2

⌉
:n + Xn−� n

4 �:n
)

.
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Sharp bounds on the bias of trimean 367

This is an example of “insufficient” but (computationally) quick estimator of μ

and its advantage over the sample median or any other quasimidranges lies in the fact
that trimean combines the central tendency of the sample median with the extremes
involved in quartiles. For comparison of the trimean with various trimmed means
(including sample median) we refer to the paper of Rosenberger and Gasko (1983).
Also see Mosteller (2006) for situations when the usage of quick estimators is more
appropriate from economical point of view.

Another, heuristical motivation for considering trimean as an estimator of μ comes
from the numerical results presented in the above mentioned papers. If we want to
estimateμ by an L–statistic involving as small observations as possible then it appears
that, heuristically speaking, the best approximation of μ by single order statistic is
obtained for the sample median, and by two order statistics — for the quasimidrange
Mr,s with r ≈ n

4 and s ≈ 3n
4 . Therefore if we want to approximate μ by linear

combination of three order statistics it seems reasonable to use the sample trimean.
In this paper we derive sharp upper and lower bounds for the bias of approximation

of μ by trimean Tn expressed in standard deviation units, i.e. on

ETn − μ

σ
.

Since Tn is a symmetric L–statistic, then the lower bounds are just negative values
of corresponding upper bounds (see Goroncy 2009), so we confine ourselves to the
latter ones. The bounds we derive are obtained by the projection method, described in
detail in the monograph of Rychlik (2001), which in our case amounts to Moriguti’s
approach of the greatest convexminorants. This approach has been used inmany of the
above mentioned papers and also e.g. by Okolewski and Kałuszka (2008) to provide
sharp bounds on expectations of concomitants of order statistics.

The main obstacle one has to overcome is to project the function which has three
local maxima onto the convex cone C of nondecreasing square integrable functions
on [0, 1]. Namely, if fi :n denotes the density function of the i th order statistic from
uniform U (0, 1) distribution, then

ETn =
∫ 1

0
F−1(u)ϕn(u) du,

where

ϕn(u) = 1

4

(
f� n

4 �+1:n(u) + f⌊ n+1
2

⌋
:n(u) + f⌈ n+1

2

⌉
:n(u) + fn−� n

4 �:n(u)

)
.

Therefore, by projection method and Schwartz’ inequality

ETn − μ

σ
≤ ∥∥ϕn − 1

∥∥
2, (1)

where ϕn is the projection of ϕn onto C (see Rychlik (1998) Thm. 7). The equality is
attained for F such that
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368 M. Bieniek

F−1(u) − μ

σ
= ϕn(u) − 1∥∥ϕn − 1

∥∥
2

. (2)

It is well-known Moriguti (1953) that the projection ϕn is determined as the right-
hand derivative of the greatest convex minorant Φn of the distribution function Φn

defined as

Φn(x) =
∫ x

0
ϕn(u) du, x ∈ [0, 1].

Therefore first we are forced in Sect. 2 to determine monotonicity regions of ϕn .
However, this is not sufficient in order to find ϕn and in Sect. 3 we consider two
auxiliary functions gn and hn , which determine the projection ϕn uniquely. In Sect. 4
we apply results of Sect. 3 to determine exact shapes of projections of ϕn onto C. In
Sect. 5 we provide analytical values of bounds on the bias of trimeans, andwe illustrate
them with their numerical values.

2 Shapes of projected functions

In terms of Bernstein polynomials

Bk,n(x) =
(
n

k

)
xk(1 − x)n−k, x ∈ [0, 1], k = 0, 1, . . . , n,

we have fi :n(u) = nBi−1,n−1(u), and putting j = ⌊ n
4

⌋
, we get

ϕn(u) =
{

n
4

(
Bj,n−1(u) + 2Bk,n−1(u) + Bn− j−1,n−1(u)

)
, if n = 2k + 1,

n
4

(
Bj,n−1(u) + Bk−1,n−1(u) + Bk,n−1(u) + Bn− j−1,n−1(u)

)
, if n = 2k.

