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Abstract Among many algorithms, gradient descent algorithm (GDA) is a simple tool
to derive an optimal quantity in dealing with an optimization problem in the linear
space. Apart from the initial value, the step size has a great impact on the convergence
rate of this algorithm. Its affect on the geometric structure of the consecutive config-
urations is more crucial if one works with an optimization problem in the statistical
shape analysis. In other words, if the step size of the GDA is not properly tuned, the
geometry might not be preserved while the algorithm is moving forward to reach an
optimal mean shape. In order to improve the performance of the GDA, we introduce
a dynamic step size and a new criterion both to check the geometry in each step of the
algorithm and to accelerate the convergence rate. These lead to a new robust algorithm
on deriving the intrinsic mean on the shape space. We compare the performance of
our proposed procedure to the usual GDA using a real shape data accompanied with
simulation studies.

Keywords Shape space · Non-Euclidean statistics · Intrinsic mean shape ·
Robust gradient descent algorithm · Step size

1 Introduction

It is known from elementary statistics that the mean of a set of data lying on an
Euclidean space is the minimizer of the sum of squared Euclidean distance of a fixed
point to the observations on hand. However, if the data under study are not the elements
of an Euclidean space, the well-known Pythagorean theorem cannot be directly used
any more and some adaptions are required. Generally speaking, a proper Riemannian
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metric needs to be considered if the observed data belong to a curved manifold (Pennec
1999). Nonetheless, this is not the case for every curved manifold. Instead, as discussed
in Bhattacharya and Patrangenaru (2003) and Bhattacharya and Patrangenaru (2005),
one can obtain a metric via embedding the manifold in a higher dimensional Euclidean
space. This results in an extrinsic analysis using the metric inherited from the ambient
Euclidean space. Then, one can derive various summary statistics including the sample
mean and variance. Further, making some statistical inferences such as building a
confidence region or predicting a new value will also be possible.

One of the new areas in the statistical setting which was under consideration over
the last three decades or so, is the statistical shape analysis (Dryden and Mardia
1998). Frankly speaking, it deals with any phenomenon in which the geometrical
feature is the main interest of the research. Mathematically, having an object lying
in Euclidean space, its shape is defined as what is left after removing the location,
scale and rotations effects [called similarity transformation (SO)] out from that object
(Kendall 1984). Hence, shape data are considered as the points on a finite dimensional
nonlinear differential manifold (Grenander 1994). It is also known that shape space
can be viewed as the quotient of a Riemannian manifold.

A common Riemannian metric in the statistical shape analysis is the Procrustes
distances and the mean shape is defined as the minimizer of the squared Procrustes
distances (Kendall 1984). However, to derive a measure of variability among shapes
and particularly to perform multivariate statistical analysis, the usual standard statis-
tical tools, available on Euclidean space, cannot be directly utilized. So, among many
methods to obtain the shape variance, the non-Euclidean shape space is approximated
by a linearized space at the vicinity of the mean shape and then the Principal Com-
ponent Analysis (PCA) is invoked there (Dryden and Mardia 1998). Recently, a new
tool which is called Principal Geodesic Analysis (PGA) was proposed to, directly,
evaluate the variability on the curved manifolds including the shape space (Fletcher et
al. 2004). The core basis of this method, which works well in some particular spaces, is
mainly based upon GDA. Among many performance parameters of the PGA, the step
size and the threshold value are key components on both accelerating the algorithm
and guaranteeing the convergence to the optimum object.

In this paper, we will demonstrate how, at each stage of the GDA, an non-tuned step
size both increases the time of convergence and fails to preserve geometrical structures
of the objects before reaching the intrinsic mean shape. This is due to the fact that the
optimum choice of step size parameter not only accelerate the convergence rate but
also maintain the geometrical structure of the shape under study. It further helps the
user to control the results in each step of the algorithm before reaching the optimum
object which is the intrinsic mean shape in our case. Later, by introducing a new
criterion for checking geometrical structure of objects, we propose a more sensible
algorithm which works well in the shape analysis context. The performance of our
proposed method is compared to the usual GDA in estimating the intrinsic mean shape
of a real data set and also a simulation study.

This paper is organized as follows. A brief review of statistical shape analysis along
with a popular measure of similarity are presented in Sect. 2. Then, statistical analysis
of manifold data and generalization of GDA to the manifold valued statistics are given
in Sect. 3. Later, in Sect. 4, we first highlight non-stability of the standard GDA in
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preserving the geometrical structure of objects. Then, we propose a new procedure,
called robust gradient descent algorithm (RGDA), which is more resistant than the
standard GDA. Performance of employing both the GDA and RGDA on the real data
set and also in a simulation study is evaluated in Sect. 5. The paper ends with some
concluding remarks.

2 A brief review of shape analysis

Based upon the progress on technology, new fields of sciences have merged into various
discipline. Statistical shape analysis is one of the new, and active area of multivariate
statistics which deals with geometrical structures of objects. Although the historical
background of this field goes as far back as to Galileo, it was formally defined and
introduced to the statistical communities by late (Kendall 1977). He defines the shape
of an object as the whole geometrical information left when the location, scale and
rotation effects are filtered out from that object. Thereafter many attitudes to the shape
analysis were raised and the application of this new statistical field has motivated many
researchers to employ it in other sciences. Some instances are statistical shape analysis
of brain (Free et al. 2001), discovering variability of DNA molecules (Dryden 2002),
medial image processing (Fletcher et al. 2003), facial gender classification (Wu et al.
2007) and study of vertebral fractures (Sommer et al. 2010). Other applications of this
subject can be found in Dryden and Mardia (1998).

