
Stat Papers (2015) 56:749–771
DOI 10.1007/s00362-014-0607-5

REGULAR ARTICLE

On longitudinal moving average model for prediction
of subpopulation total

Tomasz Ża̧dło
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Abstract In the paper the empirical best linear unbiased predictor of the subpop-
ulation total is proposed under some longitudinal model where both temporal and
spatial moving average models of profile specific random components are taken into
account. Two estimators of the mean square error of the predictor are proposed as
well. Considerations are supported by two Monte Carlo simulation studies and the
case study.
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1 Introduction

In the survey sampling estimation or prediction of population characteristics is usually
the key issue but subpopulations (domains) characteristics are of interest as well.What
is more, in many cases we are looking for possibilities of increasing the accuracy,
especially when the sample size in the domain of interest in the period of interest is
small. Such domains are called small areas. In the case of the longitudinal data we
can “borrow strength” from different periods and/or domains and use the information
on spatial and temporal correlation. In the paper some unit-level longitudinal model
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is proposed which is a special case of the Linear Mixed Model (LMM) with two
random components which obey assumptions of spatial moving average model and
the temporal MA(1) model.

Verbeke and Molenberghs (2000, p. 24) or Hedeker and Gibbons (2006, p. 115)
propose a longitudinal model which is a special case of the Linear Mixed Model with
profile-specific random components, where the profile is defined as a vector of random
variables for a population element in different periods. Here we define the profile as
a vector of random variables for observations of an element in some domain what
allows to take the possibility of population changes in time into account. Hence, the
profile is not element specific but element and domain specific. Inmentioned books the
assumptions are made only for the sampled elements while we make assumptions for
all of population elements.What ismore, the authors assumeprofiles to be independent,
while here they are spatially correlated.

Inmany papers small area predictors are derived under both area-level and unit-level
models where the spatial correlation is taken into account but assuming that all data
refer to single time point (Molina et al. 2009; Petrucci and Salvati 2006; Petrucci et al.
2005; Pratesi and Salvati 2008; Chandra et al. 2007). The models are special cases of
the Linear Mixed Model where one of the random components obeys the assumption
of the SAR(1) process between subpopulations (what means that we assume the same
realization of the random component for all of the population elements which belong
to the same domain).What is more, Salvati et al. (2009) propose the spatialM-quantile
predictorwhich occurred slightlymore accurate than other predictors for contaminated
data in their simulation studies.

If longitudinal data are studied many predictors are considered especially based on
area-level models. Rao and You (1994) and Esteban et al. (2012) assume longitudinal
area-level models with time effects under the assumption of the AR(1) model and
independent area-level effects. In Marhuenda et al. (2013) the area-level model with
AR(1) time effects and SAR(1) area effects is proposed. Singh et al. (2005) using the
Kalman filtering approach propose a spatio-temporal model. Ugarte et al. (2009) study
semiparametric models combining both non-parametric trends and small area random
effects using P-spline regression.

Saei and Chambers (2003) propose many small area methods for longitudinal data
as a part of the EURAREA project. In the sections devoted to both unit-level and
area-level models they consider independent area effects together with independent or
autocorrelated time effects. Models with time varying area effect are studied as well.
The unit-level model with spatially correlated area effects is also considered but for
one period.

Molina et al. (2010a) in the European Project SAMPLE propose inter alia many
area and unit-levelmodels and predictors. In the chapter 7 they study longitudinal area-
level models with time varying area effects assuming the independence of the effects
between domains and the AR(1) model across time instants (independence of time
varying area effects is also considered). They also propose partitioned versions of the
model,where domains are divided into two groups and parameters of the distribution of
the time varying area effects differ between these groups. In the chapter 8 they consider
area-level time-space models which are special cases of the Linear Mixed Model
with three random components, including assumptions of the AR(1) and the SAR(1)
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On longitudinal moving average model 751

processes for random components. In the chapter 9 they consider unit-level models
with independent and correlated time-effects. In one of the models they assume three
random components including independent area effects and time varying area effect
which obeys assumptions of the AR(1) model across time instants and independence
across areas.

In this paper we propose some longitudinal model and we derive empirical best
linear unbiased predictor under the model together with its MSE estimators. The main
differences between the proposed approach and proposals presented in other papers
are as follows:

– random components in our model are profile specific while in other papers area
effects or time effects or time varying area affects are assumed, what means that in
our case we do not assume that realizations of random components are the same
within domains or within time instants or vary only between domains and time
periods,

– in this paperweuse the spatialmoving averagemodel to describe spatial dependence
instead of the first order spatial autoregressive model SAR(1),

– here we use the first order temporal moving average model to describe temporal
autocorrelation instead of the first order autoregressive model,

– spatial dependence is assumed at the low aggregation level—between profiles
instead of domains,

– temporal autocorrelation is assumed at the low aggregation level—within profiles
instead of within domains,

– in the model changes of population and changes of domains’ affiliation in time are
taken into account.

