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Abstract Krämer (Sankhyā 42:130–131, 1980) posed the following problem:
“Which are the y, given X and V, such that OLS and Gauss–Markov are equal?”.
In other words, the problem aimed at identifying those vectors y for which the ordinary
least squares (OLS) and Gauss–Markov estimates of the parameter vector β coincide
under the general Gauss–Markov model y = Xβ + u. The problem was later called a
“twist” to Kruskal’s Theorem, which provides conditions necessary and sufficient for
the OLS and Gauss–Markov estimates of β to be equal. The present paper focuses on
a similar problem to the one posed by Krämer in the aforementioned paper. However,
instead of the estimation of β, we consider the estimation of the systematic part Xβ,
which is a natural consequence of relaxing the assumption that X and V are of full
(column) rank made by Krämer. Further results, dealing with the Euclidean distance
between the best linear unbiased estimator (BLUE) and the ordinary least squares
estimator (OLSE) of Xβ, as well as with an equality between BLUE and OLSE are
also provided. The calculations are mostly based on a joint partitioned representation
of a pair of orthogonal projectors.
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1 Introduction

Let us consider the general Gauss–Markov model

y = Xβ + u, (1)

where y is an n × 1 observable random vector, X is a known n × p model matrix,
β is a p ×1 vector of unknown parameters, and u is an n ×1 random error vector. The
expectation vector and the covariance matrix of u are E(u) = 0 and Cov(u) = σ 2V,
respectively, where σ 2 > 0 is an unknown constant and V is a known n×n nonnegative
definite matrix. Both X and V may be rank deficient. It is assumed beforehand that the
model (1) is consistent, i.e., y ∈ R(X : V), where R(.) stands for the column space
of a matrix argument and (X : V) denotes the n × (p + n) columnwise partitioned
matrix obtained by juxtaposing matrices X and V; cf. Rao (1973, p. 297) or Puntanen
et al. (2011, pp. 43, 125).

In his paper, Krämer (1980, p. 130) posed the following problem: “Which are the y,
given X and V, such that ordinary least squares (OLS) and Gauss–Markov are equal?”
In other words, the problem aimed at identifying those vectors y for which the OLS
and Gauss–Markov estimates of the parameter vector β coincide. Referring to this
problem, in a follow-up paper Krämer et al. (1996) called this a “twist” to Kruskal’s
Theorem (Kruskal 1968), which provides conditions necessary and sufficient for the
OLS and Gauss–Markov estimates of β to be equal. In Krämer et al. (1996) “another
twist” to Kruskal’s Theorem is dealt with, and rather than asking when is the OLS
equal to the Gauss–Markov for the full regression vector β, a condition for the equality
of the OLS and Gauss–Markov for a subparameter of β is provided. A more general
“final twist” is considered in Jaeger and Krämer (1998), where the single vectors y
are characterized that yield identical OLS and Gauss–Markov estimators for such a
subparameter.

Inspired by Jaeger and Krämer (1998), Krämer (1980), and Krämer et al. (1996), in
what follows we “do the twist again”. However, unlike in the three papers, we do not
assume that X and V are of full (column) rank, which means that the vector β is not
necessarily unbiasedly estimable. For this reason, instead of the estimation of β, we
consider the estimation of the systematic part E(y) = Xβ. Note that this parameter
function always has a linear unbiased estimator, namely y itself.

An important role in the subsequent considerations will be played by the notion
of a projector. It is known that any n × n idempotent matrix, say F ∈ R

n×n , is an
oblique projector onto its column space R(F) along its null space N (F), where
R(F) ⊕ N (F) = R

n,1. Among many conditions characterizing idempotent matrices
one finds for instance: F2 = F ⇔ R(F) = N (F) ⇔ R(F) = N (F), where F =
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In − F. When idempotent F projects onto R(F) along the orthogonal complement of
R(F), then it is called an orthogonal projector. It can be verified that F is an orthogonal
projector if and only if it is both idempotent and symmetric, i.e., F2 = F = F′.
Projectors are widely used in Statistics and Econometrics as a basic tool for estimation
and test procedures.

