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Abstract When estimating regression models with missing outcomes, scientists usu-
ally have to rely either on a missing at random assumption (missing mechanism is
independent from the outcome given the observed variables) or on exclusion restric-
tions (some of the covariates affecting the missingness mechanism do not affect the
outcome). Both these hypotheses are controversial in applications since they are typ-
ically not testable from the data. The alternative, which we pursue here, is to derive
identification sets (instead of point identification) for the parameters of interest when
allowing for a missing not at random mechanism. The non-ignorability of this mech-
anism is quantified with a parameter. When the latter can be bounded with a priori
information, a bounded identification set follows. Our approach allows the outcome
to be continuous and unbounded and relax distributional assumptions. Estimation of
the identification sets can be performed via ordinary least squares and sampling vari-
ability can be incorporated yielding uncertainty intervals achieving a coverage of at
least (1−α) probability. Our work is motivated by a study on predictors of body mass
index (BMI) change in middle age men allowing us to identify possible predictors of
BMI change even when assuming little on the missing mechanism.
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1 Introduction

In this paper we introduce inferential procedures, based on identification sets, for
regression parameters in situations where a continuous outcome (response in a lin-
ear regression model) is not observed for all individuals. A vast part of the literature
on missing outcome deals with situations where the missingness mechanism is inde-
pendent of the outcome conditionally (or not) on observed covariates, called missing
(completely) at randommechanism, see Little and Rubin (2002). In this case, parame-
ters are identified and inference can be performedwith standard inferential procedures.
When this assumption does not hold (i.e. the missingness mechanism is said to be non-
ignorable), several contributions are concerned with introducing other restrictions to
obtain identification, such asmonotonicity (Manski 2003,Chap. 8) or conditional inde-
pendence restrictions (e.g. pattern mixture models, Daniels and Hogan 2008; Little
2009).

An alternative, which we pursue here, is to determine a region on the parameter
space, that we call identification set, that contains all parameters identified under
plausiblemissing datamechanisms, and to propose inferential procedures accordingly.
In this sense, this contribution is in line with Vansteelandt and Goetghebeur (2001),
Manski (2003), Imbens and Manski (2004), Vansteelandt et al. (2006) and Horowitz
and Manski (2006). Results available in this literature on set identification with non-
ignorable nonresponse require situations where the outcome is bounded.

In this paper we focus on set identification of regression parameters when the
unbounded outcome is continuous and themissingmechanism is non-ignorable.We do
that in a framework where the outcome (continuous valued) and missingness indicator
(binary variable) are regressed parametrically against a set of covariates, yielding an
outcome equation and a selection (missingness mechanism) equation respectively.
The sets depend on the parameter ρ, the correlation between the residuals of the
two equations. We show that the identification set can be bounded when only mild
restrictions are imposed on the missing data model.

We avoid making strong distributional assumptions, initially focusing on a pro-
bit regression model for the selection equation but later relaxing to a more general
class. Notice that assuming a probit selection equation allows for identification of the
outcome equation parameters and estimation of the parameters can be performed via
either ML or two stage least square (TSLS), see Heckman (1979). The first procedure
relies on the assumption of joint normality of the error terms and is very sensitive
to misspecification (Olsen 1982; Wooldridge 2003, p. 566), thus TSLS has become
widely used. However, this method too suffers of serious finite sample instability due
to collinearity. That is usually addressed by using exclusion restriction assumptions
whereby some covariates excluded in the outcome equation are assumed to predict the
missingness mechanism (Little 1985). However, it is well known (Puhani 2000) that
results can be sensitive to the choice of exclusion restrictions since different assump-
tions lead to different conclusions on the parameters of interest. We provide further
illustration of this issuewith a follow up study on bodymass index (BMI). By allowing
for set identification, our approach avoids the use of restriction assumptions in studies
where no strong theory is available to justify them. Furthermore, the theory applies
also to situations outside normality.
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Uncertainty intervals for regression parameters 831

When only sets of possible values are identified, Vansteelandt et al. (2006) have
provided an inferential framework, and for instance they propose to combine the
estimated sets with sampling variation to yield a (1 − α) 100% uncertainty region,
which covers the identification set with a probability of at least (1−α). In this paper, we
deduce uncertainty intervals for the parameters of interests in our context. Uncertainty
intervals are the counterpart of confidence intervals in the case of point identification.