2 Basic notations

Longitudinal data for periods t = 1, . . . , M are considered. In the period t the popula-
tion of size Nt is denoted byΩt . The population in the period t is divided into D disjoint
subpopulations (domains)Ωdt of size Ndt , where d = 1, . . . , D. Let the set of popula-
tion elements for which observations are available in the period t be denoted by st and
its size by nt . The set of subpopulation elements for which observations are available
in the period t is denoted by sdt and its size by ndt . The d∗th domain of interest in the
period of interest t∗ will be denoted byΩd∗t∗. LetΩrdt = Ωdt \sdt , Nrdt = Ndt −ndt ,⋃M

t=1 Ωt = Ω , ¯̄Ω = N ,
⋃M

t=1 Ωdt = Ωd , ¯̄Ωd = Nd ,
⋃M

t=1 Ωrdt = Ωrd , ¯̄Ωrd = Nrd ,⋃M
t=1 st = s, ¯̄s = n,

⋃M
t=1 sdt = sd , ¯̄sd = nd .

Let Mid denotes the number of periods when the i th population element belongs
to the dth domain and mid—the number of periods when the i th population element
(which belongs to the dth domain) is observed. Let Mrid = Mid −mid . It is assumed
that the population may change in time and that one population element may change
its domain affiliation in time. Hence, sets of population elements Ωd (where d =
1, 2, . . . , D) may overlap. Values of the variable of interest are realizations of random
variables Yid j for the i th population element which belongs to the dth domain in the
period ti j , where i = 1, 2, . . . , N , j = 1, 2, . . . , Mid , d = 1, 2, . . . , D. The vector
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Yid = [
Yid j

]
Mid×1 will be called profile and the vector Ysid =

[
Yid j

]

mid×1
will be

called sample profile. Let the vector Yrid =
[
Yid j

]

Mrid×1
be profile for nonobserved

realizations of random variables.
The proposed approach may be used to predict the domain total for any (past,

current and future) periods but under assumption that values of the auxiliary variables
and the division of the population into subpopulations in the period of interest are
known.

3 Superpopulation model

Special cases of the general or the generalized mixed linear models are widely used
in different areas including for example genetics (e.g. Bernardo 1996), insurance (e.g.
Wolny 2009) and statistical image analysis (e.g. Demidenko 2004, chapter 12), We
consider superpopulation models used for longitudinal data (compare Verbeke and
Molenberghs, 2000; Hedeker andGibbons, 2006) which are special cases of the LMM.
The following model is assumed:

Yd = Xdβd + Zdvd + ed, (1)

where Yd = col1≤i≤Nd (Yid), where Yid is a random vector of size Mid × 1, Xd =
col1≤i≤Nd

(Xid), whereXid is a knownmatrix of sizeMid× p,Zd = diag1≤i≤Nd
(Zid),

where Zid is a known vector of size Mid ×1 (e.g. vector of 1’s), vd = col1≤i≤Nd
(vid),

where vid is a random component and vd(d = 1, 2 . . . ,D) are assumed to be indepen-
dent, ed = col1≤i≤Nd

(eid), where eid is a random component vector of size Mid × 1
and eid (i = 1, 2, . . . , N ; d = 1, 2, . . . , D) are assumed to be independent, vd and ed
are assumed to be independent.

What is more, the vector of random components vd obeys assumptions of the spatial
moving average process, i.e.

vd = λ(sp)Wdud + ud, (2)

where Wd is the spatial weight matrix for profiles Yid, ud ∼ (0, σ 2
u INd). Hence,

vd ∼ (0, Rd), where Rd = σ 2
u Hd and Hd = INd + λ(sp)(Wd + WT

d ) + λ2(sp)WdWT
d .

Moreover, elements of eid obey assumptions of MA(1) temporal process, i.e.

eidt = εidt − λ(t)εidt−1. (3)

where εtd j ∼ (0, σ 2
ε ). Hence,

Cov(etd j , et ′d ′ j ′) =
⎧
⎨

⎩

σ 2
ε (1 + λ2(t)) if t = t ′

−σ 2
ε λ(t) if |t − t ′| = 1

0 otherwise
(4)

and then eid ∼ (0, �id), where elements of �id are given by (4).
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On longitudinal moving average model 753

Variance-covariance matrices of Yd (where d = 1, 2, . . . , D) are functions of
unknown parameters δ = [

σ 2
ε σ 2

u λ(t) λ(sp)
]
.

If the population changes in time, new elements of the population or observations
of the population element after the change of its domain affiliation form a new pro-
file Yid. It means that observations of the new population element will be temporally
correlated within the profile and spatially correlated with other population elements
within the subpopulation. If the population element changes its domain affiliation its
new observations will be temporally correlated (but temporally uncorrelated with old
observations) and spatially correlatedwith other population elementswithin a new sub-
population (but spatially uncorrelated with elements of the previous subpopulation).