In the statistical shape analysis, one is usually encountered with objects or con-
figurations. As expected, the original objects are usually available in two or three
dimensions. However, to give an insight of the shape analysis, here we provide the
mathematical backgrounds for the 2-dimensional (2D) objects. To start, let us consider
a configuration identified by k ≥ 3 key points in two dimensions.

These points are called the landmarks (see, e.g. Dryden and Mardia 1998) and are
set on the interior of the objects or on its outline (see, e.g. Bookstein 1991). However,
these cases are not of any interest in this paper.

Suppose we set k landmarks on an object lying on 2D Euclidean space. It is common
to write the coordinate of these landmarks in a k × 2 matrix known as configuration
matrix. Clearly, this configuration can also be identified by a k×1 dimensional complex
vector. In our case, the landmarks are the pairs of (x, y), i.e. 2-D Cartesian coordinates.
Following Kendall (1984), we assume that the landmarks do not totally coincide as this
odd case won’t define a proper shape. It is worth to mention that various approaches to
derive the shape of an object led to different shape coordinate systems. Among them,
Kendall (1977) and Bookstein (1986) coordinates are well known shape coordinate
systems. The researchers who are new to the statistical shape analysis prefer to work
with latter one at least because of its correct geometrical view (Dryden and Mardia
1998).

One of the main objective of the statistical shape analysis is to evaluate how close the
objects are to each other. Obviously, the optimal matching is done using filtering out
the translation, scale, and rotation effects. According to the statistical shape analysis
terminologies (see, e.g. Dryden and Mardia 1998), superimposition of two objects,
through filtering out similarity transformation, as close as possible is known as the
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full Ordinary Procrustes Analysis (OPA), and the resulted distance is called the full
Procrustes distance, denoted by dF (., .). Accordingly, the squared distance between
A and B, two centred k × 2 configuration matrices (it can be done using, for instance,
the centering matrix), are defined as

d2
F (A, B) = inf

Γ ∈SO(2), β∈R+, γ∈R2
‖ B − βΓ A − 1kγ

T ‖2,

where β > 0 is a scale parameter, Γ is an 2 × 2 rotation matrix, and γ is an 2 × 1
location vector. Also, SO(2) is the special orthogonal group of 2×2 rotation matrices,
i.e. Γ satisfying equalities Γ T Γ = Γ Γ T = I2 and |Γ | = 1.

To clarify the concept of OPA we here provide a simple example. Consider the
triangles A, B and C with the following configuration matrices:

A =
⎡
⎣

1 0
0 1

−1 0

⎤
⎦ , B =

⎡
⎣

−0.5 0
0.5 0
0.5 1

⎤
⎦ , C =

⎡
⎣

0 0
0 1
1 0

⎤
⎦ .

It is clearly seen that A and B are equilateral and C is right-angled (also isosceles). In
fact, the configuration matrix B has already been registered in Bookstein coordinate
system, i.e. its last row is shape coordinate, and this will be used in the section dealing
with simulation study.

Difference between these triangles can be easily computed by hand or using the
function procOPA available under the library shapes (Dryden 2011), in the statis-
tical computing software (R Development Core Team 2012). Based upon the outputs,
we have

d2
F (A, C) = 2.5 > d2

F (B, C) = 1.25 > d2
F (A, B) = 0.

Consequently, two triangles A and B are more similar than A and C or B and C.
An extension of OPA to more configurations is simply defined through Procrustes

rotation (Mardia et al. 1979) and is called Generalized Procrustes Analysis (GPA)
or full Procrustes fitting (Dryden and Mardia 1998). Accordingly, the full Procrustes
mean shape or Procrustes mean shape is a solution of the optimization problem

arg min
b

N∑
i=1

d2
F (xi , b),

where xi , i = 1, . . . , N and b are the shape configurations in terms of the Kendall’s
shape coordinate system. Note that a closed form solution of this optimization problem
exists (see, e.g. Result 3.2 on page 44 of Dryden and Mardia 1998).

In general, the shape space is a finite dimensional nonlinear Riemannian manifold.
So statistical analysis of shapes is led to study of statistics on manifold. In order to
perform statistical analysis on manifold, it is common to approximate the manifold by a
linearized space and perform most of the analysis there and then project the result back
to the manifold. For example, to explore the variability on the shape space, the PCA is
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usually employed on the tangent space where the Euclidean property can be invoked
(Dryden and Mardia 1998). The embedding was also recommended in some texts (see,
e.g. Hendriks and Landsman 1998; Patrangenaru 1998; Bhattacharya and Patrangenaru
2003, 2005; Micheas and Dey 2005). Although these approaches might provide some
reasonable answers to the questions on hand, in some circumstances the induced errors
are high (Huckemann and Hotz 2009) and it sounds the better choice is to perform
statistical analysis directly on the manifold. The advantages of this will be consistency
in representation, dimensionality reduction, and accuracy in measurements (Sommer
et al. 2010). Along with some useful definitions, a comprehensive treatment of how
to perform statistical analysis directly on manifolds is given in Pennec (2006).

