Stat Papers (2014) 55:221-231
DOI 10.1007/s00362-013-0523-0

REGULAR ARTICLE

On robust causality nonresponse testing in duration
studies under the Cox model

Tadeusz Bednarski

Received: 26 March 2012 / Revised: 2 April 2013 / Published online: 4 May 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract High survey nonresponse in unemployment duration studies may have a
strong effect on inference if the so called causal mechanism is present. A robust method
of testing the causal nonresponse is proposed for data sets where survey information
can be combined with complete administrative records. It is assumed that population
distribution follows approximately the Cox regression model. Formal justification of
the method and a comparative simulation study are included.
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1 Introduction

The Cox model is commonly applied in duration studies where a high nonresponse
rate may result in excessive estimation and testing bias. In social time to event studies
the nonresponse reflects human reluctance which if it is related to order of appearance
of moments of survey and the event in question, like finding a job, is called causal.
Extensive longitudinal studies of survey nonresponse and attrition are given e.g. in
Romeo (1997), O’Muircheartaigh and Campanelli (1999), Little and Rubin (2002),
Van den Berg et al. (1994) and Groves (2006). Pyy-Martikainen and Rendtel (2008)
show how register data combined at person-level with survey data can be used to
conduct an extended type of nonresponse analysis in a panel survey. They demonstrate
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222 T. Bednarski

that initial nonresponse and attrition mechanisms are nonignorable with respect to
analysis of unemployment spells. An important review of longitudinal methods in
economics for labor market data, can also be found in Heckman and Singer (1985).

Labor force surveys, carried out regularly in the EU countries, provide information
on unemployment rate and constitute a good source for studies of influence of individ-
ual characteristics on unemployment duration. However, due to high nonresponse rate,
the value of such studies may be questionable, unless the relation between mechanisms
of nonresponse and resulting estimation bias is known sufficiently well. Verification
of nonresponse mechanisms becomes possible when the survey information can be
combined with individual administrative records held by employment agencies. It is
important to realize that conclusions from such studies can be useful for future surveys,
to assess the impact of nonresponse on resulting estimation bias.

Results proposed here integrate into a formal (mathematical) framework a method
of testing causality nonresponse, outlined heuristically in Bednarski and Borowicz
(2010). The subject studied is very much related to Van den Berg et al. (2006), where
combined survey information with administrative records was used to assess the mech-
anism, effect and magnitude of nonresponse in an unemployment duration study. Van
den Berg et al. propose a method to distinguish between two explanations for nonre-
sponse in survey practice: selectivity - due to observed and related unobserved deter-
minants of durations of unemployment on nonresponse, and causality nonresponse,
a causal effect of a job exit on nonresponse. A simuation study is made to compare
efficiency of the two causality testing methods.

To explain the causality effect van den Berg et al. examine the hazard rates of
exit out of unemployment A(¢#|Z, X) around ¢ = ¢, where c is the survey time, ¢
is the unemployment duration, Z is the binary nonresponse indicator, X is a vector
of explanatory variables, and argue that under the causal effect the time dependent
conditional probability P(Z = 1|T = t, X) has to jump downwards at time t = c,
while P(Z = 0|T = t, X) has to jump upwards at the same time, where T is the
random variable denoting the unemployment duration. The verification of causality
is based on application of a piecewise constant hazard rate model. Their method is
however conditioned on a fixed time distance between unemployment entrance and
the survey moment.

The method proposed here requires the population distribution to follow the Cox
regression model. It consists in incorporating into the set of explanatory variables the
indicator variable Z

7 — 1 nonresponseattimeC
~ | 0 responseattimeC

and studies its significance using the partial likelihood estimation. The variable C,
assumed independent of 7', represents a random instant of time between the moment
of inflow into unemployment and the moment of the survey date. We shall argue that
in a reasonable range of situations the regression coefficient next to Z is zero if and
only if there is no causality effect. Standard statistical packages can then be used to
test the causality effect.
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From now on it is assumed that we have complete information on sample variables
and for each individual we know the value of Z.