To explain the idea of the model let us suppose that we study a population of house-
holds divided into domains according to the type of the household (what includes the
criterion of the number of persons who belong to the household). Let the variable of
interest be expenditures on some goods and let us consider the problem of prediction of
the expenditures for the domains. Based on the model we assume that expenditures of
two households of the same type (i.e. which belong to the same domain) are spatially
correlated (where the distance may be measured in geographical or economic sense).
Moreover, we assume that expenditures of each household are temporally autocorre-
lated assuming theMA(1)model. The assumption of theMA(1)model (which belongs
to the class of short memory time series models) implies that non-zero covariances are
assumed for lags which equal 1 (for periods t and t −1). The assumption is more real-
istic than the assumption of the temporal independence and in the case of fast changes
in the economy and in the economic situation of households it does not have to be
treated as strong. Let us consider a situationwhen the type of household is changed e.g.
from the household which consists of two persons (a couple) into the household which
consists of three persons (a couple and a child). Hence, we assume that the temporal
correlation is broken. Moreover, the household is not longer spatially correlated with
households of the previous type but it becomes spatially correlated with households
of the new type.

4 Best linear unbiased predictor

Let β̂d∗ =
(

XT
sd∗V−1

ssd∗Xsd∗
)−1

XT
sd∗V−1

ssd∗Ysd∗, where Xsd∗ is a known matrix of

auxiliary variables of size
∑nd∗

i=1 mid∗ × p, Ysd∗ is a
∑nd∗

i=1 mid∗ × 1 vector of random

variables Yid j , V−1
ssd∗ = (

σ 2
u Zsd∗Hd∗ZT

sd∗ + diag1≤i≤nd∗(�ssid∗)
)−1

, where Zsd =
diag1≤i≤nd (Zsid), Zsid is a known vector of size mid × 1 (e.g. the vector of 1s),
�ssid is a submatrix obtained from �id by deleting rows and columns for unsampled
observations. Based on the Royall (1976) theorem it is possible to derive the formula
of the best linear unbiased predictor (BLUP) of the subpopulation total:

θ̂ BLU
d∗t∗ =

∑

i∈sd∗t∗
Yid∗t∗ + x̃rd∗t∗β̂d∗ + γ T

rd∗
(
σ 2
u Zrd∗Hd∗ZT

sd∗ + diag1≤i≤Nrd∗(�rsid∗)
)

×V−1
ssd∗

(
Ysd∗ − Xsd∗β̂d∗

)
, (5)
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where x̃rd∗t∗ is a 1 × p vector of totals of auxiliary variables in Ωrd∗t∗, γrd∗ is a∑nd∗
i=1 Mrid∗ × 1 vector of ones for observations in Ωrd∗t∗ and zero otherwise. The

predictor (5) is the sum of three elements. If t∗ is the future period then sd∗t∗ = ∅,
Ωrd∗t∗ = Ωd∗t∗ and the first element of (5) (given by

∑
i∈sd∗t∗ Yid∗t∗) equals zero.

Hence, if the domain total of the auxiliary variable is known in the future period as well
as the division of the population into subpopulations in the future period is known,
then it is possible to use (5) to predict the future domain total of the variable of interest.

The MSE of the BLUP given by (5) is as follows:

MSEξ (θ̂
BLU
d∗t∗ ) = Varξ (θ̂

BLU
d∗t∗ − θ) = g1(δ) + g2(δ), (6)

where

g1(δ) = γ T
rd∗

(
σ 2
u Zrd∗Hd∗ZT

rd∗ + diag1≤i≤Nrd∗(�rrid∗)
)

γrd∗

− γ T
rd∗

(
σ 2
u Zrd∗Hd∗ZT

sd∗ + diag1≤i≤Nrd∗(�rsid∗)
)

×V−1
ssd∗

(
σ 2
u Zrd∗Hd∗ZT

sd∗ + diag1≤i≤Nrd∗(�rsid∗)
)T

γrd∗, (7)

g2(δ) = γ T
rd∗

(
Xrd∗−

(
σ 2
u Zrd∗Hd∗ZT

sd∗+diag1≤i≤Nrd∗ (�rsid∗)
)

V−1
ssd∗Xsd∗

)

×
(

XT
sd∗V−1

ssd∗Xsd∗
)−1(

Xrd∗−
(
σ 2
u Zrd∗Hd∗ZT

sd∗+diag1≤i≤Nrd∗ (�rsid∗)
)

V−1
ssd∗Xsd∗

)T
γrd∗,

(8)

where Zrd = diag1≤i≤Nrd (Zrid), Zrid is a known vector of size Mrid × 1 (e.g. the
vector of 1 s), �rrid is a submatrix obtained from �id by deleting rows and columns
for sampled observations, �rsid is a submatrix obtained from �id by deleting rows for
sampled observations and columns for unsampled observations.

5 Empirical best linear unbiased predictor

Let the unknown variance parameters in (5) be replaced by their maximum likeli-
hood (ML) or restricted maximum likelihood (REML) estimates under normality. We
obtain the two-stage predictor called EBLUP. It remains unbiased under some weak
assumptions (inter alia symmetric but not necessarily normal distribution of random
components for the model assumed for the whole population). The proof is presented
by Ża̧dło (2004) for the empirical version of Royall (1976) BLUP and it is based on
the results presented by Kackar and Harville (1981) for the empirical version of the
BLUP proposed by Henderson (1950).