Using the relation for the derivative of a Bernstein polynomial

B ′
k,n(u) = n(Bk−1,n−1(u) − Bk,n−1(u)), (3)

we get for n = 2k + 1

ϕ′
n(u) = n(n − 1)

4

(
Bj−1,n−2(u) − Bj,n−2(u) + 2Bk−1,n−2(u)

−2Bk,n−2(u) + Bn− j−2,n−2(u) − Bn− j−1,n−2(u)
)
, (4)

and for n = 2k

ϕ′
n(u) = n(n − 1)

4

(
Bj−1,n−2(u) − Bj,n−2(u) + Bk−2,n−2(u)

−Bk,n−2(u) + Bn− j−2,n−2(u) − Bn− j−1,n−2(u)
)
.
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Sharp bounds on the bias of trimean 369

The sign changes of such linear combinations are studied with the aid of variation
diminishing property of Bernstein polynomials of Schoenberg (1959).

Lemma 1 (VDP)Thenumber of zeros in (0, 1)of any linear combination
∑n

i=0 ai Bi,n
of Bernstein polynomials does not exceed the number of sign changes in the sequence
a0, a1, . . . , an of its coefficients. Moreover, the first and the last signs of the combi-
nation are the same as the signs of the first and the last, respectively, nonzero element
of the sequence.

By VDP each ϕ′
n is either positive-negative (+− for short) or+−+− or+−+−

+−. First we show that the second case is impossible. This follows from part (b) of
the next lemma.

Lemma 2 For n ≥ 3 we have

(a) ϕn
( 1
2

)
> 1,

(b) ϕ′′
n

( 1
2

)
< 0.

The proof of the lemma is given in the Appendix A. Now the function ϕn is symmet-
ric with respect to 1

2 , so ϕ′
n

( 1
2

) = 0. But ϕn has maximum at 1
2 by Lemma 2(b), so it

cannot be increasing-decreasing-increasing-decreasing. Therefore, we conclude that
ϕ′
n has either one zero at 1

2 or it has five zeros θ1, . . . , θ5 such that θ1 < θ2 < θ3 = 1
2

and θ4 = 1 − θ2, θ5 = 1 − θ5.
The shapes of ϕn , n ≥ 3, are given in the next Lemma.

Lemma 3 (a) We have ϕn(0) = ϕn(1) = 0.
(b) For 3 ≤ n ≤ 8, the function ϕn is increasing-decreasing.
(c) For n ≥ 9, the function ϕn is either increasing-decreasing with maximum at 1

2
or it has three local maxima (one of them at x = 1

2 and two remaining at points
symmetric with respect to 1/2) and two local minima.

Now, if ϕn is increasing-decreasing, then it is well known that the projection ϕn is
of the form

ϕn(u) =
{

ϕn(u), for 0 ≤ u ≤ α,

ϕn(α), for α ≤ u ≤ 1,

where α is the only solution to the equation

1 − Φn(α) = (1 − α)ϕn(α), α ∈ (0, 1). (5)

However, if ϕ′
n has five zeros, then the derivation of ϕn is much more complicated,

and it will be done in the next section with the aid of some auxiliary functions.

3 Auxiliary functions

To determine ϕn we need to find the greatest convex minorant Φn of Φn . It is a little
bit easier to determine the greatest convex minorant Ψ n of the function Ψn defined as

Ψn(u) = Φn(u) − u, 0 ≤ u ≤ 1.
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370 M. Bieniek

Then Ψn(0) = Ψn(1) = 0, and ϕn = Ψ
′
n + 1.

Next,wedefine and analyze twoauxiliary functions gn andhn introducedbyBieniek
(2014b) for quasimidranges. Let �α denote the straight line which is tangent to Ψn at
the point α ∈ [0, 1], i.e.

