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Abstract A finite mixture of Tobit models is suggested for estimation of regression
models with a censored response variable. A mixture of models is not primarily adapted
due to a true component structure in the population; the flexibility of the mixture is
suggested as a way of avoiding non-robust parametrically specified models. The new
estimator has several interesting features. One is its potential to yield valid estimates
in cases with a high degree of censoring. The estimator is in a Monte Carlo simulation
compared with earlier suggestions of estimators based on semi-parametric censored
regression models. Simulation results are partly in favor of the proposed estimator and
indicate potentials for further improvements.

Keywords Finite mixture models · Censoring · Tobit · EM-algorithm

1 Introduction

A frequent problem in regression analysis is the occurrence of censored observa-
tions of the dependent variable. In failure and survival time studies, the termination
of a study may leave units without observed failures or deaths. For these units, the
data information at hand are the eventual occurrence of failures and deaths after
the time of closure of the study. In econometric applications, regression analysis
based on censored observations are applied in cases where observations are limited to
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non-negative values, providing a large fraction of zeros representing unobservable
negative values.

Maximum likelihood (ML) estimation was an early suggestion as an alternative
to the least squares estimator which is biased and inconsistent under censoring.
Tobin (1958) and Glasser (1965) proposed ML estimation under a normal distrib-
ution assumption, where the model studied by Tobin (1958) is generally known as
the “Tobit model”. Amemiya (1973) derived results on consistency and asymptotic
normality of the ML estimator under normality. A related estimator is the two-step
estimator developed by Heckman (1976) under normality.

A general problem with the ML estimator is its sensitivity to model misspecifi-
cation (e.g., White 1982). The potential inconsistency of the ML estimator due to
non-normality has encouraged researchers to develop estimators based on less restric-
tive assumptions. There is a rich variety of suggestions of estimators for semi- and
non-parametric censored regression models (Miller 1976; Buckley and James 1979;
Powell 1984, 1986a,b; Horowitz 1986, 1988; Lee 1992; Honoré and Powell 1994;
Khan and Powell 2001; Lewbel and Linton 2002; Karlsson 2006; Huang et al. 2007;
Abarin and Wang 2009; Moral-Arce et al. 2011).

For the purpose of detecting market segments of customers, Jedidi et al. (1993)
consider a finite mixture of censored regression models based on a normal distribution
assumption. The idea of a finite mixing of distributions dates back to Pearson (1894)
who tried to establish evidence of two species of crabs in one data set of measurements.
However, one problem facing Pearson was the difficulty in distinguishing between a
finite mixture of symmetric distributions and a single asymmetric distribution (Pearson
1894). This result implies that a finite mixture of distributions can be used as an
approximation of an unknown distribution. Or as stated by McLachlan and Peel (2000,
p. 1), “But as any continuous distribution can be approximated arbitrary well by a finite
mixture of normal densities with common variance (. . .), mixture models provide
a convenient semiparamatric framework in which to model unknown distributional
shapes, whatever the objective. . .”

Focus in this paper is placed on the potentials of using the model by Jedidi et al.
(1993) for estimation of censored regressions models. The mixture is utilized as a
means for modeling an unknown distribution, and is not primarily motivated by data
containing observations from different populations. Adapting the model by Jedidi et
al. (1993) for estimation of censored regression models extends the partially adaptive
estimator suggested by Caudill (2012), where the distribution of the disturbance term,
with the constant term added, is modeled by a mixture of normal distributions. Here
this model is extended to also include a mixture of slope coefficients.

This paper presents results from Monte Carlo simulations comparing estimates
derived from a finite mixture of Tobit models with those derived from estimators
compared by Moon (1989) and Honoré and Powell (1994), and the partially adap-
tive estimator of Caudill (2012). The simulation study also includes comparisons of
estimators derived from finite mixture models extended with skedastic functions to
address potential heteroskedasticity.

Censored regression models and the finite mixture of Tobit models proposed by
Jedidi et al. (1993) are described in the next section. Section 3 contains a description
of the EM-algorithm used for estimation of the finite mixture of Tobit models. Setups
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and results of the Monte Carlo studies performed are contained in Sect. 4. An empirical
illustration is given in Sect. 5, while the final section includes a discussion on results
and suggestions for further research.