The problem of MSE estimation based on the Taylor expansion is considered in
many papers on small area estimation but for the empirical version of BLUP pro-
posed by Henderson (1950). The first proposal of the MSE estimator of the empir-
ical version of the BLUP proposed by Henderson (1950) was presented by Kackar
and Harville (1984) but they did not prove asymptotic unbiasedness of their MSE
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estimator. The landmark paper on the topic is the paper written by Prasad and Rao
(1990). They assume inter alia (as in this paper) independence of random variables
for elements of population from different domains and that estimators of variance
components are unbiased (what is not true for ML and REML estimators). They con-
sider three special cases of the linear mixed model: Fay and Herriot (1979) model,
the nested error regression model and the random regression coefficient model. To
derive the MSE estimator they use three approximations. They prove that two of
them are of order o(D−1) for all of the three considered models. They also prove
that the third approximation is of order o(D−1) but only for the Fay and Herriot
(1979) model. Unbiasedness of estimators of variance components is not assumed by
Datta and Lahiri (2000). They assume the linear mixed model with block-diagonal
variance covariance matrix (as in this paper) and they prove that the bias of their
MSE estimator for ML and REML estimators of variance components is of order
o(D−1). But the proof is valid if the variance-covariance matrix is a linear com-
bination of variance components. Das et al. (2004) consider a different asymptotic
set-up. The bias of their MSE estimator is of order o(m−2∗ ) wherem∗ = min1≤k≤qmk

where mk = ∥
∥ZT

k PZk
∥
∥
2, Zk is the design matrix for the kth random effect

factor, P = V−1
ss − V−1

ss Xs(XT
s V−1

ss Xs)
−1XT

s V−1
ss , V−1

ss = diag1≤d≤DV−1
ssd and

Xs = col1≤d≤DXsd.
In the previous paragraph the problem of the MSE estimation was considered but

for the empirical version of Henderson (1950) BLUP while in this paper empiri-
cal version of the BLUP proposed by Royall (1976) is studied. Using our notation
Royall (1976) derived the BLUP of domain characteristic defined as a linear combi-
nation γ T Yd = γ T (Xdβd + Zdvd + ed) while Henderson (1950) derived BLUP of
γ T (Xdβd +Zdvd), where γ is a known vector. Hence, the problem studied by Hender-
son (1950)may be treated as a special case of the problem considered byRoyall (1976).
The MSE estimator of the empirical version of Royall (1976) BLUP is proposed by
Ża̧dło (2009). He presented proof (under some regularity conditions) that the bias of
derived MSE estimator is of order o(D−1). The proof is a direct generalization of the
results presented by Datta and Lahiri (2000) for the empirical version of Henderson
(1950) BLUP. MSE estimators presented below are special cases of the estimators
derived by Ża̧dło (2009) where it assumed that the variance-covariance matrix is a
linear combination of unknown variance parameters. For the proposed model (1) the
assumption is not met what means that the order of approximation of MSE given by
the equation (9) and the order of the bias of the MSE estimators presented below [see
(10) and (11)] are not proven to be o(D−1).

Applying results presented by Ża̧dło (2009) under the model (1) forML and REML
estimators of δ we obtain:

MSEξ (θ̂
EBLU
d∗t∗ (δ̂)) ≈ g1(δ) + g2(δ) + g∗

3(δ), (9)

where g∗
3(δ) is given by (13) in the “Appendix”.

Applying results presented by Ża̧dło (2009) under the model (1) theMSE estimator
for REML estimators of δ is given by:
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̂MSEξ

(
θ̂ EBLU
d∗t∗ (δ̂)

)
= g1(δ̂) + g2(δ̂) + 2g∗

3(δ̂) (10)

and for ML estimators of δ by:

̂MSEξ

(
θ̂ EBLU
d∗t∗ (δ̂)

)
= g1(δ̂) + g2(δ̂) + 2g∗

3(δ̂) − BT
δ̂
(δ̂)

∂g1(δ̂)

∂δ
, (11)

where for the proposed model (1) g1(δ̂), g2(δ̂), g
∗
3(δ̂) are given by (7), (8), (13) where

δ is replaced by δ̂. BT
δ̂
(δ̂) and

∂g1(δ̂)
∂δ

are given by BT
δ̂
(δ) and

∂g1(δ)
δδ

where δ is replaced

by δ̂. BT
δ̂
(δ) for ML and REML estimators of δ are given in the Appendix by (14) and

(15) respectively. The elements of
∂g1(δ)

∂δ
are given in the “Appendix” by (16)–(19).

In the simulation study the proposed MSE estimator will be compared with delete-
one-domain jackknife MSE estimator proposed by Chen and Lahiri (2002). For the
proposed model (1) it is given by

̂MSE
jack
ξ (θ̂ EBLU

d∗t∗ (δ̂)) = bd∗t∗(δ̂) − D − 1

D

D∑

d=1

(
bd∗t∗(δ̂−d) − bd∗t∗(δ̂)

)

+D − 1

D

D∑

d=1

(
θ̂ EBLU
d∗t∗ (δ̂−d) − θ̂ EBLU

d∗t∗ (δ̂)
)2

, (12)

where δ̂−d is an estimator given by the same formula as δ̂ but based on the data
without the dth domain, bd∗t∗(δ̂) = g1(δ̂) + g2(δ̂), g1(δ̂), g2(δ̂) are given by (7) and