�α(x) = Ψn(α) + (ϕn(α) − 1)(x − α), x ∈ R.

Let gn(α) denote the value of �α at x = 1, i.e.

gn(α) = Φn(α) + (1 − α)ϕn(α) − 1,

and hn(α) denote the slope of the straight line passing through the points (α,Φn(α))

and (1, 1), i.e.

hn(α) = 1 − Φn(α)

1 − α
.

Let us study the properties of the function gn . We have gn(0) = ϕn(0) − 1 = −1
and gn(1) = 0. Next, easy differentiation leads to

gn(u) = (1 − u)ϕ′
n(u),

and so gn has the same monotonicity properties as ϕn . Now we find the number of
zeros of gn in (0, 1). Note that gn(α) = 0 if and only if α satisfies (5).

Theorem 1 The function gn has either one or three or five zeros in (0, 1).

Proof We consider the case of odd n = 2k + 1, k ≥ 3. The case of even n can be
treated analogously. Let j = ⌊ n

4

⌋
. We start with the representation of the distribution

function Fk:n of kth order statistic from uniform distribution on [0, 1]

Fk:n(u) =
n∑

i=k

Bi,n(u), u ∈ [0, 1].

Therefore

	n(u) = 1
4

(
Fj+1:n(u) + 2Fk+1:n(u) + Fn− j :n(u)

)

= 1
4

k∑
i= j+1

Bi,n(u) + 3
4

n− j−1∑
i=k+1

Bi,n(u) +
n∑

i=n− j

Bi,n(u). (6)

Next, using the relation

(1 − t)Bi,n−1(t) = n−i
n Bi,n(t) (7)
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Sharp bounds on the bias of trimean 371

we derive

(1−u)ϕn(u) = 1
4

[
(n − j)Bj,n(u) + 2(n − k)Bk,n(u) + ( j + 1)Bn− j−1,n(u)

]
. (8)

Finally by binomial theoremwehave
∑n

i=0 Bi,n(u) = 1 for 0 ≤ u ≤ 1, and combining
this with Eqs. (6) and (8), after some algebra we get

gn(u) = −
j−1∑
i=0

Bi,n(u) + n− j−4
4 Bj,n(u) − 3

4

k−1∑
i= j+1

Bi,n(u)

+ 2n−2k−3
4 Bk,n(u) − 1

4

n− j−2∑
i=k+1

Bi,n(u) + j

4
Bn− j−1,n(u). (9)

The conclusion of the theorem follows by VDP. ��
Finally we find the locations of zeros of gn in [0, 1]. Note that if ϕ′

n has five zeros
θ1, . . . , θ5 then necessarily gn(θ5) > 0, so due to its monotonicity properties gn may
have at most one zero in each of the intervals (0, θ1), (θ1, θ2), …(θ4, θ5) and no zeros
in (θ5, 1).

Lemma 4 (a) For all n ≥ 3 we have gn
( 1
2

)
> 0;

(b) If ϕ′
n has five zeros, then gn(θ4) > gn(θ2).

(c) If gn has a rootα2 ∈ (θ1, θ2), then itmust have rootsα1 ∈ (0, θ1)andα3 ∈ (θ2, θ3).
(d) If gn has a root in (θ3, θ5), then it has exactly two roots in this interval, and one

root in (θ2, θ3).

Proof (a) We have gn( 12 ) = 1
2

(
ϕn

( 1
2

) − 1
)

> 0 by Lemma 2(a).
(b) Since ϕn is symmetric with respect to 1

2 then ϕn(θ2) = ϕn(θ4) and ϕn(u) > ϕn(θ2)

for u ∈ (θ2, θ4). Therefore

Φn(θ4) − Φn(θ2) =
∫ θ4

θ2

ϕn(u) du > ϕn(θ2)(θ4 − θ2)

and

gn(θ4) = Φn(θ2) + (Φn(θ4) − Φn(θ2)) + (1 − θ4)ϕn(θ4) − 1

> Φn(θ2) + ϕn(θ2)(θ4 − θ2) + (1 − θ4)ϕn(θ2) − 1 = gn(θ2).