3 GDA and its extension on shape space

The GDA or classical steepest descent method, which was first proposed by Cauchy
(1847), is one of the oldest methods to minimize any general nonlinear function. Using
the exact gradient vector, the GDA starts from an appropriate arbitrary initial value
to calculate the minimum of one-dimensional or multi-dimensional functions. It goes
in the positive direction of the gradient vector at each stage of the algorithm. The
convergence rate of this algorithm is highly dependent on the step size and in a lesser
extend on the initial value.

There were many efforts to improve the efficiency of the GDA method. To name
some, we could mention (Bershad 1987; Matthews and Xie 1993; Douglas and Pan
1995; Liu 2001; Meza 2010). These led to a newfound interest in the steepest descent
method, both from a theoretical and practical viewpoints. It was emphasized all over
these papers that although the gradient direction will guarantee the convergence, a
wrong step size might decrease the convergence rate. More cares are needed if the
space under study is non-Euclidean, or generally a curved manifold. In this paper,
we provide some ideas to explain where this situation will arise in employing the the
GDA in the shape analysis. However, in this section we review some backgrounds on
utilizing the GDA in the shape space.

Let M be a manifold and {x1, x2, . . . , xN } be N observations from this manifold.
A solution to the optimization problem

arg min
a∈M

N∑
i=1

d2(xi , a), (1)

is defined as the intrinsic sample mean (say μ̂), where d2(xi , a) indicates the squared
Riemannian distance between the i-th data point and a fixed m-vector a (Karcher
1977). According to Fletcher et al. (2004), the Riemannian distance between two points
x, y ∈ M, is defined as the minimum length over all possible smooth curves between
x and y. Using an idea originally proposed in Pennec (1999), it was demonstrated
in Fletcher et al. (2004) that a solution to (1) is gained via employing the GDA in
the manifold M. Also, an iterative technique based upon the Newton’s method was
proposed, in Groisser (2004), to derive a solution of (1) and referred it to as the
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Riemannian center of mass. The counterpart of this sample mean in the population (in
statistical sense) is called the intrinsic mean which was first treated in Bhattacharya
and Patrangenaru (2003). Technically, these two terms are different but for the sake
of brevity, omitting the word ‘sample’, we use the intrinsic mean henceforth. Further,
we indicate the sample mean with μ instead of μ̂ thereafter. It is worth to mention
that this quantity was called an intrinsic Frechet mean in the statistical shape analysis
community (see, e.g. Le 2001).

Let TμM, be the tangent space at the intrinsic mean μ. Then, each point xi ∈ M, can
be reached by a vector wi ∈ TμM, via Expμwi = xi , where Expμ is the exponential
map which maps straight lines through the origin TμM, to geodesics on M passing
through μ. Note that the map sending xi ∈ M, to wi ∈ TμM, is known as the logarithm
map and denoted by Logμxi . Due to the Euclidean feature of TμM, a metric satisfying
common distance conditions can be defined on it and then its corresponding metric
on M will be obtained using a proper transformation. For more details, the reader can
consults (Pennec 2006).

Following Fletcher et al. (2004), the intrinsic mean can also be defined as the
solution to the optimization problem

μ = arg min
w∈M

N∑
i=1

‖ Logw(xi ) ‖2, (2)

where Logw(.) is logarithm map with starting point w belonging to M. Then, provided
the observations xi , i = 1, . . . , N lie in a strongly convex neighborhood, a unique
solution is guaranteed (Karcher 1977). The solution is obtained via employing the GDA
which takes successive steps in the negative gradient direction where the gradient is
proportional to

−
N∑

i=1

Logμ(xi ).

Particularly, in order to obtain μ, starting from an initial estimate of the mean (say
μ0), and using the negative gradient direction vector, the algorithm iterates through
the equality

μ j+1 = Expμ j

(
τ

N

N∑
i=1

Logμ j
(xi )

)
, (3)

where τ is the step size, a positive constant value. Note that this algorithm only
converges locally. Hence, care must be taken in the right choices of the initial value
and the step size. Valuable suggestions on how to choose some feasible values for μ0,

and τ, are given in Fletcher et al. (2004).
To have a taste on how this problem works, we provide the ideas for a simple

manifold here. Particularly, we consider a hypersphere of unit radius in 2(k − 1) real
dimensions (written as S2k−3), which is a pre-shape space of the non-coincident k point
set configurations in 2D Euclidean space and denoted by S2

k , (see, e.g. Dryden and
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Mardia 1998). Following Buss and Fillmore (2001), the exponential map, acted on this
unit hypersphere, to map a tangent vector v ∈ Tw S2k−3, to the point on S2k−3, with the
speed ||v||, passing through the point w ∈ S2k−3, along the geodesic γv(t), with the
initial velocity v, is given by Expw(v) = γv(1). However, to the best our knowledge,
there is not any explicit formula for the logarithm map for this case. Technically, we
require such expression in terms of the shape coordinate systems. However, we can
derive it first in terms of data points on the pre-shape space S2

k = S2k−3. Below, we
derive the exponential map for this space. Note that our data are 2(k − 1)-vectors, but,
for ease of notations, we write them as m-vectors, i.e. 2(k − 1) = m, that means we
are assuming the data are observations on S2k−3 = Sm−1.