A related stream of the literature has developed methods to assess the sensitivity
of the inference to departures from the missing at random assumption; see, e.g., de
Luna and Lundin (2014), Little et al. (2012), Andridge and Little (2011), Rosenbaum
(2010), Copas and Eguchi (2005), Imbens (2003) and Scharfstein et al. (1999). The
uncertainty intervals that we introduce may be used as a tool for sensitivity analysis
as we illustrate in our case study. Our approach is in this respect closely related to the
one proposed by Copas and Li (1997), as the selection parameter θ in their paper is a
transformation of ρ. Copas and Li (1997) build a profile log likelihood for θ in order
to carry out a sensitivity analysis. Similar models and methods are used for sensitivity
analysis to publication bias in meta analysis (Copas 2013, Henmi et al. 2007).

In Sect. 2 we present a motivating example, a follow up study on individual BMI
increase within a ten year interval. We introduce the model, discuss identification and
illustrate the instability of the results to different exclusion restrictions. Section 3.1
contains the results on set identification under the probit assumption for the missing-
ness mechanism. The latter assumption is relaxed in Sect. 3.2. In Sect. 3.3 we deduce
the uncertainty intervals taking into account sampling variation. The BMI study is pre-
sented in detail in Sect. 4, illustrating the results obtained in the paper. Final sample
properties are illustrated in a simulation study in Sect. 5, where the data generating
mechanisms are chosen to mimic a text book case study on unobserved women wages
due to non-participation in the labour market. The paper is concluded in Sect. 6.

2 Motivating studies

We utilize two different studies to motivate the contribution of this paper. The first
study is concerned with finding predictors of BMI increase within a ten year interval,
between 40 and 50 years of age, see Sect. 4 formore details. The second study estimates
a wage offer function for married women and is used as background in the simulation
study of Sect. 5. In both cases we have an outcome that is observed only for a selected
subsample; in the BMI study selection is due to drop out, where some individuals
have no BMI measure ten years after the first measure; and in the wage offer study
the selection consists in that wage is observed only for those women participating in
the labour force, i.e. women without employment are assumed to have a latent wage
offer. In both cases we may use the following model. Let

y = ν2 + xTβ + η2 (1)

be the outcome equation, where the outcome y (BMI change or wage in the above
mentioned examples) is observed only for individuals with z = 1 (no drop out and
labour force participation in the above examples), where this selection is modelled as
z = I (z∗ > 0) with
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832 M. Genbäck et al.

Table 1 Results of probit regression (2) for the BMI change case study.

Stepwise elimination

Estimate Pr(>|z|) Estimate Pr(>|z|)
Intercept 0.939 0.021 1.090 0.000
Baseline BMI −0.019 0.001 −0.019 0.001

log(Earnings) 0.019 0.039 0.023 0.010

log(Spouse earnings/earnings) 0.019 0.005 0.022 0.001

Spouse age - age 0.007 0.248

Number of children 0.106 0.057

Hospitalization (days) −0.112 0.090

Children aged leq 3 −0.092 0.071

Education > 9 years 0.074 0.361

Education difference 0.060 0.370

Parent leave benefits > 0 0.117 0.006 0.103 0.010

Student benefits > 0 −0.023 0.843

Sick leave benefit > 0 −0.096 0.036 −0.119 0.007

Unemployment benefits > 0 −0.140 0.019 −0.146 0.013

Tobacco use −0.062 0.002 −0.064 0.001

Positive self-reported health −0.017 0.733

Living in urban area −0.018 0.667

z∗ = ν1 + xT δ + η1. (2)

Let us further assume thatη1 ∼ N (0, 1), E(η2) = 0 andVar(η2) = σ 2
2 .Note thatη1 has

variance one without loss of generality. We allow for the errors to be correlated (non-
ignorable selection) such that η2 = ρσ2η1 + ε, where ρ is the correlation between η1
and η2. The variable ε is independent from η1, and has zero mean and variance σ 2

ε ; we
make no further assumptions about its distribution. The parameter of interest isβ . Con-
sistent estimation of β can be obtained with a maximum likelihood estimator or a two
stage least squares (TSLS) estimator (Heckman 1979; Wooldridge 2003, Sect. 17.4).