(c) If gn(α2) = 0 for some α2 ∈ (θ1, θ2), then gn(θ1) > 0 and gn(θ2) < 0. The
conclusion follows from gn(0) < 0 and gn(θ3) > 0 (see part (a) of this lemma).

(d) Since gn(θ3) > 0 and gn(θ5) > 0, the function gn has even number of zeros in
(θ3, θ5), so it has at least two zeros. Since gn is decreasing-increasing on (θ3, θ5),
it may have at most two zeros in the interval.
If gn has a root in (θ3, θ5), then gn(θ4) < 0, and so by part (b) of the lemma we
have g(θ2) < 0, and gn has another root in (θ2, θ3).
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372 M. Bieniek

For simplicity denote θ0 = 0. By Lemma 4 the locations of zeros of gn are as
follows.

Corollary 1 (a) If gn has exactly one zero α1, then α1 ∈ (0, θ1) ∪ (θ2, θ3).
(b) If gn has exactly three zeros α1, α2, α3, then either αi ∈ (θi−1, θi ) for i = 1, 2, 3,

or α1 ∈ (θ2, θ3), α2 ∈ (θ3, θ4) and α3 ∈ (θ4, θ5).
(c) If gn has five zeros α1, . . . , α5, then αi ∈ (θi−1, θi ) for i = 1, . . . , 5.

Now we study some properties of hn . First of all, hn(0) = 1 and h(1) = 0.
Moreover,

h′
n(u) = − gn(u)

(1 − u)2
, (10)

so the monotonicity properties of hn are determined by the signs of gn . Before we
determine the shapes of hn first we study the number of solutions to hn(u) = 1 in
(0, 1). Clearly we have hn

( 1
2

) = 1 and in the next lemma we prove that this is the
only solution.

Lemma 5 The equation hn(u) = 1 has unique root u = 1
2 in (0, 1). Moreover

hn(u) > 1 if and only if u ∈ (0, 1
2 ).

Proof We again consider only the case of odd n = 2k + 1, and the case of n even is
left for the reader. Using (6) and (7) after some algebra we obtain

hn(u) =
j∑

i=0

n

n − i
Bi,n−1(u) + 3

4

k∑
i= j+1

Bi,n−1(u) + 1

4

n− j−1∑
i=k+1

n

n − i
Bi,n−1(u). (11)

This time we write 1 = ∑n−1
i=0 Bi,n−1(u)which combined with the last equality yields

hn(u) − 1 =
n−1∑
i=0

ai Bi,n−1(u),

where

ai =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i
n−i , for 0 ≤ i ≤ j,
4i−n
4(n−i) , for j + 1 ≤ i ≤ k,
4i−3n
4(n−i) , for k + 1 ≤ i ≤ n − j − 1,

−1, for n − j ≤ i ≤ n − 1.

We have a j+1 > . . . > ak and an− j−1 < . . . < ak+1, and since k = �n/2�, we easily
prove that ak > 0 and ak+1 < 0. Therefore ai > 0 for 0 ≤ i ≤ k, and ai < 0 for
k + 1 ≤ i ≤ n − 1. By VDP the function hn(u) − 1 has exactly one zero in (0, 1).

To prove the second statement it suffices to note that gn is first negative, so hn is
first increasing by (10). Since hn(0) = 1, then hn(u) > 1 in a neighbourhood of 0.
But by part (a) of this lemma, this must be (0, 1

2 ). Moreover gn has at least one zero in
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Sharp bounds on the bias of trimean 373

(0, 1
2 ) and gn

( 1
2

)
> 0, so gn is positive in a neighbourhood of 1

2 , and hn is decreasing
there. This implies that hn(u) < 1 for u ∈ ( 12 , 1). ��
Corollary 2 The function Ψn has exactly one root at

1
2 in (0, 1), and it is negative in

(0, 1
2 ), and positive in ( 12 , 1).