2 The model and the methods

The statistical relationship between unemployment duration 7" and the vector of
explanatory variables X will be further described by the Cox proportional hazard
model (Cox 1972) with conditional hazard

At]x) = ho(Dexp(x'B)

where 1, is the baseline hazard and f is a vector of regression parameters.

To simplify the formulas below, a single integral sign will be used for multivari-
ate functions as it is frequently used in Lebesque integration. The partial likelihood
estimator of 8 can then be written as a solution of Lf, (8) = 0, where

Lr,(B) = / |:y - fowa exp(B'x)dF,(t, x)

f IZZw eXp(ﬂ’x)an(t’ x) i| dF,(w,y)

and F,, is the empirical distribution of time and covariate variables ( the censoring
variable is suppressed since we assume complete information on the time variable in
the sample). The cumulated baseline hazard

t
At) = / ro(u)du
0

is usually estimated by the Breslow estimator (Breslow 1975).

Bednarski (1993) introduced a robust version of the partial likelihood estimator
while Grzegorek (1993) (see also Bednarski 2007) proposed a robustified version
of Breslow cumulated baseline hazard estimator. The robust estimator of regression
parameters is based on smooth weighting incorporated into the partial likelihood score
function

B J A(w, x)x 1=y exp(B'x)d F, (t, x)
J A(w, x)I;>y exp(B'x)d F, (2, x)

Lf,(B) =/A(w,y) [y }an(w,y),

while the robust estimator of the baseline hazard (without censoring) is given by

=S AT X))
itz 2jerc ATi X)) exp(FX)

where T;, X; are sample observations, /§ is the robust estimator and R(7;) is the risk
set at time 7;. The risk set denotes all individuals which are at risk at time 7; - the
individuals unemployed at time 7;.
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If the weights A(w, x) are sufficiently regular, then L r(8) becomes Fréchet dif-
ferentiable with respect to F at a given Cox distribution. The differentiability in turn
yields good asymptotic properties of estimates and ensures basic qualitative robustness
properties, like continuity of the statistical functional and nonzero breakdown point
(Bednarski 1993).

The causal nonresponse means here dependence of Z on event (T < C) only. To be
more precise we define the random mechanism associated with nonresponse. It will
be assumed that

Z =bilc<r +bylc~r,

where C is a random survey time, independent of 7', while b; and b, are Bernoulli
variables with success probabilities py = p and p» = p + € respectively, with p
depending possibly on C and X and independent of 7 when X is given. Lack of
causality is equivalent to identical success probabilities for the two Bernoulli random
variables (¢ = 0) at any fixed values of C and X. We naturally assume further that the
variables T and C are independent and moreover it is supposed that their distributions
do not have disjoint supports.

As mentioned earlier the proposed testing method is very simple. It consists in
including Z into the list of explanatory variables and performing a standard inference
using the Cox regression model. The following theorem is stated for the nonrobust
- partial likelihood estimation. Its proof given below can be altered to the robust version
of the estimator similarly as it is done in Bednarski (1993).

Theorem 1 Suppose B is the true regression parameter in the Cox regression model.
Then the following expression, corresponding to the Cox score function

_ 2=y exp(Boz + B'x)dF(t, z, x _
/[z— S alizw exp(foc + po)d P )]dF(w,z,y) 0
fItZw eXp(ﬂOZ + :3 -x)dF(t’ <, -x)
where F (t, z, x) denotes the joint distribution of time to exit from unemployment, the
nonresponse variable Z and covariates X, is equal to zero at By = 0 if and only if
e=0.

The nonzero value of the expression (1) for Bg = 0 when € # 0 implies that the
method consistently detects causality. Therefore we can apply the partial likelihood to
estimate the regression parameters for the covariates (Z, X) and then use the estimator
Bo corresponding to variable Z to verify the hypotheses Hy: non-causality versus H:
causality. The distribution of ﬁ(ﬁo — Po) is approximately Gaussian with mean
zero and estimable standard deviation under the null hypothesis. Verification of the
hypotheses has very practical consequences—under the null hypothesis the estimation
for the Cox regression model remains asymptotically unbiased no matter how high
the nonresponse rate is!