Let G be an n × n matrix. An estimator Gy for Xβ, which is unbiased and of
minimal covariance matrix in the Löwner sense fulfills the conditions

GH = H and GVM = 0, (2)

where H = XX† and M = In − H are the orthogonal projectors onto, respectively,
R(X), the column space of X, and the orthogonal complement of R(X) which coin-
cides with N (X′), the null space of X′. The symbol X† denotes the Moore–Penrose
inverse of X. The conditions (2) can be rewritten as

G(H : PVM) = (H : 0), (3)

where PVM = VM(VM)† is the orthogonal projector onto R(VM). It was pointed out
in Baksalary and Trenkler (2012, Remark 3.1) that Eq. (3) always has a solution G and
that each G satisfying (3) yields a representation of the best linear unbiased estimator
BLUE(Xβ) of Xβ. All these representations coincide; see Groß (2004, Corollary 3).
In the Appendix given below it is demonstrated that there may exist, however, quite
useless versions of BLUE(Xβ). To avoid this discrepancy subsequently we strengthen
the consistency condition y ∈ R(X : V) to

R(X : V) = R
n,1. (4)

Then, according to Groß (2004, Corollary 4), BLUE(Xβ) is unique.
In the next section some representations of the best linear unbiased estimator

(BLUE) and the ordinary least squares estimator (OLSE) are provided, whereas Sect. 3
deals with “another twist” to Kruskal’s Theorem, which was briefly mentioned above.
Section 4 is concerned with bounds for the Euclidean distance between BLUE and
OLSE of Xβ, and the last section of the paper revisits the problem of when BLUE
equals OLSE.

2 Representations of BLUE and OLSE

Let P be an orthogonal projector in R
n,1, i.e., an n × n real symmetric idempotent

matrix. Assume that the rank of P is r. It is known that there exists an orthogonal
matrix U such that

P = U
(

Ir 0
0 0

)
U′; (5)
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1112 O. M. Baksalary et al.

see Trenkler (1994, Theorem 13). Any other orthogonal projector of the same size,
say Q ∈ R

n×n , can be represented as

Q = U
(

A B
B′ D

)
U′, (6)

with symmetric matrices A and D of orders r and n − r , respectively.
In what follows we assume that H = XX† is represented by P of the form (5)

and PVM is represented by Q defined in (6), i.e., P = H = XX† and Q = PVM =
VM(VM)†. It can be verified that T = (PVMH)†, where PVM = In − PVM, is an
idempotent matrix; see Greville (1974, p. 830). From (5) and (6) we obtain

T = U
(

PA −BD†

0 0

)
U′,

where PA is the orthogonal projector onto the column space of A = Ir − A.
It follows that T is the oblique projector onto R(H) ∩ [N (H) + N (PVM)] along

R(PVM)
⊥⊕ [N (H) ∩ N (PVM)], where

⊥⊕ indicates that the two subspaces involved
in the direct sum are orthogonal; see Baksalary and Trenkler (2010, Theorem 2). From

R(H) ∩ R(VM) = R(H) ∩ R(PVM) = {0} (7)

(see Baksalary and Trenkler 2009, Theorem 1), we arrive at N (H) + N (PVM) =
R

n,1, which leads to the conclusion that T is the oblique projector onto R(H) along

R(PVM)
⊥⊕ [N (H) ∩ N (PVM)]. Furthermore, it follows that T takes the form

T = U
(

Ir −BD†

0 0

)
U′; (8)

see Baksalary and Trenkler (2010, Sect. 2).
It is well known that (7) ensures that Eq. (3) is solvable. One of the solutions, namely

T = (PVMH)†, gives a representation of the BLUE for Xβ, i.e., BLUE(Xβ) = Ty.
There is a number of further expressions for the BLUE (see Baksalary and Trenkler
2009, Sect. 4), but they all coincide by the assumption (4). Observe that the OLSE of
Xβ is OLSE(Xβ) = Hy.

3 Another twist

As in Krämer (1980), we consider the problem of identifying those observation vectors
y which yield the same value of OLSE(Xβ) and BLUE(Xβ). This amounts to an
analysis of the subspace L of R

n,1 which is the null space of H − T, i.e., L =
N (H − T). For this purpose the following result is useful.

Lemma 1 Let R and S be idempotent matrices of the same size. Then:
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Let us do the twist again 1113

(i) N (S − R) = N (SR) ∩ N (SR),
(ii) N (RS) = N (S) ⊕ [N (R) ∩ R(S)].
Proof For a proof see Baksalary and Trenkler (2013, Theorems 1 and 9). �	

Lemma 1 leads to the following result.