Proof It suffices to note that hn(u) > 1 if and only ifΨn(u) > 0, so the signs of hn −1
and Ψn are the same. ��

Now we can determine extrema of hn .

Theorem 2 (a) If gn has exactly one zero α1, then hn has global maximum at α1.
(b) If gn has exactly three zeros α1, α2, α3, then hn has local maxima at α1 and α3

with global maximum inside (0, 1
2 ).

(c) If gn has five zeros α1, . . . , α5, then hn has local maxima at α1, α3, α5 with global
maximum at α1 or α3.

Proof If gn has exactly one zero, then gn is negative on (0, α1), and positive otherwise,
so by (10), the function hn is increasing on (0, α1) and decreasing on (α1, 1). This
proves part (a).

Similar analysis proves (b) and (c) except for the location of global maximum. But
it suffices to note that by Lemma 5 we have hn(u) > 1 > hn(v) for u ∈ (0, 1

2 ) and
v ∈ ( 12 , 1). ��

We close this section with some properties of gn and hn useful in the next section.

Lemma 6 (a) If gn(α) = 0, then hn(α) = ϕn(α).
(b) If gn(α) = 0 and hn(α) ≥ hn(u) for u ∈ (α, 1), then Ψn(u) ≥ �α(u) for

u ∈ (α, 1).
(c) If θ is any root of ϕ′

n with gn(θ) < 0, and α is the smallest zero of gn in (θ, 1),
then ϕn(θ) < ϕn(α).

Proof Part (a) is just the definition of hn and gn .
To prove part (b) recall that if gn(α) = 0, then the tangent toΨn at α passes through

(1, 0), so �α can be written as

�α(u) = (hn(α) − 1)(u − 1).

Since hn(α) ≥ hn(u) for u ∈ [α, 1], then

�α(u) ≤ (hn(u) − 1)(u − 1) = 
n(u).

To prove (c) it suffices to note that

ϕn(θ) < hn(θ) < hn(α) = ϕn(α).

The first inequality follows from gn(θ) < 0, the second follows from the fact that hn
is increasing on (θ, α), and the last equality follows from part (a) of the lemma. ��
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374 M. Bieniek

4 Shapes of projections

Now we can determine the projections of ϕn , n ≥ 3. In the proof of the main result of
this section we need the following lemma. It was implicitly stated and proved in the
proof of Theorem 4.1 of Bieniek (2014b), but here for the convenience of the reader
we state and prove it in a little bit more abstract setting.

Consider any continuous function φ : (
0, 1

2

) → [0,∞) with the following prop-
erties: φ(0) = 0, and there exist θ1, θ2 ∈ (

0, 1
2

)
such that φ is strictly increasing

on (0, θ1) and
(
θ2,

1
2

)
, and strictly decreasing on (θ1, θ2) with φ(θ1) < φ

( 1
2

)
and

φ(θ2) > 0. Let

Φ(x) =
∫ x

0
φ(t) dt, 0 ≤ x ≤ 1

2 ,

denote the antiderivative of φ.
Let β0 denote the unique point of (0, θ1) such that φ(β0) = φ(θ2), and fix any

η ∈ (β0, θ1]. Let γ0 be the unique point of
(
θ2,

1
2

)
such that φ(γ0) = φ(η). Then for

every β ∈ [β0, η] there exists the unique γ = γ (β) ∈ [θ2, γ0] such that φ(γ ) = φ(β).
Therefore the following function

k(β) = φ(β)(γ − β) − (Φ(γ ) − Φ(β)) , β ∈ [β0, α],

is well–defined.