Proof Let F(t, z, x) denote the distribution of time T, nonresponse variable Z and
covariates X and put d F (¢, z, x) = dF (z|t, x)d F (t|x)dG (x), where F(t|x) denotes
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the marginal distribution of T given X while G (x) stands for the distribution of X. If
S denotes the distribution of survey time C then at fixed value of X

P(Z=1T=1t[X=x)=[pl) +e(l—=S0)]f(|x)

where f(¢|x) is the marginal density for 7 given X and consequently

PZ=1T=1)= /[P(X) +e(l = SO)]f(lx)dG(x)

Therefore, when € = 0, g is the true parameter value and By = 0 the following
equations hold
Lr(Bo, B) Z/p(y)f(wly)dG(y)dw

[ A= Fwlx)p@ef*dG )
J(1 = F(w|x)))ef*dG(x) Fwly)dG(y)dw

_ J P f(wlx)dG(x)
—/P(y)f(wly)dG(y)dw— T 7 wodG)

=/P(y)f(w|y)dG(y)dw—/p(X)f(wIX)dG(X)dw =0.

Jwly)dG(y)dw

Since the score function corresponds here to a strictly concave objective function (the
log of partial likelihood) which is maximized by (8o, 8), the solution By = 0 must be
unique.

For the other part of the proof we shall study the sign of the derivative of L (8, B)
with respect to € at fp = 0 and show that it is positive. By continuity of the derivative
we will be able to conclude that in an open neighbourhood of O the expression L ¢ (0, 8)
can not be equal to zero for € # 0.

Since

Lp(0,8) = /[p(y) el = SW)]f (w|y)dG(y)dw

_/ JIp(x) + el = SEN)f(1]x)dG (x)
J f(wlx)dG(x)

fwly)dG(y)dw

is linear in € the derivative can be expressed as

1= 8@®)f(tlx)dG(x)dt

Jiza
[ =swrwinacman - [ St dF ()

and it is equal to

S F ftzw S(t)dF(t)dF
—/ (w) (w)+/1——F(w) (w)
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where F(.) stands here for the time distribution. Now, since

Jiow SOAF@) [, S(w)dF (1)
> = S(w
1= F(w) 1 — F(w)

it follows that the derivative is positive if for all w in an open interval of positive
probability F it holds

Jyzw SAF (1)

I Fa) W

which is implied by nonorthogonality of F and S. O

Corollary Special care is needed when we suspect existence of statistically significant
unobserved time determinants. The method needs not to work if Z depends on unob-
served explanatory variables that influence time distribution. In general there seem to
be serious formal and conceptual difficulties in assessing the influence of unobserved
determinants in duration models and distinguishing it from the nonresponse causality
effect in practical situations. The following chapter discusses this issue in the context
of some Monte Carlo experiments.

3 Simulations

Several Monte Carlo experiments were carried out to evaluate efficiency of the pro-
posed method, its robustness and sensitivity to existence of unobserved explanatory
variable. The method was also compared with Van den Berg et al. (2006) methodology
based on the piecewise constant intensity model.

Experiment 1. Comparison with a method based on a piecewise constant intensity
model. The time T representing the unemployment spell is generated from the Cox
model, given by the intensity

A(t|ledu) = 0.1 exp(edu),

where edu is a binary explanatory variable intended to imitate “level of education”
(1 — higher education, 0 — lack of higher education), generated from the binomial
distribution with a fixed success probability equal 0.3. The expected value of the time
variable is ET = 7.9. The survey time is set equal to 12 yielding P(T > 12) ~ 0.22
and the nonresponse mechanism is given by

Z =bilc<r +bolc-7,

for independent Bernoulli variables b1 and b, with success probability p equal to 0.1,
0.2, 0.3 and € =0.0, 0.1, 0.2, 0.3.