Let the fixed starting point (it is called the base point in Fletcher et al. 2004) for
the logarithm map is an m-vector p = (0, 0, . . . , 0, 1)T ∈ Sm−1, which is the North
pole on the unit hypersphere Sm−1. Then, according to Buss and Fillmore (2001), for
a point x = (x1, x2, x3, . . . , xm)T ∈ Sm−1, the logarithm map is given by

Logp(x) =
(

x1
θ

sin θ
, x2

θ

sin θ
, . . . , xm−1

θ

sin θ
, 1

)
, (4)

where θ = arccos xm indicates the spherical distance of point x from the center of the
unit hypersphere. It can be seen from Eq. (2) with M = Sm−1, that the starting point
should be an arbitrary starting point rather than the fixed p. So, in order to derive the
intrinsic mean shape using (3), we require the logarithm map given by (4) in terms of
an arbitrary point w ∈ Sm−1. To gain this, we use the method of projecting a point
from an unit radius hypersphere onto a hyperplane.

Let the equality x2
1 + x2

2 + x2
3 + · · · + x2

m = r2 represents the equation of an
(m − 1)-dimensional hypersphere with radius r, centre at the origin and denoted by
the surface equation

f (x, r) = f
(
(x1, x2, x3, . . . , xm)T , r

) = x2
1 + x2

2 + x2
3 + · · · + x2

m − r2 = 0. (5)

Then, re-writing Eq. (5) in terms of x(−m), the tangent plane to the hypersphere at an
arbitrary point w = (w1, w2, w3, . . . , wm)T is given by

(x1−w1)
∂xm

∂x1

∣∣∣
x(−m)=w(−m)

+ · · · + (xm−1−wm−1)
∂xm

∂xm−1

∣∣∣
x(−m)=w(−m)

−(xm−wm)=0.

where

x(−i) = (x1, . . . , xi−1, xi+1, . . . , xm)T , w(−i) = (w1, . . . , wi−1, wi+1, . . . , wm)T .

Simple mathematical manipulation turn this latter equation to 〈x, w〉 = r2, where
〈., .〉 represents the inner product. On the other hand, the projection of the point w, set
on the tangent plane onto the hyperplane with the equation

〈a, x〉 + c = a1x1 + a2x2 + a3x3 + ...am xm + c = 0,
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where a = (a1, a2, . . . , am)T , and c is a constant, is the point w − λa, where

λ = 〈a, w〉
‖ a ‖ .

Hence, via transferring the point x = (x1, x2, x3, . . . , xm)T ∈ Sm−1 to the tangent
plane of the hypersphere at point p = (0, 0, 0, . . . , 1)T , using (4) and then projecting
the resulted point onto the hyperplane passing through w, which also belongs to Sm−1,

we could derive the coordinates of the logarithm map with an arbitrary point. The map
is given by

Logw

(
x) = (x1

θ

sin θ
+ w1

wm
λ, . . . , xm−1

θ

sin θ
+ wm−1

wm
λ, 1 + λ

)
, (6)

where

λ = wm

(
−x1w1

θ

sin θ
− · · · − xm−1wm−1

θ

sin θ
+ 1 − wm

)
.

Now, substituting the expression (6) into Eq. (3) and using the equality Expw(v) =
γv(1), along with proper adaptions to the notations provide an iterative algorithm to
obtain the intrinsic mean on the shape space with the pre-shape space S2

k . We employ
this algorithm in the simulations as well as real application studies.

General comments on strong sensitivity of the algorithm to the initial value, μ0 and
step size τ and also describing a procedure on how to implement the algorithm are
discussed by Fletcher et al. (2004). However, since preserving geometry is crucial in
the statistical shape analysis, we believe that more care must be taken in choosing μ0
and τ, while invoking the algorithm (3). We run this algorithm for various μ0 and τ, in
the shape analysis and saw losing the geometry of the objects to gain the intrinsic mean
shape. This phenomenon shall be illustrated later in a simulation study and using some
real data. To overcome this problem, we propose a robust algorithm and provide some
insights to choose some feasible start values in obtaining the intrinsic mean shape in
the next section.

4 Robust gradient descent algorithm to derive mean shape

As mentioned earlier, in some circumstances employing the GDA may be highly
affected by nontuned step size value. Particularly, while dealing with the shape data
and aiming to obtain the intrinsic mean shape, it may effect the geometrical objects
generated in each stage of running the GDA. Since the geometrical form is vital in
the statistical shape analysis, we aim to extend the GDA to overcome such possible
problem. Particularly, we propose an algorithm to compute the intrinsic mean through
implementing the tuned GDA aiming not to loose the geometry of the object under
study. We call it the Robust gradient descent algorithm (RGDA). Our method consists
of a modification of the GDA accompanied with statistical shape criteria. Our main
objective is to extend the GDA in such way that the geometry of the intrinsic mean
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shape could be more stable when the algorithm proceeds. Moreover, we set a new step
on the procedure of the algorithm such that it could be more resistant to the possible
odd intrinsic mean shapes during iterating the the GDA.