Lemma 7 If k(η) > 0, then the function k has exactly one zero in (β0, η).

Note that k(β) = 0 is equivalent to the system of equations

Φ(γ ) − Φ(β)

γ − β
= φ(β) = φ(γ ).

Proof Since the function k is continuous, it suffices to prove that k is strictly increasing
with k(β0) < 0.

Firstly, since φ(u) > φ(β0) for u ∈ (β0, θ2), then

Φ(θ2) =
∫ θ2

0
φ(u) du >

∫ β0

0
φ(u) du + (θ2 − β0)φ(β0)

= Φ(β0) + (θ2 − β0)φ(β0) (12)

and therefore k(β0) < 0.
Secondly, for given β1 < β2 and γ1 < γ2, where φ(βi ) = φ(γi ), i = 1, 2, there

exist unique δ1, δ2 ∈ (θ1, θ2) such that φ(δi ) = φ(βi ), i = 1, 2. Clearly δ2 < δ1. On
each of the intervals (β1, β2) and (δ2, θ1) we have φ(u) > φ(β1), so
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Sharp bounds on the bias of trimean 375

(Φ(δ1) − Φ(β1)) − (Φ(δ2) − Φ(β2)) =
∫ β2

β1

φ(u) du +
∫ δ1

δ2

φ(u) du

> φ(β1)[(β2 − β1) + (δ1 − δ2)]
> φ(β1)(δ1 − β1) − φ(β2)(δ2 − β2),

since φ(β2) > φ(β1). Therefore

φ(β1)(δ1 − β1) − (Φ(δ1) − Φ(β1)) < φ(β2)(δ2 − β2) − (Φ(δ2) − Φ(β2)).

Similarly,

φ(β1)(γ1 − δ1) − (Φ(γ1) − Φ(δ1)) < φ(β2)(γ2 − δ2) − (Φ(γ2) − Φ(δ2)).

Summing up both inequalities side by side we conclude that k(β1) < k(β2), so k is
strictly increasing. ��

The main result of this section is the following theorem.

Theorem 3 (a) If either of the following conditions hold
– gn has exactly one root α1 ∈ (0, θ1),
– gn has at least three roots α1, α2, α3 ∈ (0, 1

2 ) with hn(α1) ≥ hn(α3),
then

ϕn(u) =
{

ϕn(u), for 0 ≤ u ≤ α1,

ϕn(α1), for α1 ≤ u ≤ 1.
(13)

(b) Otherwise, i.e. if one of the following conditions hold
– gn has exactly one root α3 ∈ (θ2, θ3),
– gn has exactly three roots α3, α4, α5 ∈ (θ2, 1),
– gn has at least three roots α1, α2, α3 ∈ (0, 1

2 ) with hn(α1) < hn(α3),
then

ϕn(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕn(u), for 0 ≤ u ≤ β,

ϕn(β), forβ ≤ u ≤ γ,

ϕn(u), for γ ≤ u ≤ α3,

ϕn(α3), for α3 ≤ u ≤ 1,

(14)

where (β, γ ), with β ∈ (0, θ1) and γ ∈ (θ2, α3), is the unique solution to the
system of equations

Φn(γ ) − Φn(β)

γ − β
= ϕn(β) = ϕn(γ ). (15)

Proof First we consider the case when gn has a single root in (0, 1).
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If gn(α) = 0 for unique α ∈ (0, θ1), then α is a point of global maximum of
hn . Then Ψn is convex on (0, α), and by Lemma 6(b) we have Ψn(u) ≥ �α(u) for
u ∈ [α, 1]. Therefore