Table 1 presents the results of fitting the selection equation (probit regression) for
the sample of 4,648 males for which BMI is observed at 40 years of age, of which
1,324 do not show up at the 50 years of age call (selection by drop out). The table
displays the covariates available as well as their δ coefficient and corresponding p-
values. We notice that seven out of sixteen variables are significant at the five percent
level, see Table 1 (first two columns). A backward elimination procedure was used and
the final model is also given in Table 1 (last two columns). The subsequent analyses
are made by restricting the set of covariates in the probit regression to those which
are significant. The outcome equation is then fitted using different estimators and
results are displayed in Table 2. Thus, we use ordinary least squares (i.e. assuming
missingness is ignorable, results in the first two columns of the table, denoted with
OLS), and TSLS without exclusion restrictions (last two columns, denoted with TSLS
no ER). We can note here that OLS and TSLS results differ. In fact, letting ρ free, β
is not well identified. This can be illustrated by considering
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834 M. Genbäck et al.

Fig. 1 The inverse Mills’ ratio as a function of the linear predictor u

E(y | x, z = 1) = ν2 + xTβ + ρσ2λ(u), (3)

where u = xT δ+ν1, and λ(u) = φ(u)
�(u)

, where φ(·) and�(·) are, in order, the standard
normal density and cumulative distribution function. The term λ(u) is often called
inverse Mills’ ratio in the literature. It is clear from (3) that OLS will be biased if
ρ �= 0. In applications the inverse Mills’ ratio is often close to linear in u (Puhani
2000; Jonsson 2012) and this is also the case in our example, see Fig. 1. Since the
second stage of TSLS is a regression of y on x and λ(u), this will imply a collinearity
problem, generating large standard errors (parameters are non significant), see Table
2 (last two columns). In order to avoid collinearity, TSLS is usually performed with
exclusion restrictions on some variables in the outcome equation. Indeed, assuming
that some components of β are zero while the corresponding components of δ are not,
ensures that the Mills’ ratio is not close to be linear in u; see e.g. (Wooldridge 2003,
p. 564). However, unless exclusion restrictions are available from scientific theories,
such assumptions are controversial.

Table 2 also contains TSLS results based on different exclusion restrictions: in col-
umn seven and eight (TSLS ER1) we have excluded one covariate, ’Unemployment
benefits’, from the outcome equation; in column five and six (TSLS ER 2) we have
excluded another ’log(spouse earnings/earnings)’; in column three and four (TSLS
ER3) we have excluded both of them. All exclusion restrictions are made on covari-
ates significant in the probit regression but not in theOLS fit.We obtain p values for the
coefficient of the inverse Mills’ ratio of 71, 12, 10 and 4%, indicating non-ignorable
selection in the latter case only. The results obtained differmost betweenTSLSwithout
exclusion restrictions (Table 2 last two columns) and the other fits, as expected, due
to collinearity. The results also differs between OLS and TSLS with exclusion restric-
tions, and, most worryingly, between the three fits with different exclusion restriction
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Uncertainty intervals for regression parameters 835

assumptions. The most clear example of this is ’Parent leave benefits’ which is esti-
mated to −0.11 (p value 24%) in the OLS fit and to −0.41, −0.25 and −0.25 (p
values 13, 7 and 5%) in the TSLS fits with exclusion restrictions. Another example is
’Sick leave benefits’ which is estimated to 0.06 (p value 57%) in the OLS fit and 0.40,
0.21 and 0.22 (p values 19, 16 and 13%) in the TSLS fits with exclusion restrictions.
A conclusion of this exercise is that unless one has a clear theoretical knowledge on
which variables among those affecting selection should be excluded from the out-
come equation, results may vary, both in effect size and precision. This can happen
irrespective of the inverse Mills’ ratio being significant or not and will be even more
apparent if we include all variables in the probit regression. Similar findings are in
Lennox et al. (2012).

In this paper we avoid the above described problems (collinearity with the inverse
Mills’ ratio, need of exclusion restrictions, instability of results with respect to exclu-
sion restriction chosen) by proposing identification sets for β valid for a certain degree
of selection to be specified in advance.