2 Finite mixture of Tobit models

Let (yi , xT
i ), (i = 1, . . . , n), denote n pairs of observations generated from n inde-

pendent distributions where yi is an observation of the scalar, real valued, random
variable Yi = max(0, Y ∗

i ), xi is an observation of the p-dimensional, real valued, ran-
dom vector Xi , and Y ∗

i |(Xi = xi ) ∼ N (xT
i β0, σ

2
0 ). Here the vector of parameters β0

and the variance σ 2
0 are unknown population quantities. The marginal distribution of

the vector Xi is assumed not to depend on β0 or σ 2
0 , and due to the normal assumption,

φ((y∗
i − xT

i β0)/σ0) is the density for Y ∗
i conditionally on Xi = xi .

This model is the Tobit model (Tobin 1958), where observations of the dependent
variable in the classical linear regression model are left censored at zero. The Tobit
model can be extended to represent cases with right censoring and/or different cen-
soring points by appropriate transformations where the censoring points are assumed
fixed and known.

The conditional probability of the event Yi = 0 equals �(−xT
i β0/σ0). The pdf of

the conditional distribution for Yi can then be written as

f (yi : β0, σ
2
0 ) = φ((yi − xT

i β0)/σ0)
di �(−xT

i β0/σ0)
(1−di )

where di = 1 if yi > 0 and di = 0 if yi = 0. The log-likelihood based on the set of n
observations can then be written as

log Ln(β, σ 2) =
n∑

i=1

log f (yi : β, σ 2)

In the approach suggested by Jedidi et al. (1993) to define a finite mixture Tobit
(FMT) model, the conditional distribution of Yi is assumed to be defined by a mix-
ture of K > 1 distributions with pdfs of the form of f (.). To handle this, let
B = {β1, β2, . . . , βK } denote a set of K different parameter vectors of lengths p,
and let � = {σ 2

1 , σ 2
2 , . . . , σ 2

K } be a set of variances. Also, let � = {λ1, λ2, . . . , λK }
denote a set of scalar weights satisfying 0 < λk < 1 and

∑K
k=1 λk = 1. These sets are

combined into the set 	 = {B, �,�} defined for a parameter space 	 ∈ 
.
Now, let 	0 ∈ 
 be a specific point in the parameter space and let f (y : βk0, σ

2
k0)

denote the pdf of the k:th component in the mixture. Then the conditional pdf for Yi

in the FMT model is obtained as

f (y : 	0) =
K∑

k=1

λk0 f (y : βk0, σ
2
k0)
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With this FMT model, the parameter vector β0 in the censored regression model is
defined by the weighted sum

β0 =
K∑

k=1

λk0βk0.

The ML estimator is defined as the value 	̂ ∈ 
which maximizes the log-likelihood
function

log L(	) =
n∑

i=1

log
K∑

k=1

λk f (y : βk, σ
2
k ) (1)

The ML estimator of the parameter vector β0 in the censored regression model is
defined as

β̂ =
K∑

k=1

λ̂k β̂k (2)

3 Estimation

The inclusion of a log of a sum in the definition of the log-likelihood function (1)
makes it difficult to numerically solve for the ML estimates. A trick to overcome the
computational complexities is to assume that the population actually consists of K
subpopulations and each observation is obtained from one of these subpopulations. The
information on the subpopulation from which the observation is obtained is missing.

Let Wi be a component membership vector, i.e., its elements Wik are defined to be
either 1 or 0 if the component of origin of Yi is K or not. Wi cannot be observed but has
a multinomial distribution consisting of one draw from K categories with probabilities
�. The complete-data log-likelihood is then

log Lcompl(	) =
n∑

i=1

K∑

k=1

wik

[
log λk + di log

(
1

σk
φ

(
yi − xT

i βk

σk

))

+(1 − di ) log

(
�

(
−xT

i βk

σk

))]
(3)

Taking the conditional expectation of the complete-data log-likelihood given the
observed data and the current estimate (or guess) of 	 is the E-step of the EM-
algorithm. Let 	(0) be the initial guess for 	 and let

Q(	|	(s)) = E	(s) (log Lcompl(	))