Theorem 1 Under the model (1), let H = XX†, M = In − H, and T = (PVMH)†.
Then

L = N (H − T) = N (TM).

Proof Lemma 1 yields

N (H − T) = N (TH) ∩ N (TH) = N (TM) ∩ N (TH).

Another relevant fact is that with H of the form (5) and T given in (8) we directly get
TH = 0. �	

The vectors belonging to the subspace L = N (H − T) can be explicitly written
as

L = {[In − (TM)†TM]z : z ∈ R
n,1},

as the solutions to the equation TMz = 0. Observe also that N (TM) ⊇ N (M) =
R(H). This means that, inter alia, all vectors belonging to R(H) = R(X) result in
estimates such that BLUE(Xβ) = OLSE(Xβ), for example ŷ = Hy. This does not
come as a surprise, since by (5) and (8) it follows that TH = H.

Further characterization of the subspace L = N (H − T) is established in the
theorem below.

Theorem 2 Under the model (1), let H = XX†, M = In − H, and T = (PVMH)†.
Then

L = R(H)
⊥⊕ [N (HPVM) ∩ N (H)].

Proof By Theorem 1 we have L = N (TM). Hence, Lemma 1 implies

N (TM) = N (M) ⊕ [N (T) ∩ R(M)] = R(H) ⊕ [N (T) ∩ N (H)].

Now

N (T) = N [(PVMH)†] = N [(PVMH)′] = N (HPVM),

which completes the proof. �	
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The result of Theorem 2 looks somehow different than that of Groß et al. (2001,
Theorem 9), for setting there C = In gives

L = R(H) ⊕ [R(VM) ∩ N (H)]. (9)

This discrepancy can be explained on account of the identity

N (HPVM) = R(PVM)
⊥⊕ [N (H) ∩ N (PVM)], (10)

following from Lemma 1. The subspace of Theorem 2 coincides with (9) when
N (H) ∩ N (PVM) = {0}, which is equivalent to R(H) + R(PVM) = R

n,1 or
R(H : VM) = R(X : V) = R

n,1; see Puntanen et al. (2011, Proposition 5.1). How-
ever, the latter condition, given above as (4), was assumed to be valid in the whole
paper. Thus, we may state what follows.

Corollary 1 Under the model (1), let H = XX† and M = In − H. Then

L = R(H)
⊥⊕ [R(VM) ∩ N (H)].

Corollary 1 corresponds to Krämer’s (1980, Theorem), where the identity
BLUE(β) = OLSE(β) is explored under the assumption that X and V are of full
(column) rank.

Recall that the projector P introduced in (5) was determined by the model matrix
X, for P = H = XX†. In consequence, rank of P coincides with the ranks of H and
X, i.e., r = rank(H) = rank(X). Consider now an oblique projector of rank r having
the form

L = U
(

Ir K
0 0

)
U′, (11)

with K ∈ R
r×n−r . It was shown by Baksalary and Trenkler (2011, Sect. 3) that when

K = −W12(DW22D)†, where D ∈ R
n−r×n−r is a symmetric idempotent matrix and

W12 ∈ R
r×n−r and W22 ∈ R

n−r×n−r originate from the representation of V given by

V = U
(

W11 W12
W′

12 W22

)
U′,

then Ly is an unbiased estimator of Xβ whose efficiency lies between that of
BLUE(Xβ) and OLSE(Xβ). In what follows we identify those observation vectors
y which yield the same estimators, compared to BLUE(Xβ) and OLSE(Xβ). The
resulting formulas give an impression how close the three estimators can be.

Theorem 3 Under the model (1), let H = XX†, M = In − H, and T = (PVMH)†.
Moreover, let L be of the form (11). Then:

(i) N (H − L) = N (LM) = R(L) ⊕ [N (H) ∩ N (L)],
(ii) N (T − L) = N (TL) = R(T) ⊕ [N (L) ∩ N (T)].
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Proof From Lemma 1 we have N (H − L) = N (HL) ∩ N (HL). Representations
(5) and (11) yield HL = 0, whence, again by Lemma 1,

N (H − L) = N (HL) = N (L) ⊕ [N (H) ∩ R(L)] = R(L) ⊕ [N (H) ∩ N (L)].