3 Theory

3.1 Model and identification set

We reformulate the model from Sect. 2 in matrix form. Let y be a N vector with the
complete outcome and X the (N × (p + 1)) complete data regression matrix, i.e.

X =

⎡
⎢⎢⎢⎣

1 xT1
1 xT2
...

...

1 xTN

⎤
⎥⎥⎥⎦ .

The model can be written as follows:

y = X
[

ν2
β

]
+ η2,

the outcome equation, where y and η2 are vectors of dimension N , and

z∗ = X
[

ν1
δ

]
+ η1,

the selection equation, where z∗ and η1 are vectors of dimension N . As earlier, we
assume that all elements of η1 are i.i.d. N(0, 1) and all elements of η2 are i.i.d. with zero
mean and homogenous variance σ 2

2 . Also, η2 = ρσ2η1 +ε, where ρ is the correlation
between the corresponding components of η1 and η2, and ε is independent from η1
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836 M. Genbäck et al.

and has elements with zero mean and variance σ 2
ε ; we make no further assumptions

about its distribution.
Let ys be a n < N vector with the observed outcome and Xs be the corresponding

(n× (p+1)) incomplete data regression matrix. Then the OLS estimates of the linear
regression coefficients of ys on Xs are:

[
ν̂2OLS

β̂OLS

]
= (XT

s Xs)
−1XT

s ys . (4)

Note that E(y | X) = Xβ but E(ys | Xs) �= Xsβ if we have nonignorable missingness.
Let λ(u) be the inverse Mills’ ratio as introduced in Sect. 2. We have:

E

([
ν̂2OLS

β̂OLS

])
= E[E((XT

s Xs)
−1XT

s ys | Xs)] =

= E[(XT
s Xs)

−1XT
s E(ys | Xs)] =

= E

[
(XT

s Xs)
−1XT

s

(
Xs

[
ν2
β

]
+ ρσ2λu

)]
=

=
[

ν2
β

]
+ ρσ2E[(XT

s Xs)
−1XT

s λu] (5)

where λT
u = [λ(u1), λ(u2), . . . , λ(un)], i.e. the values of the inverse Mills’ ratio for

the n observations.
To get an identification set for β we use (5). We see that in order to estimate β both

ρ and σ2 are needed. Since we know that ρ ranges between −1 and +1, the strategy
we pursue here is to provide bounds for σ2, which will depend on ρ, and then let our
identification set depend on a restricted subset of reasonable values for ρ.

Let σ 2
r = E(Var(y | x, z = 1)) and σ̃ 2

1 (x) = Var(z∗ | x, z = 1). Since σ 2
ε =

σ 2
2 (1 − ρ2) we have:

σ 2
r = E(Var(η2 | x, z = 1)) = E [Var (ρσ2η1 + ε | x, z = 1)] =

= E
[
σ 2

ε + ρ2σ 2
2 σ̃ 2

1 (x)
]

= E
[
σ 2
2 − ρ2σ 2

2 + ρ2σ 2
2 σ̃ 2

1 (x)
]

=
= σ 2

2

(
1 − ρ2

(
1 − E

[
σ̃ 2
1 (x)

]))

where 0 ≤ (
1 − E

[
σ̃ 2
1 (x)

]) ≤ 1 for all x, since σ̃ 2
1 (x) ≤ Var(z∗ | x) = 1, for all x.

Hence, we get the inequality:

σ 2
r ≤ σ 2

2 ≤ σ 2
r

1 − ρ2 . (6)

From (5) and (6) we now can obtain identification sets for all components of β.
Let:
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Uncertainty intervals for regression parameters 837

b1, j = E
(
β̂ j

)
− ρmin

σr√
1 − ρ2

min

E[(XT
s Xs)

−1XT
s λu]e j ,

b2, j = E
(
β̂ j

)
− ρminσrE[(XT

s Xs)
−1XT

s λu]e j ,
b3, j = E

(
β̂ j

)
− ρmax

σr√
1 − ρ2

max

E[(XT
s Xs)