Recalling Eq. (2), the intrinsic mean shape leads to a real matrix which has the least
sum of squared Riemannian distance from entire observations. Furthermore, it has the
least Procrustes sum of square from each observation, if the Procrustes distance is used
as the metric. Hence, we impose another criterion to have a compromise value between
these two measures. We call it the Mean Ordinary Procrustes Sum of Square (MOSS)
which, in each stage of the GDA, measures the distance of generated candidate mean
from each observation. Generally, consider configuration matrices X1, . . . , Xn and μ,

(all k×m matrices of coordinates from k points in m dimensions). Then following P.
84 in Dryden and Mardia (1998), we have

MOSS(X1, . . . , Xn,μ) = 1

n

n∑
i=1

OSS(Xi ,μ) = 1

n

n∑
i=1

||μ||2 sin2 ρ(Xi ,μ),

where ρ(Xi ,μ) is the Procrustes distance between Xi and μ. In fact, this is the mean of
OPA’s but we keep our notations just for consistency. Using this value, we could check
how close we are to the intrinsic mean shape. Obviously, to do this we require another
threshold to inspect the MOSS. It is denoted byϕ in this paper. Apart from these criteria,
we are interested on imposing a robust quantity to improve the performance of our
algorithm. It is well known that, unlike the mean, the median is robust to the outliers.
Hence, to speed up the algorithm we could consider the median of two quantities arising
from two consecutive stages of the RGDA, i.e. one the GDA passed and another the
current step. According to our empirical studies, this last criterion works very well
in getting to the mean shape as quick as possible. Note that, the median used in our
study is just entrywise which is a drawback of our proposed algorithm. Following
Fletcher et al. (2009), one can use the geometric median on Riemannian manifold
which is halfway point along the geodesic and is expected to performs better than our
median.

Another key factor affecting the performance of the GDA is the initial value (μ0),

of the algorithm. For the shape analysis case, we recommend choosing the Procrustes
mean, denoted by μP , as the initial value. This is due to its strong similarity to the
shape observations. Moreover, it induces the well localization of the subsequent means
while the GDA goes forward. Note that the distance used for proceeding the algorithm
is Riemannian distance as mentioned after Eq. (1). Lastly, in some situations the fixed
threshold value (ε) might also affect the performance of the GDA. This shall simply
be presented in our graphical representation in the next section.

Bearing in mind our discussion given above and defining our geometry checking
function as

GCF(μP ,μq) = MOSS(x1, . . . , xN ,μP ) − MOSS(x1, . . . , xN ,μq),

the algorithm to derive the intrinsic mean shape is as follows:
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Algorithm: Robust Gradient Descent
Input: x1, . . . , xN ∈ Sm

k .

Output:μ ∈ M, the intrinsic mean shape.
Set j = 1 and, starting from an initial, say μ0, follow the following steps:

Step 1: Set, �μ = τ
N

∑N
i=1 Logμ j−1

(xi ), and μ j = Expμ j−1

(
�μ

)
.

Step 2: If ‖ GCF(μP ,μ j ) ‖≤ ϕ, go to Step 3.
Else, set μnew=median {μ j−1,μ j },

�μ = τ
N

∑N
i=1 Logμnew

(xi ),

μ j = Expμnew

(
�μ

)
,

and go back to Step 2.
Step 3: If ‖ �μ ‖< ε, then μ j is optimum and stop the algorithm.

Else, set j = j + 1 and proceed the algorithm from Step 1.

In the next section we implement this algorithm to a real data. We also consider
some simulation studies to evaluate variant aspects of the GDA and RGDA methods.

5 Simulation studies and real data analysis

In this section, we compare performance of the GDA and RGDA using some simula-
tion studies as well as real data examples. The relevant parameters in these algorithms
are altered in such way that more features of the methods could be taken into account.
However, there might be some particular situations in which the new proposed algo-
rithm might fail to converge during the iterations of the algorithm. We provide some
ideas on how to tackle those cases in the statistical shape analysis settings.

Our first simulation study is concerned about a simple shape case; triangle shape.
Let assume the triangle B in Sect. 2 is the intrinsic population mean of 200 ran-
dom triangles and the aim is to obtain the intrinsic sample mean shape using both
the GDA and RGDA procedures. To have shape data for this case, the Cartesian
coordinates of the random triangles are simulated using the multivariate normal with
the Cartesian coordinate of B, stacked in a single column, as the mean vector and∑

B = 10−4diag{4, 2, 5, 3, 5, 4}, as the covariance matrix of this distribution, where
diag is used to represent a diagonal matrix with determined elements. Clearly, at this
end, we have 200 matrices with dimensions 3 × 2. Then, we derive the shape coor-
dinates, say Bookstein coordinates, of these objects. The resulted shape distribution
is called the offset normal shape density (see P. 130 on Dryden and Mardia 1998).
Since the triangle B is the Euclidean mean, we prefer to consider the Frechet mean
to evaluate the performance of GDA and RGDA procedures because for large sam-
ple size, along with geodesic distance, the Frechet mean is a consistent estimator of
the intrinsic population mean (see Bhattacharya and Patrangenaru 2003, 2005). To
consider variant aspects of the algorithms, we set the step size (τ ) at 0.1, 0.4, 0.7
and 1 and threshold value (ε) at 1e-6, 1e-5 and 1e-3. The parameter ϕ in the RGDA
is set to 3. Then, we record the number of the iterations that the RGDA and GDA
methods were repeated before converging to the intrinsic mean shape. Note that the
iteration for the RGDA refers to the outer loop, i.e. updating of μ j to μ j+1, rather
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Table 1 The numbers of the iterations in which the RGDA and GDA were repeated before converging to
the intrinsic mean shape