In the Van den Berg et al. (2006) proposal the time axis is divided into equal
time segments (0, 2], (2, 4], ..., (18, 20], (20, co) and the piecewise constant intensity
model with intensity parameters A1, Az, ..., A1 is used. Since by these assumptions
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Table 1 Frequency of
nonresponse causality detection
for the Van den Berg et al. and 0.2

P1 P2 e=0 e=0.1 e=0.2 e=0.3

0.1 41 54 69 675 160 993 348 1000
the new method.
0.2 0.2 59 48 80 547 180 986 374 1000
0.2 0.3 3949 90 501 205 969 420 1000
0.3 0.1 45 44 82 625 167 989 325 1000
0.3 0.2 60 48 57 547 157975 366 1000
0.3 0.3 5753 85508 205 970 411 1000

the intensities Ap, ..., A11 are equal, the zero difference between intensities Ag and A7
is tested for the subsample of respondents to asses the efficiency of the method.

The R language is used for the simulations: “coxph” function for the new method
and a general-purpose optimization routine “optim” to estimate the piecewise constant
intensity model.

Table 1 summarizes results of the experiment repeated 1,000 times for sample size
equal 1,000 (Table 1). For each fixed value of € two columns of numbers indicate detec-
tion frequency of causal nonresponse at significance level 0.05 (causality is present
when € > 0). The first one corresponds to the van den Berg et al. method, the second
one to the new method. The results show high superiority of the new method under
the above model conditions.

Experiment 2. Effect of complex model conditions on nonresponse causality testing.
When the Cox model is applied to real data we have to take into account the sensitivity
of inference on existence of unobserved explanatory variables related to time distribu-
tions and possible data contamination. In this Monte Carlo experiment we cover these
situations. The time variable is generated from the Cox model with intensity either

At|x) = (1/12) exp(x)
where x is Bernoulli with p = 0.5 or
Alt|x,v) = (1/12) exp(x + v)

where v is Bernoulli with success probability 0.2, independent of x and not observed
by the statistician. The nonresponse is generated by

Z =bilc<r +bylc~7,

with b1 and b independent Bernoulli with success probabilities either p; = 0.240.3x
or p; = 0.24-0.3x4-0.2v and p, = p1+e€. The nonresponse depends then on observed
and possibly unobserved covariates. The contamination consists in replacing 5 % of
randomly selected time observations by 50. Notice that the value 50 is a mild and
rather difficult to identify outlier - the chance of observing the value larger or equal
50 for an exponential distribution with rate 1/12 is 0.0155.

The sample size was 1,000 and the experiment was repeated 1,000 times in each of
the following experimental situations:
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r’I(:)lLl:thauiZl[E 582282;2556 and Causality Cont Hy Regression Se of reg
regression estimation for the No unobserved variable
Cox model
e=0 0 0.984 1.007 0.073
0.984 1.008 0.095
e =0.1 0 0.344 0.955 0.074
0.260 0.937 0.095
e=0 1 0.966 0.668 0.068
0.968 0.942 0.090
€e=0.1 1 0.618 0.637 0.069
0.332 0.888 0.090
Unobserved variable present
€e=0 0 0.974 0.923 0.072
0.974 0.934 0.092
€e=0.1 0 0.362 0.873 0.073
0.298 0.867 0.093
e=0 1 0.972 0.616 0.068
0.978 0.879 0.087
€ =0.1 1 0.594 0.578 0.069
0.390 0.811 0.088
Nonresponse depends on unobserved variable
€e=0 0 0.668 0.896 0.072
0.620 0.899 0.092
€e=0.1 0 0.038 0.844 0.073
0.021 0.835 0.092
e=0 1 0.800 0.602 0.068
0.662 0.846 0.087
€ =0.1 1 0.218 0.557 0.069
0.026 0.780 0.087

Robust results are given in bold

— Cox model without v

Cox model with unobserved v
nonresponse independent or dependent on unobserved variable v
— data contaminated or not

The data generation and estimation process are accomplished with R and the coxro-
bust package. Table 2 gives acceptance frequencies of Hy : € = 0 (column 3) and it
indicates the mean value of estimated regression coefficient of x variable (column 4)
along with the mean value of its standard error (column 5). Causality column indicates
the presence of causality mechanism in the simulations (¢ = 0.1). The second column
indicates the presence of contaminated observations.