(8) respectively, where δ is replaced by δ̂, bd∗t∗(δ̂−d) is given by bd∗t∗(δ̂), where δ̂ is
replaced by δ̂−d , θ̂ EBLU

d∗t∗ (δ̂−d) is given by (5) where δ is replaced by δ̂−d .
It is known, that parametric bootstrap distribution approximates the true distribution

of the EBLUP very well—see the proof presented by Chatterjee et al. (2008). Hence,
it is also possible to use the parametric bootstrap method to estimate the MSE of the
EBLUP. The problem for unit-level models in small area estimation is considered
inter alia by González et al. (2007), González et al. (2008). In each iteration of both
jackknife and bootstrap methods we need to estimate parameters of the model (what is
time-consuming). Because the number of iterations in the delete-one-domain jackknife
procedure for the data considered in the Sects. 6 and 7 is several times smaller than
in the bootstrap method we will use the jackknife method to estimate the MSE in the
Monte Carlo simulation studies.

6 Monte Carlo simulation study: artificial data

The simulation study was conducted using R package (R Development Core Team
2013). It is based on artificial longitudinal data from M = 3 periods. The population
size in each period equals N = 400 elements. The population consists of D = 20
domains (subpopulations) each of size 10 elements. The balanced panel sample is
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considered—in each period the same 40 elements are observed. The sample sizes in
D = 20 domains are: 1 for seven domains, 2 for six domains and 3 for seven domains.
Model parameters are estimated using restricted maximum likelihood method—we
wrote restricted likelihood function for the model using R language and then we use
constrOptim function available in stats R package to find the maximum. The number
of iterations in Monte Carlo simulation study is L = 2000. In the simulation study the
simulation MSE of the EBLUP is computed as L−1 ∑L

l=1(θ̂
EBLU (l)
d∗t∗ (δ̂) − θ

(l)
d∗t∗)2, the

simulation bias of the EBLUP as L−1 ∑L
l=1(θ̂

EBLU (l)
d∗t∗ (δ̂) − θ

(l)
d∗t∗) and the simulation

bias of theMSE estimator as L−1 ∑L
l=1(

̂MSE
(l)
ξ (θ̂

EBLU (l)
d∗t∗ (δ̂))−MSEξ (θ̂

EBLU
d∗t∗ (δ̂))),

where θ̂
EBLU (l)
d∗t∗ (δ̂), θ

(l)
d∗t∗ and ̂MSE

(l)
ξ (θ̂

EBLU (l)
d∗t∗ (δ̂)) are values of the EBLUP, the

domain total and the MSE estimator computed in lth iteration of the simulation study.
In the simulation data are generated based on the model (1) assuming arbitrary

chosen parameters: different values of λ(sp) and λ(t), σ
2
u = 1, σ 2

ε = 1, ∀dβd = β =
100, Xid = Zid = [1]Mid×1. The spatial weight matrix (denoted by Wd) is row-
standardized neighborhood matrix (each population element has two neighbors). In
the simulation study three predictors are considered:

– spatial BLUP (SBLUP) given by (5) where variance parameters are assumed to be
known,

– spatial EBLUP (SEBLUP), given by (5) where variance components are replaced
by REML estimates,

– BLUP under the assumption that λ(sp) = 0 and λ(t) = 0 (BLUPind). The BLUPind
under the model and for balanced panel sample (all realizations of random variables
within one profile are observed or are not observed) does not depend on unknown
model parameters.

Because we are mainly interested in the spatial effect in the simulation we assumed
λ(t) = {−0.5, 0.5} and λ(sp) = {−0.9,−0.6, 0.6, 0.9}. In our opinion the comparison
of accuracies of theSEBLUPand its simplifiedversion (under assumption of the lack of
spatio-temporal correlation of random effects and components) is crucial because the
predictor is the natural alternative of the SEBLUP. What is important, the comparison
measures the effect of including spatio-temporal correlation. Additional comparison
between mean squared errors of SEBLUP and SBLUP is also important because it
allows to measure the loss of accuracy due to the estimation of model parameters.

In each figure squares denote values of some statistic for one out of D = 20 domains
and the black squares denote the mean values of the statistic over D = 20 domains.
Hence, we do not present only the mean values of the considered statistics but their
whole distribution [as e.g. simulation results presented by Białek (2014)]. In the Fig. 1
it is shown that ratios of mean squared errors of BLUPind and SEBLUP for all of
domains and different values of λ(t) and λ(sp) are from 1.004 to 1.131. It means that
the maximum gain in accuracy due to the inclusion of spatio-temporal correlation is
13.1%. Because we compare the MSE of BLUPind and the MSE of SEBLUP (not
SBLUP) the decrease of accuracy due to the estimation of model parameters is taken
into account.

What is important, the decrease of accuracy due to the estimation of model para-
meters presented in the Fig. 2 for all of domains and different values of λ(t) and λ(sp)

123



758 T. Ża̧dło

Fig. 1 Effect of including spatio-temporal correlation for different values λ(t) and λ(sp) (model parameters
are estimated)

Fig. 2 Effect of estimation of model parameters for different values λ(t) and λ(sp)

is very small—from 0.1 to 1.7%. It means that its influence on results presented in
the Fig. 1 is not large.