ε

τ 1e-6 1e-5 1e-3

0.1 4 (15) 4 (10) 3 (7)

0.4 5 (16) 4 (12) 3 (9)

0.7 6 (18) 5 (15) 4 (10)

1 9 (21) 6 (15) 4 (12)

The original data are some simulated triangles. Those numbers for the GDA are reported inside of the
brackets

Table 2 The time (in second) of
executing the RGDA and GDA
to reach the intrinsic mean shape

Those numbers for the GDA are
reported inside of the brackets

ε

τ 1e-6 1e-5 1e-3

0.1 2.92 (0.16) 2.97 (0.11) 2.81 (0.10)

0.4 3.12 (0.17) 2.96 (0.13) 2.75 (0.10)

0.7 3.17 (0.20) 3.08 (0.15) 2.93 (0.10)

1 3.60 (0.22) 3.19 (0.16) 2.92 (0.12)

than nested ones. The results are reported in Table 1. The values inside of the brack-
ets are those for the GDA. As can be seen from table, less iterations are taken by
the RGDA than the GDA to converge. Also, as expected, for fixed τ, to increase
ε leads to less iteration of convergence in both methods to the the intrinsic mean
shape. However, nothing can be said for altering τ while ε is fixed. Generally, if
one is looking for small iteration, it is recommended to take τ and ε, small and big,
respectively.

We also recorded the entire run time (executed on a 3.6 GHz PC) of these two
procedures to converge the intrinsic mean. The run time reported here is the CPU time
while executing the R code for each of the procedure. Generally, the GDA is faster
than RGDA, which might be a drawback of our proposed algorithm. However, we lost
the speed on the cost of keeping the geometry and reaching to the real mean as close
as possible in implementing the RGDA. This is mainly because of internal loop on
which repeats till get the right shape object (Table 2).

In addition to evaluate the numbers of iterations, we are concerned about the geom-
etry of the triangles while algorithms are proceeding for various values of the step size
(τ ). In particular, we are interested on how far the intrinsic mean shapes are from the
true mean (which is considered the sample Frechet mean as discussed earlier) using
two procedures. Hence, we set ε = 6e-3 and τ to 0.1, 0.4, 0.7 and 1. The intrinsic
mean shapes derived using both algorithms along with the shape of the Frechet mean
as the true mean, are plotted in Fig. 1. Furthermore, we reported d2

F , and the values of
τ in each panel. The triangles with the solid, dotted and dotted-dashed lines are rep-
resenting the true mean and the intrinsic mean shapes given by the GDA and RGDA
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Fig. 1 Impact of τ on obtaining the intrinsic mean shape using both the GDA and RGDA procedures. The
triangles with the solid, dotted and dotted-dashed lines are representing the true mean and the intrinsic
mean shape given by the GDA and RGDA procedures, respectively. Although as τ increases d2

F increases
in employing both methods, but the RGDA outperforms the GDA. Nonetheless, as τ increases the intrinsic
mean shapes get farther from the true mean.

procedures, respectively. As the figure shows, the RGDA outperforms the GDA in
most cases in terms of the minimum d2

F . That means the RGDA is more close to
the mean shape than the GDA. Furthermore, if τ increases the intrinsic mean shapes
derived using both procedures would be farther from the true mean shape, i.e. the
bigger τ the bigger d2

F gets. So, one clear message of this simulation is that if the aim
is to get the intrinsic mean shape more similar to the mean shape, it is recommended
to keep τ small.

We were also interested on studying the combinational affects of τ and ε on the
quantity of MOSS while deriving the intrinsic mean shape through employing the
RGDA and GDA methods. Based upon the above simulation study and our experiences
in other empirical investigations, we set ε = 6e −5 and allow τ to vary on the interval
(0, 2]. However, since the plot would be so messy for entire range of τ we divided the
output into two single plot based on τ ∈ (0, 1] and τ ∈ (1, 2]. The results were plotted
in Fig. 2. As can be seen from this figure, the RGDA has smaller values throughout
the interval τ. Particularly, although there is no difference between two approaches
for small τ ’s e.g. say τ ∈ (0, 0.1), the MOSS using the GDA procedure gets bigger
and bigger for the rest of τ ’s, indicating overall better performance of the RGDA. As a
short result, we can state that one should switch to the RGDA method when the GDA
is worse in terms of the minimum MOSS.
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Fig. 2 Combinational affects of ε, and τ on the MOSS quantity to get the intrinsic mean shape using the
RGDA and GDA methods. The solid and dashed lines are the values of the MOSS quantities in employing,
respectively, the RGDA and GDA methods to derive the intrinsic mean shape. Unlike the GDA, the MOSS
quantities for the RGDA method is quite small throughout the range of τ. So, it can be said that the RGDA
outperforms the GDA.