Since Theorem 1 ensures that N (H − L) = N (LH) = N (LM), point (i) of the
theorem is established.

To derive the second part of the theorem, note that Lemma 1 entails N (T − L) =
N (LT) ∩ N (LT). Similarly as in the proof of point (i), we obtain LT = 0 which
implies N (T − L) = N (LT), and thus, by Lemma 1,

N (T − L) = N (LT) = N (T) ⊕ [N (L) ∩ R(T)] = R(T) ⊕ [N (L) ∩ N (T)].

On the other hand, from Theorem 1 we have N (T−L) = N (TL), which completes
the proof. �	

4 Bounds for the Euclidean distance

Baksalary and Kala (1980) derived a bound for ||μ∗ − μ̂||, where μ∗ = OLSE(Xβ)

and μ̂ = BLUE(Xβ), and ||.|| denotes the Euclidean norm. To be precise (Baksalary
and Kala 1980, Theorem) reads

||μ∗ − μ̂|| � (γ 1/2/δ)||y − μ∗||,

where γ is the largest eigenvalue of HVMVH and δ is the smallest nonzero eigen-
value of MVM. Subsequently, we provide an alternative bound, derived from the
representation of BLUE(Xβ), using the oblique projector T = (PVMH)† given in (8).

Theorem 4 Let μ̂ = (PVMH)†y with (PVMH)† of the form (8) be one of the repre-
sentations of BLUE(Xβ). If μ∗ = Hy = OLSE(Xβ), then

||μ∗ − μ̂|| � τ1(BD†)||y||,

where τ1(BD†) is the largest singular value of BD†.

Proof From

μ∗ = U
(

Ir 0
0 0

)
U′y and μ̂ = U

(
Ir −BD†

0 0

)
U′y

we obtain

μ∗ − μ̂ = U
(

0 BD†

0 0

)
U′y.
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1116 O. M. Baksalary et al.

Hence,

||μ∗ − μ̂||2 = y′U
(

0 0
0 D†B′BD†

)
U′y.

In consequence, ||μ∗ − μ̂||2 � λ1(D†B′BD†)||y||2, where λ1(D†B′BD†) is the largest
eigenvalue of D†B′BD†. The assertion follows by taking square roots. �	

It is seen from Theorem 4 that μ∗ = μ̂ for all y if and only if BD† = 0, or,
equivalently, B = 0, which means that H and PVM commute.

5 Equality of BLUE and OLSE

The commutativity HPVM = PVMH, just mentioned in the preceding section, is
not contained in the standard catalogue of conditions necessary and sufficient for the
equality BLUE(Xβ) = OLSE(Xβ). Among the most important conditions equivalent
to the equality are:

(i) HV = VH,
(ii) HV = HVH,

(iii) R(VX) = R(X) ∩ R(V),
(iv) HVM = 0,
(v) R(VX) ⊆ R(X).

Note that the condition (v) can be rewritten as R(VX) = R(X) when V is nonsingular;
see Krämer (1980) for a discussion related to Kruskal’s theorem and Puntanen et al.
(2011, Proposition 10.1). Motivated by Theorem 4 we obtain the following result.

Theorem 5 Under the model (1), let H = XX† and M = In −H. Then, the following
conditions are equivalent:

(i) BLUE(Xβ) = OLSE(Xβ),
(ii) HVM = 0,

(iii) HPVM = 0,
(iv) H + PVM is an orthogonal projector,
(v) HPVM = PVMH,

(vi) HPVM is an orthogonal projector.

Proof For the proof of the equivalence (i) ⇔ (ii) see Puntanen et al. (2011, Proposition
10.1).

To show that (ii) implies (iii) postmultiply HVM = 0 by (VM)† and refer to
PVM = VM(VM)†. To establish the reverse implication, note that the condition
HPVM = 0 entails HVM(VM)† = 0. Postmultiplying this equality by VM leads to
HVM = 0.

The equivalence (iii) ⇔ (iv) is well known; see e.g., Rao and Mitra (1971, Theorem
5.1.2).