Approximately unbiasedness of theMSE estimator (10) is not proven but the biases
presented in the Fig. 3 are not high—for D = 20 domains and for different values of
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Fig. 3 Biases of MSE estimator based on Taylor expansion for different values λ(t) and λ(sp)

Fig. 4 Biases of MSE estimators (in %) for λ(t) = −0.5 and λ(sp) = −0.9

λ(sp) and λ(t)—from ca −8.8% to ca 16.8% (with mean ca 1.9%). In the Fig. 4 biases
of two MSE estimators (10) and (12) are compared for λ(t) = −0.5 and λ(sp) = −0.9
where we observed (see Fig. 3) the highest bias for the proposedMSE estimator based
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on the Taylor expansion. In the Fig. 3 it is shown that the jackknife estimator may give
significantly better results although it is not the rule (compare with the Fig. 7 for real
data).

7 Monte Carlo simulation study: real data

The second simulation study was also conducted using R package (R Development
Core Team 2013) and model parameters are estimated using R as described in the
previous section. The number of iterations in Monte Carlo simulation study is L =
2000. We consider real data on investments of Polish companies (in million PLN) in
N = 378 regions called poviats (NUTS4) inM = 3 years 2009–2011.We consider the
balanced panel sample—in the first period a sample of size n = 38 using (arbitrarily
chosen) Midzuno (1952) sampling scheme is selected and the same elements are in
the sample in M = 3 periods. The population is divided into D = 28 domains
according to larger regions called voivodships (NUTS 3) and types of poviats (city
poviats and land poviats) within voivodships. In 7 out of D = 28 domains sample
size equals 0. The spatial weight matrix is the row-standardized neighborhood matrix.
The neighborhood matrix is constructed based on the 2-nearest neighbors role using
auxiliary variable—the number of new companies registered in the poviat. Data are
generated based on the model (1) where the values of all of the model parameters
are obtained based on the whole population data using REML and assuming that
∀dβd = β, Xid = Zid = [1]Mid×1. We assume ∀dβd = β because for the considered
case we have no observations from some of domains in all of periods (what implies
that it is not possible to estimate some of βd ’s). What is important, the spatial and
temporal correlations for the real data are weak: λ(t) = 0.352 and λ(sp) = −0.396. In
the model-based simulation study we compare accuracies of the following predictors
and estimators of the domain total in the last period:

– spatial BLUP (SBLUP), given by (5), where variance parameters are assumed to
be known,

– spatial EBLUP (SEBLUP), given by (5), where variance parameters are replaced
by REML estimates,

– BLUP under the assumption that λ(sp) = 0 and λ(t) = 0 (BLUPind) which under
the model and for the balanced panel sample does not depend on unknown model
parameters,

– Count Synthetic Estimator (C-SYN), see Rao (2003, p. 46),
– Ratio Synthetic Estimator (R-SYN), see Rao (2003, p. 47), where the auxiliary
variable is the number of new companies registered in the poviat in 2011,

– Generalized Regression Estimator (GREG), see Rao (2003, p. 17), where the aux-
iliary variable used in the calibration equation is the number of new companies
registered in the poviat in 2011,

– the longitudinal version of Generalized Regression Estimator (GREG-L), see Rao
(2003, p. 17), which differs from GREG in that in the calibration equation three
auxiliary variables are used: numbers of new companies registered in poviats in
2009, 2010 and 2011,
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Fig. 5 Ratios of predictors MSEs

– the predictor proposed in the SAMPLE project (SP) which is the EBLUP under the
following unit-levelmodelwith correlated time effects (Molina et al. 2010a, p. 143):
Yid j = xid jβ + u1,d + u2,d j + eid j where eid j ∼ (0, σ 2

0 ), domain specific u1,d are
independent andu1,d ∼ (0, σ 2

1 ), time-varying area effectsu2,d j ford = 1, 2, . . . , D
are independent, but inside domains for j = 1, 2, . . . , M areAR(1)with parameters
denoted by σ 2

2 and ρ(t). The predictor does not take the spatial correlation into
account. The temporal autocorrelation is included but on the higher aggregation
level—within domains instead of within profiles as in (1). To compute values of the
predictor function in R language presented in Molina et al. (2010b, pp. 123–126)
is used.

SEBLUP, SBLUP, BLUPind, SP use information on the variable of interest from
all of the periods while C-SYN, R-SYN, GREG and GREG-L use information on the
variable of interest only from the last period. GREG andGREG-L are direct estimators
what means that is it possible to compute their values only for domains with sample
sizes greater than zero in the period of interest (in 21 out of D = 28 domains in the
simulation study).