−1XT
s λu]e j ,

b4, j = E
(
β̂ j

)
− ρmaxσrE[(XT

s Xs)
−1XT

s λu]e j ,

for j = 1, . . . , p, where e j is a (p+1) vector with all elements 0 except the ( j +1):th
which is 1. Then the lower (βl, j ) and upper (βu, j ) bounds of the identification set are:

[βl, j = min(b1, j , b2, j , b3, j , b4, j ), βu, j = max(b1, j , b2, j , b3, j , b4, j )] (7)

We can see that if we only know that ρ ∈ [−1, 1] then the identification sets range
from −∞ to +∞. In cases where we have knowledge on ρ, e.g., ρ ∈ [ρmin, ρmax ],
where either −1 < ρmin and/or ρmax < 1, we get a bounded identification set for β j .

3.2 Relaxing distributional assumptions

Let E(y | x) = ν2 + xTβ, Var(y | x) = σ 2
2 and

P(z = 1 | y, x) = exp

[
H

(
α0 + ρ√

1 − ρ2

(y − ν2 − xTβ)

σ2

)]
,

where H is a known differentiable function and α0 = ν1+xT δ√
1−ρ2

. Under some additional

regularity assumptions we have (see Appendix):

[
ν2
β

]
= E

([
ν̂2OLS

β̂OLS

])
− σr

ρ√
1 − ρ2

E[(XTX)−1XT H ′
α0

] + O(ρ2).

Note that under the model assumptions of Sect. 2, i.e. H ′
α0

= λα0 , we get:

[
ν2
β

]
= E

([
ν̂2OLS

β̂OLS

])
− σr

ρ√
1 − ρ2

E[(XTX)−1XTλα0 ] + O(ρ3)

which corresponds to (7) up to convergence order.

3.3 Taking the sampling variability into account: uncertainty intervals

With β̂ j we denote the j-th element of β̂OLS ; see (4). The bounds (7) can be estimated

from the observed data, by using β̂ j for E
(
β̂ j

)
, and by estimating E[(XT

s Xs)
−1XT

s λu]
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838 M. Genbäck et al.

with (XT
s Xs)

−1XT
s λû , where the parameters of u are estimatedwith a probit regression

to yield û. Also σ 2
r can be estimated with the residual sample variance of the OLS

fit, thereby implying a slight overestimation of σ 2
r . The latter can be seen with the

following asymptotic argument:

σ 2
OLS = Var(y − ν2OLS − xTβOLS | z = 1)

= σ 2
r + Var(E(y − ν2OLS − xTβOLS | x, z = 1) | z = 1) > σ 2

r ,

where σ 2
OLS , ν2OLS and βOLS are the limits in probability of the OLS and where

necessary regularity conditions are assumed for the first equality to hold. The overes-
timation is slight if E(y | x, z = 1) is close to linear as a function of x, which is often
the case in applications (Puhani 2000).

These estimates will induce sampling variability into the identification set. The
latter variability is incorporated to create uncertainty intervals with a confidence level
of at least (1 − α)100%:

[
β̂l, j − c α

2
se(β̂l, j ), β̂u, j + c α

2
se(β̂u, j )

]
,

where c α
2
is the (1 − α/2)100% percentile of the standard normal distribution, since

β̂l, j and β̂u, j are asymptotically normal. This is a strong uncertainty region as defined
in Vansteelandt et al. (2006), that is it covers all values in the identification set
([βl, j , βu, j ]) with at least (1 − α)100% probability.

Estimation of se(β̂l, j ) and se(β̂u, j ) can be performed with bootstrap techniques
since all estimated quantities are identified. In this paper, however, we simply use the
standard errors of the OLS estimates β̂ j to construct the uncertainty intervals. This
implies an underestimation of the sampling variability but our simulations suggest that
this is compensated by the otherwise conservative use of strong uncertainty intervals.