Ψ n(u) =
{

Ψn(u), for 0 ≤ u ≤ α,

�α(u), for α ≤ u ≤ 1,
(16)

is the greatest convex minorant of Ψn , and ϕn is of the form (13).
If gn(α) = 0 for unique α ∈ (θ2, θ3), then also Ψn(u) ≥ �α(u) for u ≥ α, but Ψn

is not convex on (0, α). But then gn(θ1) < 0, so by Lemma 6(c) we have ϕn(θ1) ≤
ϕn(α). Now apply Lemma 7 with η = θ1 and φ = ϕn . We have ϕn(u) < ϕn(θ1) for
u ∈ (θ1, γ1), so similar computations as in (12) imply that k(θ1) > 0. Therefore there
exists the unique pair (β, γ ) which satisfies the system (15). Now the function

Ψ n(u) =

⎧⎪⎨
⎪⎩

Ψn(u), for 0 ≤ u ≤ β or γ ≤ u ≤ α,

�β(u), for β ≤ u ≤ γ,

�α(u), for α ≤ u ≤ 1,

is the greatest convex minorant of Ψn , and ϕn is given by (14).
Next, we consider the case of three zeros of gn with exactly one α ∈ (0, 1

2 ) and
two of them α4, α5 ∈ ( 12 , 1). Then hn has two local maxima at α and α5 with α being
global maximum. By Corollary 1(b) we have α ∈ (θ2, θ3), so again gn(θ1) < 0, and
it suffices to repeat the reasoning for the case of exactly one zero of gn belonging to
(θ2, θ3).

Finally, we turn to the case of three zeros of gn inside (0, 1
2 ) (and possibly two

zeros in ( 12 , 1)). If hn(α1) ≥ hn(α3), then α1 is the point of global maximum of gn ,
and again the greatest convex minorant of Ψn is given by (16), and the projection of
ϕn is of the form (13).

However, if hn(α1) < hn(α3), then α3 is the point of global minimum of hn and
more thorough analysis is needed. By Theorem 2(b) and (c) the function hn has local
minimum at α2, so hn(α1) > hn(α2). By Lemma 6(a) the last two conditions are
equivalent to ϕn(α2) < ϕn(α1) < ϕn(α3). Moreover, obviously ϕn(α2) > ϕn(θ2), so
ϕn(α1) > ϕn(θ2) as well. Now apply Lemma 7 with η = α1 and φ = ϕn . Recall that
α1 satisfies the equation (5), so

(1 − γ0)ϕn(α1) = 1 − Φn(α1) − (γ0 − α1)ϕn(α1),

and therefore gn(γ0) = −k(α1). But γ0 ∈ (α2, α3), so gn(γ0) < 0, and k(α1) > 0,
and application of Lemma 7 completes the proof of the theorem. ��
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5 Analytical and numerical values of bounds

Once the projections of ϕn onto C are found, the determination of values of the bounds

Bn = sup
F

ETn − μ

σ
,

as well as the conditions for their attainability, is easy due to (1) and (2). Therefore
the proof of the next result is omitted.

Theorem 4 If any of the conditions of Theorem 3(a) holds, then

Bn =
(∫ α

0
(ϕn(u))2 du + (1 − α) (ϕn(α))2 − 1

)1/2

,

where α is the unique zero of gn in (0, θ1). Otherwise,

Bn =
(∫ β

0
(ϕn(u))2 du + (γ − β) (ϕn(β))2

+
∫ α

β

(ϕn(u))2 du + (1 − α) (ϕn(α))2 − 1

)1/2

,

where α is the unique zero of gn in (θ2, θ3), and (β, γ ) is the unique solution to (14).
In both cases the equality is attained for the distribution function F given by

F(x) =

⎧⎪⎨
⎪⎩
0, if x−μ

σ
< − 1

Bn
,

ϕ−1
n

(
1 + Bn

x−μ
σ

)
, if − 1

Bn
≤ x−μ

σ
<

ϕn(α)−1
Bn

,

1, if x−μ
σ

≥ ϕn(α)−1
Bn

.

Remark 1 The inverse ϕ−1
n of ϕn should be understood as the inverse of the function

ϕn restricted to the interior of the set where ϕn = ϕn . Note that in the second case the
distribution function F attaining the bound has the jump of size γ −β at x = ϕn(γ )−1

Bn
.