The first part of the table corresponds to the data generating mechanism given by the
Cox model without unobserved variable v. In the second one the unobserved variable
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Fig. 1 Cumulated hazard estimation for the full data set (left) and response (right) under causality nonre-
sponse, unobserved explanatory variable and contamination.

v is present however it does not affect the nonresponse mechanism. The third part
takes into account all the effects.

The robust method shows in general superiority over ple estimation both in testing
power and in estimation of the regression parameter. The other noticeable feature is that
the presence of unobserved variable in the nonresponse mechanism lowers efficiency in
testing and estimation. Moreover under contamination and the unobserved covariate
present in nonresponse mechanism the robust method more frequently rejects the
null hypothesis when it is “true” even though results of estimation of the regression
parameter are still superior there compared to ple.

Experiment 3. Effect of complex model conditions on estimation of cumulated base-
line hazard. The experiment shows exemplary results of cumulated baseline hazard
estimation in a single run for the entire sample and for its response part. The sample
generation conditions (n=1,000) correspond to part 3 of Table 2 where we have all
the unfavorable effects present: unobserved explanatory variable which influences the
nonresponse pattern, causality nonresponse and the contamination. The distribution of
variables 7', X, V is exactly as in the experiment 2 except for the contamination where,
to avoid abrupt changes in cumulated hazard, 5 % of randomly selected time obser-
vations were given value 20 incremented by exponential variable with expectation 5.
The nonresponse probabilities are chosen as p; = 0.2+ 0.3x +0.2v; pr» = p; +0.2,
respectively. Figure 1 gives the following curves:

theoretical baseline hazard

Breslow estimate

— robust modification of Breslow estimate

—log survival for x = 0 estimated by Kaplan Meier with 95 % confidence bands
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We can see that there is only a minor difference between the Breslow estimate
and its robust counterpart. In fact when the explanatory variables are bounded (here
we use only indicator variables) this is a rule—there are no influential components
among exp(BX;). The weights A do not affect very much the cumulated hazard
estimator though they improve estimation of the regression parameters as seen in
Table 2. The exponential components may, however, become influential for large
values X. The robust modification of Breslow estimator (Bednarski 2007) can then
be of help. Another noticeable feature is that theoretical cumulated hazard may differ
significantly from the estimates. Repeated analysis of cumulated hazard estimation
for the complete and response part of the sample, on many runs of the program, was
not sufficient to give a clear distinction between effects due to presence of unobserved
variable, causality effect and contamination.

4 Conclusions

High survey nonresponse in unemployment duration studies may have strong effect on
inference if so called causal mechanism is present (exit from unemployment changes
the chance of nonresponse). A formal description of the mechanism is given and a
robust method of testing its presence is justified for data sets where survey information
can be combined with complete administrative records when population distribution
follows approximately the Cox regression model. Comparison of the method with the
one proposed in Van den Berg et al. (2006) shows that it is essentially more efficient
and very simple in application. A Monte Carlo study shows the estimation and testing
results for the Cox regression model under dependence of nonresponse probability on
explanatory variables, under data contamination and under dependence of unemploy-
ment time on unobserved explanatory variables. The method shows high consistency
under the influence of observed explanatory variables and resistance to outliers. It
is, however, less resistant to the influence of unobserved explanatory variables on the
nonresponse probabilities. A simulated estimation of cumulated hazards indicates that
the nonresponse effect can not be consistently detected there under the influence of
unobserved explanatory variables.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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