4 Predictors of BMI changes for middle age men

The analysis is performed on data collected via the Västerbotten Intervention Pro-
gramme (VIP) (Norberg et al. 2010). VIP was initiated in 1985 to counter the high
prevalence for cardiovascular disease in Västerbotten county, north of Sweden. From
1991 all residents turning 40, 50 and 60 have been asked to participate. We study all
married or cohabiting 40 year old males born 1950–1956 who have chosen to par-
ticipate, looking for predictors of BMI change from 40 to 50 years of age. By using
Swedish personal numbers, these data are linked to socioeconomic and demographic
information. At the 50 year call only 3,324 out of the 4,648 males that came to the 40
year call returned, so we have a dropout of 28.5%. With such a level of dropout, we
may question the reliability of standard OLS techniques, that rely on the missing at
random assumption. In particular, a possibility could be that individuals that do not
show up for the second check up have a larger increase in BMI than the ones that do
(corresponding to a negative ρ).
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Fig. 2 Graphical display of the OLS estimates (dot), the 95% confidence intervals (CI) and uncertainty
intervals (UI) obtained with ρ in [−0.5, 0.5] and [0, 0.9], for the three variables of Table 3 which were
significant at the 5% level in the OLS fit.

In Table 3 we present uncertainty intervals that are built assuming three different
sets of values for ρ: (−0.9, 0), (−0.5, 0) and (−0.5, 0.5) and confidence intervals
obtained by assuming missing at random (i.e., letting ρ = 0 and using OLS). The first
two sets of values for ρ illustrate an assumption that ρ is not positive. We consider
also an interval containing both negative and positive values. The uncertainty intervals
are obtained from data as described in Sect. 3.3.

The results obtained are bestly displayed graphically as done in Fig. 2 for the three
variables which are significant at the 5% level in the OLS analysis. Results show
that only the two covariates ’Baseline BMI’ and ’Positive self-reported health’ have
a non-zero negative effect under all ranges of ρ considered. Their UI:s contain the
value zero only under a rather extreme negative correlation (i.e. −0.98 or lower). On
the other hand, ’Tobacco use’ has a non-zero positive effect under all ranges of ρ

considered, although the UI may contain zero for positive ρ:s larger than 0.52. Such
considerations are the added value with respect to the analyses summarised in Table 2.

Note that ’Positive self-reported health’ is the only significant variable that was
not significant in the probit regression. If the component of δ corresponding to “Pos-
itive self-reported health” is zero the corresponding component β̂OLS,z=1 is not dis-
torted and therefore our identification set will be reduced to a point, see Hutton and
Stanghellini (2010). The corresponding uncertainty interval is then equivalent to a
confidence interval with same level. On the other hand, if one of the element in δ is
small, it will reflect in the estimates and we will still get a rather narrow uncertainty
interval. For that reason, when constructing the uncertainty intervals, we have used all
available covariates in the probit regression, see Table 1.

5 A simulation study based on a wage offer study

5.1 Design of the study

The design is an attempt to mimic the characteristics of a case study on married
women’s wage mentioned in Sect. 2. The study focused on estimating the wage
offer Eq. (1) given a set of observed covariates, with a selected sample since wage is
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observed only for thewomenwhowork; seeMroz (1987) and for amore recent analysis
(Wooldridge 2003, Chap. 17.4). The covariates used are ’Household income–woman’s
income’ (nwi f einc), ’Educational attainment in years’ (educ), ’Years of labour mar-
ket experience’ (exper ), ’Age’, ’Number of children 5 years or younger’ (kids5) and
’Number of children 6–18 years old’ (kids618).

The simulated samples in this study are obtained by drawing with replacement a
given number of units out of the 753women in the study.We use their true values on all
explanatory variables, but simulate a new response variable using models (1) and (2),
while setting ρ = 0.1, 0.2 or 0.4. The other parameters (δ, β and σ2) are set to their
estimated values obtained fromTSLS applied to the original dataset with all covariates
included in the selection equation and age, kids5 and kids618 are excluded from the
outcome equation. More specifically, given x we simulate data from the following
model:

y = −0.452 + x [0.006, 0.097, 0.039, −0.001, 0, 0, 0]T + ρ · σ2 · η1 + ε,

z∗ = 0.270 + x [−0.012, 0.131, 0.123, −0.002, −0.053, −0.868, 0.036]T + η1,

where x = [nwi f einc, educ, exper, exper2, age, kids5, kidsge618], η1 ∼ N (0, 1)
and σ2 = 0.662. In order to mimic the marginal distribution of the observed
women’s wages, the distribution of ε is chosen to be a centered gamma: ε =
E(G) − G, where G is gamma distributed with equal shape and scale parame-
ters (i.e. both parameters are equal to Var(ε)1/3). From our model assumptions
(see Sect. 3.1) we also impose that

√
Var(ε) = σ2

√
1 − ρ2, thereby imply-

ing that
√
Var(ε) = 0.659, 0.649, 0.607 for the different values of ρ respec-

tively. In this study we build 10,000 replicates of samples with sizes 100, 350
and 753.