We further investigated the impact of the ϕ on performance of the RGDA. So setting
ε = 6e − 5, and τ = 0.1, 0.4, we run the RGDA algorithm for simulated triangles
when ϕ varies on the interval (Grenander 1994; Fletcher et al. 2004). Then, the value
of MOSS were recorded. Figure 3 shows that there is not a clear pattern for MOSS
in varying ϕ for fixed τ. Nonetheless, for fixed ϕ, bigger τ leads to smaller MOSS,
although there are some exceptions due to random mean generation.

Now, we shall look at some real data sets and attempt to explore variant aspects
of our proposed algorithm. Also, our aim is to compare the proposed approach with
common GDA.

The first considered data set is the brain shape data. The data were already analyzed
by some researchers (see e.g. Free et al. 2001) to investigate other aspects of the shape
analysis. The data are saved under the name of brains and can be loaded from the
library shapes in the statistical software (R Development Core Team 2012). In the
sense of shape analysis, 24 landmarks are located in 58 adult healthy brains of gorilla.
In order to evaluate our methods, we set the step size (τ ) equal to 0.1, 0.4, 0.7, 1 and
the fixed threshold value (ε) to 0.01, 0.06, 0.1, 0.6. Initially, We would like to derive
the intrinsic mean shape using the GDA method and check whether or not the method
converges. We have recorded the number of iterations that the algorithm takes in the
case of convergence. However, there were some cases in which the approach was
never converged. We wrote “NC”, standing for Not Converged for these situations.
Table 3 shows the results for this scenario. As can be seen, the method will usually
converge at the first iteration if ε, and τ get big and small values, respectively. There
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Fig. 3 Affect of ϕ on performance of the RGDA aiming on a proper calibration. The dotted and dashed
lines are the values of the MOSS quantities in employing the RGDA method to derive the intrinsic mean
shape when τ equals to 0.1 and 0.4, resp. As can be seen, there is not any particular pattern for the value of
the MOSS while ϕ varies and τ is kept fixed.

Table 3 Results of performing the GDA approach for brain data set

ε

τ 0.01 0.06 0.1 0.6

0.1 1 1 1 1

0.4 NC 2 1 1

0.7 NC 2 2 2

1 NC NC NC 2

The numbers inside of the cells indicate the number of iteration that the GDA proceeds to converge to the
intrinsic mean. If the method does not converge, the word “NC” is written

is no guarantee to derive the intrinsic mean shape for small values of ε, while τ is
increasing. If one wishes to set ε, as small as possible, which is expected in real
applications, it is recommended to keep τ, small too so that the intrinsic mean could
be guaranteed by the GDA method.

It might be of great interest to check the geometry for the situations in which the
method leads to a solution. Hence, we further compared the intrinsic mean shape
returned by the GDA method with the Procrustes mean shape using the d2

F , quantity,
in the cases in which the algorithm converges. Figure 4 shows configurational plot
of both the intrinsic and Procrustes mean shapes for the case which ε, was fixed at
0.6 and τ varies as before. We provided the values of d2

F , as well as τ, in each panel.
Moreover, the Procrustes and intrinsic mean shapes were indicated by solid circle and
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Fig. 4 Impact of τ on performance of the GDA method with ε, set at 0.6. The Cartesian coordinates of the
Procrustes and intrinsic mean shapes are indicated by solid circle and + sign, respectively. It is seen that
as τ increases d2

F increases too, indicating non-stability of the geometrical structure of the intrinsic mean
shape given by the GDA methods.

+ sign, respectively. As figure shows, the bigger τ the bigger d2
F , gets. It means as τ

increases, the intrinsic mean shape goes further, in terms of shape distance, from the
Procrustes mean shape, and so non-stability occurs for the larger τ, while ε, is fixed
at some small values.

We followed the same procedure to evaluate the performance of the RGDA. For
ease of repetition, we omit some explanations concerning the values for the fixed
parameters. The exception is the parameter for checking the geometry on performing
the RGDA, i.e. ϕ, which is fixed at 3.4. The Table 4 shows the number of iterations
that the RGDA takes to converge to the intrinsic mean shape. As can be seen, all
combinations of ε, and τ are led to an optimal solution. Hence, unlike the GDA, we
get an improvement in terms of converging to the intrinsic mean shape while using
the RGDA method.

To check how the geometry is preserved, we plotted the configurational figure
of the intrinsic mean shape given by the RGDA method along with the Procrustes
mean in Fig. 5. Like the GDA case, as τ increases the value of d2

F , increases too.
Moreover, assuming the Procrustes mean for this data set is well describing the average
geometrical feature of all 58 adult healthy brains, the intrinsic mean shape returned
by the RGDA method is a better representative of the mean shape than that given by
GDA. In other words, from Figs. 4 and 5, the d2

F , arising from the RGDA is small in
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Table 4 Results on performing RGDA for brain data set

ε

τ 0.01 0.06 0.1 0.6

0.1 1 1 1 1

0.4 5 2 1 1

0.7 5 2 2 1

1 7 4 5 3

The numbers inside of the cells indicate the number of iterations that the RGDA pass to reach the intrinsic
mean shape. It is seen that, unlike GDA, the RGDA method will converge at maximum iteration of 7 for
all combinations of τ and ε
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Fig. 5 Impact of τ on performance of the RGDA method with ε, set at 0.6. The Cartesian coordinates of
the Procrustes and intrinsic mean shapes are indicated by solid circle and + signs, respectively. Although,
as τ increases d2

F , increases too, its increment is less than that of the GDA method.

comparison with that given from the GDA for all τ. So, once again there is a great
improvement on employing the RGDA to derive the intrinsic mean shape.