The fact that (iii) ⇒ (v) is visibly seen by taking the transpose of HPVM = 0. For
the proof of the reverse implication, recall that BLUE(Xβ) exists if and only if Eq. (7)
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are satisfied. By condition (v) we have HPVMx = PVMHx for any vector x ∈ R
n,1.

Thus, x ∈ R(H) ∩ R(PVM), whence HPVMx = 0 for any x, i.e., HPVM = 0.
The part (v) ⇔ (vi) is also known in the literature; see e.g., Baksalary et al. (2002,

Theorem). �	
Krämer (1980) showed how his theorem characterizing the vectors y ensuring the

coincidence of BLUE(β) and OLSE(β) can be used to prove Kruskal’s Theorem.
This is done in a similar fashion in the present set-up.

Theorem 6 Under the model (1), let H = XX† and M = In −H. Then, the following
conditions are equivalent:

(i) BLUE(Xβ) = OLSE(Xβ),
(ii) N (H) = N (HPVM) ∩ N (H).

Proof First we show that (ii) implies (i). The condition (ii) ensures that N (H) ⊆
N (HPVM), which yields R(PVMH) ⊆ R(H). Thus, HPVMH = PVMH. In conse-
quence, HPVMH = PVMH, and taking the transpose leads to HPVM = PVMH. The
implication now follows on account of point (v) of Theorem 5.

The part (i) ⇒ (ii) is established in a similar fashion by reversing the preceding
chain. �	

From the discussion preceding Corollary 1 it follows that N (HPVM), specified
in (10), coincides with R(PVM) when (4) holds. In such a case, the condition (ii) of
Theorem 6 reduces to N (H) = R(PVM) ∩ N (H), or, equivalently, to R(PVM) ⊆
N (H), i.e., R(VM) ⊆ R(M). When V is nonsingular, we get R(VM) = R(M),
which is the final condition of Kruskal’s Theorem in Krämer (1980).

Another observation is that the conditions of Theorems 5 and 6, unlike the customary
conditions given on the top of the present section, predominantly deal with orthogonal
projectors. Thus, the equality of BLUE(Xβ) and OLSE(Xβ) is characterized in a
more symmetric way.

When PVM has representation (6), then we get the following equivalences among
the statements of Theorem 5:

H + PVM is an orthogonal projector if and only if A = 0,
HPVM = PVMH if and only if B = 0.

Note that condition A = 0 in general is stronger than B = 0, but in the present
set-up they are equivalent. There exists a large number of equivalent conditions to
characterize condition (v) of Theorem 5, for instance:

HPVM = PR(H)∩R(VM),

R(HPVM) = R(H) ∩ R(VM),

rank(HPVM) = dim[R(H) ∩ R(VM)],
rank(H − PVM) = rank(H + PVM) − rank(HPVM);

see Baksalary and Trenkler (2008).
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Appendix

As an example to describe the situation when R(X : V) is a proper subset of R
n,1,

consider the linear model (1), where X = (1, 0, 0)′ ∈ R
3,1 and V = diag(0, 1, 0) ∈

R
3×3. Then R(X : V) is the linear combination of the vectors (1, 0, 0)′ and (0, 1, 0)′,

and does not fill out the whole space R
3,1. It follows that H = XX† = diag(1, 0, 0),

M = I3 − H = diag(0, 1, 1), VM = V, HV = VH = 0, PVM = V, PVM =
diag(1, 0, 1), PVMH = H, and T = (PVMH)† = H. Hence, Hy = Ty = y for all
y ∈ R

3,1, i.e., OLSE(Xβ) = BLUE(Xβ) everywhere.
Let us now have a look at the estimator Gy, where G = diag(1, 0, g), with arbitrary

g ∈ R. The matrix G satisfies Eq. (3), which means that with varying g the statistic Gy
gives an infinite number of alternative representations of BLUE(Xβ). Observe that
when y = (y1, y2, y3)

′, then we get (y1, 0, gy3)
′ as a best unbiased, but somewhat

ridiculous estimator of Xβ. It follows that Cov(Hy) = Cov(Ty) = Cov(Gy) = 0.
Furthermore, when g �= 0, then we have N (H − G) = span{(1, 0, 0)′, (0, 1, 0)′}, in
contrast to N (H − T) = R

3,1. Note however that in this case the vector y does not
satisfy the consistency condition of Sect. 1.
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