For the identification sets (7) we let ρ ∈ [0, 0.5] and compute uncertainty intervals
as described in Sect. 3.3. We apply the TSLSs procedure without restrictions and with
two different exclusion restrictions: TSLS E1, where we exclude three variables (age,
kids5 and kids618) from the outcome equation, i.e. TSLS E1 corresponds to the data
generating mechanism of the study; TSLS E2, where four variables are excluded (i.e.,
also nwi f einc) from the outcome equation, i.e. TSLS E2 is a misspecified model.
Finally, OLS estimates are also produced.

5.2 Results

Results for theβ coefficient corresponding to educ are summarized in Fig. 3, where the
width of the uncertainty interval and confidence intervals for the 10,000 replicates1 are
reported with box plots. Empirical coverage are also given in the figure. As expected
TSLS implies confidence intervals due to collinearity problems (variance inflation

1 TSLS will sometimes estimate ρ outside of [−1, 1] which will lead to unstable results. These replicates
are removed. Thus, about 49, 23 and 9% of the replicates are removed for TSLSs procedure without
exclusion restrictions with sample size 100, 350 and 753 respectively. The same problem occurred in about
6% of the replicates for the smallest sample size and only at a few occasions for the other sample sizes when
using exclusion restrictions (TSLS E1 and TSLS E2). The simulations are performed with R software.
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Fig. 3 Box plot of the width of 95 % uncertainty intervals and 95 % confidence intervals for the regression
coefficient of educ when varying ρ and sample sizes. The empirical coverage of the intervals are above
each box.

factor ranging from around 10 to 100). TSLS E1 (correctly specified model) yields
tighter confidence intervals and empirical coverage close to the nominal level. TSLS
E2 gives too low empirical coverage for the parameter due to model misspecification
(a problem that increases with sample size), as does OLS in all cases for the same
reason.

Uncertainty intervals are not directly comparable to confidence intervals since they
converge to a non-degenerate interval as sample size grows. Thus, uncertainty intervals
are expected to be wider than confidence intervals with correctly specified model
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(TSLS E1). Uncertainty intervals should—and in our simulations do—imply a higher
empirical coverage rate than the nominal level since they are constructed to take into
account the uncertainty due to the unknown parameter ρ. By letting ρ be uncertain we
avoid the need to have prior knowledge about exclusion restrictions, and we see that
using an incorrect exclusion restriction (TSLS E2) can lead to serious under-coverage.
However, one should also note that the coverage of the uncertainty intervals relies on
correct a priori information on ρ, i.e. an interval for ρ containing the true value. Using
an interval for ρ not containing the true value will typically yield too low coverage.
Using ρ ∈ [−0.5, 0] instead of ρ ∈ [0, 0.5] in the above simulations yielded empirical
coverages often below 95% although higher than coverages obtained with OLS, since
ρ = 0 is included.

Finally, it is worth noting that the p values of the inverse Mills’ ratio (obtained
in the second stage of TSLS) are not significant in most of the replicates (even
with non-zero ρ), making the corresponding test of no selection not reliable in
practice, i.e. the data carry little information on whether the sample is selected or
not.

6 Discussion

We have shown how to compute bounds on the parameters of a regression model with
missing continuous outcome without making strong untestable assumptions about
missing data. The bounds make evident which inference can be made with reason-
ably mild restrictions on the value of ρ, which expresses the correlation between the
unmeasured factor that drives the missingness mechanism and the residuals of the
regression model under study. This is especially important with large datasets, where
the sampling variation will be small and therefore the lack of knowledge on ρ is
the major cause for uncertainty. Furthermore, these bounds can be computed without
imposing any exclusion restriction and contain the missing at random assumption as a
particular case. Therefore, they provide an indication of the impact that the untestable
assumptions have on the inference of the parameters. Note that simulations show
that correct coverage of the uncertainty intervals relies on specifying an interval for
ρ containing the true value. An alternative to bounds is to use Bayesian inference,
where a posterior distribution of the parameters of interest is deduced by integrating
out the nuisance parameter ρ (Daniels and Hogan 2008; Rubin 1977). Our approach
has the advantage of relaxing distributional assumptions. Since the bounds are based
on standard OLS techniques, they are also easy to compute using standard statistical
softwares.
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Appendix