We were also concerned about the performance of the RGDA method in comparison
with the GDA based upon the MOSS criterion. So, for ε, fixed at 0.6, while τ varies in
the interval (0, 1], we derived the MOSS for the RGDA and GDA methods. The results
were plotted in Fig. 6. As expected, to increase τ causes an steady increment on the
MOSS quantity resulted from both methods. However, the increment for the RGDA
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Fig. 6 Impact of ε, on performance of the RGDA and GDA methods with varying τ. Dashed and dotted
lines are representing the MOSS quantities for the GDA and RGDA methods, respectively. Throughout the
range of τ, the RGDA outperforms GDA for ε = 0.6.

method is less in comparison with that of the GDA method throughout the range of
τ. We had the same experience for other values of ε, while τ varies, but we confine
ourselves to these combinations for ease of repetition. Hence, as a general result in
studying the brains data, we recommend to use the RGDA instead of the GDA when
the aim is to get the intrinsic mean shape.

Another data set was also considered to evaluate the GDA and RGDA methods.
It is a part of a larger study on assessing the effects of selection for body weight
on the shape of mouse vertebra using three groups of mice. Further shape analysis
of these data is provided in Dryden and Mardia (1998). Here, 30 control group of
mouse vertebra with six landmarks in two dimensions is considered. Like our previous
example, these data, called qcet2.dat, are also available on the library shapes.
We followed, relatively, the same procedure as in studying the previous data set to
compare the GDA and RGDA methods. So, for sake of brevity, we do not explain
some unnecessary details. The important issue is on choosing the proper values for
parameters τ and ε, which should be done heuristically. Hence, we set these parameters
as τ = 0.001, 0.004, 0.1, 0.4, 0.7, 1 and ε = 1e-6,1e-5,1e-3. Table 5 shows how many
iterations two methods passed before converging to the intrinsic mean shape. Note that
the values for the GDA methods are inside of the brackets. In almost all cases, the
RGDA outperforms the GDA. So, the RGDA is faster than the GDA in converging to
the intrinsic mean shape.

We were further studied the impact of parameters ε and τ on performance of
both methods based upon the MOSS criterion and using the mouse vertebra data set.
Again, we get the same results in terms of better performance of the RGDA method
in comparison with the GDA method.
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Table 5 The numbers of the
iterations in which the RGDA
and GDA were repeated before
converging to the intrinsic mean
shape for the mouse vertebra
data

Those numbers for the GDA
method are written inside of the
brackets

ε/6

τ 1e-6 1e-5 1e-3

0.001 4 (18) 1 (13) 1 (2)

0.004 5 (19) 4 (15) 1 (2)

0.1 14 (27) 11 (21) 8 (8)

0.4 20 (36) 13 (30) 6 (9)

0.7 34 (35) 30 (29) 5 (15)

1 30 (33) 19 (31) 12 (17)

6 Conclusion

To derive the statistical measures of centrality and variability is an essential stage of
any statistical analysis. When the observations take their values on a linear space, so
many procedures have been proposed to derive these quantities. Nowadays, statistics
is encountered with data belonging to some non-linear spaces, mainly, because of
great progress in technology. Recently, new fields of sciences bring along themselves
such data from vast disciplines. Statistical shape analysis is an example of such new
subject, which deals with geometrical aspects of the data on hand. In particular, its
main interest lies down on whole geometrical information about an object when the
similarity effects has already been removed out from the object.

The GDA, as a traditional method, was extended to derive a measure of variability
on the manifold valued statistics. However, it suffers from fatal problems when one
deals with geometrical observations such as shape data. Particularly, the geometry
might not be preserved when the GDA goes forward. In addition, when using this
method, the convergence to the intrinsic mean shape might either take a long iterations
or even not be guaranteed while improper values for the step size and threshold are
considered. We proposed new algorithm to overcome these obstacles in the statistical
shape analysis area. Our method, called RGDA, outperforms better in comparison with
the GDA in various scenarios. Further, our simulation study indicated that not only
the geometry is preserved but also it is robust to possible odd configuration produced
at any stage of the algorithm. We further discovered that the GDA might not be able to
converge the intrinsic mean while there is not such problems in employing the RGDA
method. Both simulation study and real data investigations support setting the small
step size and big threshold value if the aim is to derive the intrinsic mean using both
methods. However, unlike the GDA, the RGDA guarantees the optimal solution in all
combinations of these parameters.

We considered the landmarks-based shape analysis in this paper. Other views to
the shape analysis grow up more recently in real life applications. They are set-theory
and functional based methods (Stoyan and Stoyan 1994). Hence, employing the GDA
and RGDA in the statistical shape analysis from these prospective are interesting topic
for future research. In addition, aiming to speed up the algorithms in converging to
the intrinsic mean shape, calibrations of the step size and threshold parameters will be
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interesting topic to study in future. Moreover, to perform the ANOVA for the shape
data, similar to what was done in Figueiredo (2008), using shape variability measures
with the roots in conjunction with these methods will be worth investigating.
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