Remark 2 The results of Theorem 4 can be generalized to provide bounds expressed
in scale units of pth central absolute moment with arbitrary p ∈ [1,∞] instead of
p = 2 only.

We conclude the paper with numerical values of bounds of Theorem 4, which are
presented in Table 1. Note that by (9) and (11) the functions gn and hn are polynomials
of the degree at most n, so numerical verification of the conditions of Theorem 3 is
straightforward. Quite surprisingly, Bn , n ≥ 3, is not monotone sequence, but it can
be observed that each of the sequences B4k , B4k+1, B4k+2 and B4k+3, k ≥ 1, is strictly
increasing.
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Table 1 The values of the bounds Bn , 3 ≤ n ≤ 20

n 3 4 5 6 7 8

Bn 0.0677 0.2710 0.2872 0.2481 0.2286 0.3541

n 9 10 11 12 13 14

Bn 0.3374 0.3075 0.2855 0.3789 0.3591 0.3357

n 15 16 17 18 19 20

Bn 0.3161 0.3903 0.3719 0.3529 0.3364 0.3971

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

Proof of Lemma 2

Proof (a) We need to prove that ϕn
( 1
2

)
> 1. For n = 3, . . . , 6 this follows from the

fact that ϕn is increasing-decreasing with maximum at 1
2 . For n = 2k + 1, k ≥ 3, by

Lemma 2.3 of Bieniek (2014b) we have fk+1:2k+1
( 1
2

)
> 2. Therefore

ϕ2k+1
( 1
2

) ≥ 1
2 fk+1:2k+1

( 1
2

)
> 1.

For n = 2k, k ≥ 4, by Lemma A.3 of Bieniek (2014b) we have fk:2k
( 1
2

) =
fk+1:2k

( 1
2

)
> 2, and therefore

ϕ2k
( 1
2

) ≥ 1
4

(
fk:2k

( 1
2

) + fk+1:2k
( 1
2

))
> 1.

��
Proof (b) For n = 3, . . . , 8 the statement follows from the fact that 1

2 is the point of
maximum of ϕn .

We give the detailed proof for the case n = 4 j + 1, j ≥ 2, only. The proofs for
the remaining cases are analogous. Differentiating (4) with the aid of (3), and putting
u = 1

2 we obtain

ϕ′′
4 j+1

( 1
2

) = 4 j (4 j+1)(4 j−1)
24 j−1

[(4 j−2
j−2

) − 2
(4 j−2
j−1

)

+(4 j−2
j

) + 2
(4 j−2
2 j−2

) − 2
(4 j−2
2 j−1

)]
.

Therefore ϕ′′
9

( 1
2

)
< 0, and it remains to consider j ≥ 3. By the above equality we get

ϕ′′
4 j+1

( 1
2

)
< 0 ⇐⇒ A < 2B + C,
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where

A = (4 j−2
j

) − (4 j−2
j−1

) = (4 j−2)!
j !(3 j−1)! (2 j − 1),

B = (4 j−2
2 j−1

) − (4 j−2
2 j−2

) = (4 j−2)!
j !(3 j−1)!

(2 j)...(3 j−1)
( j+1)...(2 j−1) ,

C = (4 j−2
j−1

) − (4 j−2
j−2

) = (4 j−2)!
j !(3 j−1)!

2 j+1
3 .

Therefore ϕ′′
4 j+1

( 1
2

)
< 0 is equivalent to

(2 j)...(3 j−1)
( j+1)...(2 j−1) > 2

3 ( j − 1),

and since clearly

(2 j)...(3 j−1)
( j+1)...(2 j−1) >

( 3
2

) j−1
,

it suffices to prove that

( 3
2

) j
> j − 1, j ≥ 3.

This can be done by easy induction on j . ��
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