In the Fig. 5 the accuracy of SEBLUP is comparedwith other predictors and estima-
tors. Estimators and predictors R-SYN, C-SYN, GREG, GREG-L and SP are several
times less accurate than SEBLUP. What is interesting, in 22 out of D = 28 domains
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Fig. 6 Effect of including spatio-temporal correlation (assuming that model parameters are known) and
effect of estimation of model parameters

SEBLUP is less accurate than BLUPind. The situation is explained in the Fig. 6
(the results for the same domains are matched by lines). The reason is that the gain
in accuracy due to the including spatio-temporal correlation (assuming that model
parameters are known) measured by ratios MSE(BLUPind)/MSE(SBLUP) is in 22
domains smaller than the increase of MSE due to the estimation of model parame-
ters measured by ratios MSE(SEBLUP)/MSE(SBLUP). It explains the suggestions
presented in the previous section that the comparison of SEBLUP and its simplified
version (assuming the lack of spatio-temporal correlation) is very important or even
crucial.

In the Fig. 7 biases of two MSE estimators (10) and (12) are compared. For the
studied case means of absolute biases are similar (see the right part of the Fig. 7). For
the jackknife MSE estimators it equals 5.1% while for the MSE estimator based on
the Taylor expansion it equals 4.8%.

8 Case study: real data

In the previous section we have studied the problem of prediction of total value of
investments of Polish companies (in million PLN) in D = 28 regions in 2011 in the
simulation study. Because we were interested in the gain in accuracy which resulted
only from incorporating spatio-temporal correlation we did not use auxiliary informa-
tion. In this section we will use the same data to show how to choose the appropriate
model based on the real data. In this section we will use data on investments of Polish
companies in 2009–2011 (the same as in the previous section) and additionally two
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Fig. 7 Biases and absolute biases of MSE estimators

auxiliary variables: the production sold (in million PLN) and fixed assets (in million
PLN) but both with one year lag (i.e. for years 2008–2010). The same sample as in
the previous section is studied. Firstly, we would like to find the appropriate model
for the real data. Is is possible to use the likelihood ratio test to compare two models
but if the models are nested (see e.g. Pinheiro and Bates 2000, pp. 83–84). Hence, at
the significance level 0.05, we compare our model with two auxiliary variables with
its special cases with two auxiliary variables as well but under simplified assumptions
on spatio-temporal correlation (obtaining the following p values):

– assuming the independence of random effects and the independence of random
components (p value of likelihood ratio test: 1.1 × 10−8)

– assuming the independence of random effects and MA(1) random components
(p value of likelihood ratio test: 2.8 × 10−9)

– assuming the spatial moving average model for random effects and independence
of random components (p value of likelihood ratio test: 0.0306).

Hence, our model should be preferred comparing with its special cases. Pinheiro
and Bates (2000) in chapter 5 suggest using e.g Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC) if we would like to compare non nested models.
Moreover, the authors present different models available in R which will be compared
in this section with the proposed model (1). It is possible to include other models as
well but in this case the computations must be conducted using original functions (as
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in the case of the proposed model). Pinheiro and Bates (2000) in chapter 5 present
special cases of the linear mixed models where different assumptions on correlation
structure of random components can be made but assuming the independence of ran-
dom components within groups defined by the grouping variable used for the random
effects. Hence, if we assume profile specific random effects we can define different
temporal models for random components within profiles, and if we define time spe-
cific random effects we can define different spatial models for random components
within domains. Below we use different correlation structures described by Pinheiro
and Bates (2000) in chapter 5 including different spatial correlation structures defined
in Pinheiro and Bates (2000, p. 232).

In the Table 1 we present the values of the AIC and BIC criteria of the proposed
model and other non nested models:

– with independent profile specific random effects and MA(2) random components
(model_i_MA2)

– with independent profile specific random effects and AR(1) random components
(model_i_AR1)

– with independent profile specific random effects and AR(2) random components
(model_i_AR2)

– with independent profile specific random effects and ARMA(1,1) random compo-
nents (model_i_ARMA)

– with independent profile specific random effects and compound symmetry temporal
correlation of random components (model_i_compound_symmetry)

– with independent time specific randomeffects and independent randomcomponents
(model_t)

– with independent time specific random effects and exponential spatial correlation
of random components (model_t_exponential)

– with independent time specific random effects and gaussian spatial correlation of
random components (model_t_gaussian)

– with independent time specific random effects and linear spatial correlation of
random components (model_t_linear)

– with independent time specific random effects and rational quadratic spatial corre-
lation of random components (model_t_rational_quadratic)

– with independent time specific random effects and spherical spatial correlation of
random components (model_t_spherical)

– with independent time specific random effects and compound symmetry spatial
correlation of random components (model_t_compound_symmetry)

– with independent domain specific random effects and independent random compo-
nents (model_d)

The proposed model has the smallest values of AIC and BIC criteria comparing
with other analyzed models. It is worth noting that the values of the criteria for some
models are the same what is not unusual—see eg. Pinheiro and Bates (2000, p. 249)
where 4 out 5 models with different spatial correlation structures have the same values
of AIC and BIC criteria.