Derivation of identification set under the assumptions of Sect. 3.2

Let q = α0 + ρ√
1−ρ2

(y−ν2−xT β)
σ2

. Then by Taylor expanding P(z = 1 | y, x) around
q = α0 we get:

P(z = 1 | y, x) = exp H

(
α0 + ρ√

1 − ρ2

(y − ν2 − xTβ)

σ2

)
=

= eH(α0)

(
1 + ρ√

1 − ρ2
H ′(α0)

(
y − ν2 − xTβ

σ2

)
+ D

)

where D =
(

ρ√
1−ρ2

)2
H ′′(a)+H ′(a)2

2

(
y−ν2−xT β

σ2

)2
for some a between α0 and q.

From this we get:

P(z = 1 | x) = Ey(P(z = 1 | y, x)) =

= eH(α0)

(
1 + E

(
ρ√

1 − ρ2
H ′(α0)

(
y − ν2 − xTβ

σ2

))
+ D′

)
=

= eH(α0)
(
1 + D′)

where D′ = E(D)|x. Since

f (y | z = 1, x) = 1

P(z = 1 | x) f (y | x)P(z = 1 | y, x)

we have

E[y | z = 1, x] =

=
∫
y f (y | x)eH(α0)

(
1 + ρ√

1−ρ2
H ′(α0)

(
y−ν2−xT β

σ2

)
+ D

)
dy

eH(α0) (1 + D′)
=

=
∫
A + B + Cdy

(1 + D′)
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with

∫
Ady =

∫
y f (y | x)dy = E(y | x) = ν2 + xTβ

∫
Bdy =

∫
y f (y | x) ρ√

1 − ρ2
H ′(α0)

(
y − ν2 − xTβ

σ2

)
dy =

=
ρ√
1−ρ2

H ′(α0)

σ2

∫
y f (y | x)

(
y − ν2 − xTβ

)
dy =

= σ2
ρ√

1 − ρ2
H ′(α0)

∫
Cdy =

∫
y f (y | x)Ddy = D′′.

So we have:

E[y | z = 1, x] =
ν2 + xTβ + σ2

ρ√
1−ρ2

H ′(α0) + D′′

(1 + D′)
=

= ν2 + xTβ + σ2
ρ√

1 − ρ2
H ′(α0) + D′′′

where D′′′ =
D′′−D′

(
ν2+xT β+σ2

ρ√
1−ρ2

H ′(α0)
)

1+D′ .

Let Xs be as in Sect. 3.1. If we let (H ′
α0

)T = [H ′(α01) H ′(α02) · · · H ′(α0n)]
then:

E

([
ν̂2OLS

β̂OLS

])
= E[(XT

s Xs)
−1XT

s E(y | Xs)] =

= E

[
(XT

s Xs)
−1XT

s

(
Xs

[
ν2
β

]
+ σ2

ρ√
1 − ρ2

H ′
α0

+ D′′′
)]

=

=
[

ν2
β

]
+ ρ√

1 − ρ2
σ2E

[
(XT

s Xs)
−1XT

s H
′
α0

]
+ O(ρ2). (8)

For the last step to be valid we need to assume that (XT
s Xs)

−1XT
s D

′′′ is dominated
by some Bn and that E(Bn) < ∞. By using (6) and (8) we get:

[
ν2
β

]
= E

([
ν̂2OLS

β̂OLS

])
− σr

ρ√
1 − ρ2

E[(XT
s Xs)

−1XT
s H

′
α0

] + O(ρ2)
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since

σr√
1 − ρ2

ρ√
1 − ρ2

E[(XTX)−1XT H ′
α0

] =

= σr
ρ√

1 − ρ2
E[(XTX)−1XT H ′

α0
] + O(ρ2).
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