We have also compared our model with models with the same variance-covariance
matrices as the models presented in the Table 1 but using only one out of two auxiliary

123



On longitudinal moving average model 765

Table 1 Values of AIC and BIC
citeria for different models with
two auxiliary variables

Model AIC BIC

Proposed model 1424.172 1443.325

Model_i_MA2 1459.464 1478.43

Model_i_AR1 1457.464 1473.721

Model_i_AR2 1459.464 1478.43

Model_i_ARMA 1459.464 1478.43

Model_i_compound_symmetry 1458.758 1475.015

Model_t 1457.252 1470.799

Model_t_exponential 1459.001 1475.258

Model_t_gaussian 1458.97 1475.227

Model_t_linear 1458.969 1475.227

Model_t_rational_quadratic 1459.031 1475.289

Model_t_spherical 1458.969 1475.227

Model_t_compound_symmetry 1459.252 1475.509

Model_d 1455.049 1468.597

variables. these models have also higher values of AIC and BIC criteria than the
proposed model. Although the assumed model with only one out of two auxiliary
variables has higher values of AIC and BIC criteria the formal test of significance of
fixed effects will be conducted as well. In the section we will use permutation tests of
fixed effects. The algorithm for testing the j th fixed effect is as follows (Pesarin and
Salmaso 2010, p. 45):

1. Based on the original data a test statistic, denoted by T0 = T (X), is computed,
e.g. the test statistic can be defined as log-likelihood (as in this paper).

2. We take a random permutation of j th column of the matrix X and we obtain a new
matrix of auxiliary variables denoted by X∗.

3. Value of the test statistics T ∗ = T (X∗) is computed.
4. Steps 2 and 3 are repeated B times and B values of T ∗b = T (X∗b) are computed,

where b = 1, 2, . . . , B.
5. Weestimate p value as B−1 ∑

1≤b≤B I (T ∗b ≥ T0)—he fraction of the permutation
values not smaller than the the value of the test statistic computed based on the
real data.

If is not possible to make computations for all possible permutations, the estimated
p value strongly converges to its respective true value (Pesarin and Salmaso 2010,
p. 45). In the case study the number of all possible permutations is (n × M)! =
(38 × 3)! ≈ 2.5 × 10186. Hence, p-values will be computed based on B = 1000
independent permutations. Let us consider tests of fixed effects for two auxiliary
variables (production sold and fixed assets). In both cases p-values of permutation test
equal 0, what means that the variables have a significant influence on the variable of
interest.

Finally, in the Fig. 8 we present real values of domain totals of investments and
the predicted values—values of the empirical version of the proposed predictor given
by (5) based on the sample data considered in the section. It should be noted that the
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Fig. 8 Real and predicted domain totals of investments (in million PLN) in D = 28 domains

values of the predictors are computed based on the following small sample sizes in
the period of interest (in 2011):

– zero for 7 out of D = 28 domains,
– one for 11 out of D = 28 domains,
– two for 5 out of D = 28 domains,
– three for 3 out of D = 28 domains,
– four for 2 out of D = 28 domains.

9 Conclusions

In the paper some special case of the LMM for longitudinal data is proposed. The
BLUP of the subpopulation total for the model is derived and MSE estimators of its
empirical version are proposed. The accuracy of the proposed predictor and biases
of the proposed MSE estimators are analyzed in two Monte Carlo simulation studies
based on the artificial and the real data. In the first simulation study based on the
artificial data the accuracy of the empirical version of the proposed predictor was
better for all of the domains comparingwith the predictor derived under the assumption
of lack of spatio-temporal correlation. In the second simulation study based on the
real data the empirical version of the proposed predictor was even several times more
accurate than other predictors and estimators but it was better than the predictor derived
under the assumption of lack of spatio-temporal correlation only in 6 out of 28 domains.
It resulted from the decrease of the accuracy due to the estimation ofmodel parameters.
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In both simulation studies biases of the proposed MSE estimator were small. The
considerations are also supported by the case study.
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Appendix: Elements of MSE and its estimator

Let us introduce the following notations. Let AMA
d = ∂Hd/∂λ(sp) = (Wd + WT

d ) +
2λ(sp)WdWT

d and BMA
id = ∂�id/∂λ(t). Let BMA

ssid∗ be submatrix obtained from BMA
id

by deleting rows and columns for unsampled observations. Let BMA
rsid∗ be submatrix

obtained fromBMA
id by deleting rows for sampled observations and columns for unsam-

pled observations.
The third element of MSE of EBLUP (9) is given by:

g∗
3(δ) = tr

⎛

⎝
∂, cTd∗

∂δ
Vssd∗
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∂, cTd∗

∂δ
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⎠ , (13)
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ssd∗

∂δk
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γ T
rd∗Vrsd∗V−1
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rd∗

(
σ 2
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σ 2
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)−1
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u
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σ 2
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)

V−1
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]
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ε
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(
σ−2
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)

V−1
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− γ T
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(
σ 2
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sd∗ + diag1≤i≤Nrd∗(�rsid∗)
)

×V−1
ssd∗σ

−2
ε diag1≤i≤nd∗(�sid∗)V

−1
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klth element of Iδ is given by Ikl(δ) = 1
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.

Biases of estimators of δ for maximum likelihood method (ML) and restricted
maximum likelihood method (REML) are given respectively by general equations
presented in Datta and Lahiri (2000):

B
δ̂
ML (δ) = 1

2
I−1
δ (δ) col1≤k≤q tr

[

I−1
β (δ)

∂
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]
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B
δ̂
REML (δ) = o(D−1), (15)

where for the proposed model (1):
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,
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