123



Finite mixture modeling of censored regression models 631

denote the conditional expectation of (3) in the (s + 1)th iteration. Because the
complete-data log-likelihood is linear in wik ,

E	(s) (Wik |y) = P(Wik = 1|y) = τ
(s)
k (yi |	(s)) (4)

= λ
(s)
k

fk(yi |β(s)
k , σ

(s)
k )

∑K
k=1 λ

(s)
k fk(yi |β(s)

k , σ
(s)
k )

(for details see McLachlan and Peel 2000, Section 2.8) and the E-step is completed
by replacing wi j in (3) with its conditional expectation (4) so that

Q(	|	(s)) =
n∑

i=1

K∑

k=1

τ
(s)
k (yi |	(s))

[
log λk + di log

(
1

σk
φ

(
yi − xT

i βk

σk

))

+(1 − di ) log

(
�

(
−xT

i βk

σk

))]
(5)

Note that, with an assumption of a population divided into components (subpop-
ulations), τk(yi ) can be interpreted as the estimated probability of an observation
belonging to the kth component of the population.

The M-step on the (s + 1)th iteration requires calculation of the global maximum
of (5) with respect to 	 to give the updated estimate 	(s+1). The updated estimates
of the mixing weights are calculated independently of the other updated estimates of
B and �. Thus, the λk on the (s + 1)th iteration is

λ
(s+1)
k = 1

n

n∑

i=1

τ
(s)
k (yi |	(s)).

The updated estimates of B and � can be computed using a optimization algorithm,
maximizing

n∑

i=1

K∑

k=1

τ
(s)
k (yi |	(s)) log fk(yi |βk, σk)

with respect to (B, �) or by using another EM-algorithm. This latter approach is
utilized by Jedidi et al. (1993) by recognizing that the non-positive y∗

i are unobservable
and using a “minor EM-algorithm” within the M-step of the EM-algorithm described
above.

One property of the EM-algorithm is its monotone increase in the log-likelihood
value over a sequence of iterations. This implies that the EM-algorithm will converge
to the ML estimate if the likelihood is strictly concave within a neighborhood of
the ML estimate and the starting point of the algorithm is within this neighborhood.
Unfortunately the likelihood function of a finite mixture of Tobit models is not globally
concave over the parameter space and the EM iterations may end up in undesirable
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points as local maxima. The suggested remedy for this is to try out several different
starting points (Wu 1983).

The existence of local maxima for a finite mixture of Tobit models is implied by the
results of Amemiya (1973), who showed that the log-likelihood of the Tobit model is
not globally concave. Finite mixtures of normal distributions also presents the problem
of an unbounded log-likelihood function (McLachlan and Peel 2000; Caudill 2012),
which is made possible by variances not bounded away from zero. The suggested
way of avoiding this problem is to restrict the parameter space for the variances.
This might also have implications for the identification of the ML estimate within the
defined parameter space, since Amemiya (1973) shows the Tobit log-likelihood to be
globally concave if it is defined conditionally on a specified value of the variance. This
topic and the properties of the EM-algorithm deserve further attention but are out of
the scope of the present paper.

4 Simulation

Honoré and Powell (1994) compared several estimators of the censored regression
model under some different designs. Here, a selection of the their designs are used to
evaluate the performance of using a finite mixture of two Tobit models, i.e., a FMT
with K = 2, and estimating β0 via the EM-algorithm and weighting the estimated
component regression coefficient as described in (2). For the M-step maximization
the Nelder–Mead algorithm included in the package optim in R (R Core Team 2012)
was used.

For comparison, the symmetrically censored least squares (SCLS) estimator
(Powell 1986b) and the censored least absolute deviations (CLAD) estimator (Powell
1984) are included. The SCLS is based on symmetric censoring of the upper tail of the
distribution of the response variable to compensate for the censoring in the lower tail.
The CLAD estimator minimizes the sum of absolute deviations between the observed
responses and max(0, xT

i β). Both estimators are consistent and asymptotically normal
for a wide class of distributions of the error term and also robust to heteroskedasticity.
However, for consistency of the SCLS estimator the error term distribution needs to
be symmetric. The optimizations required to compute these estimates were also done
by the Nelder–Mead algortithm in R.

The simulation also includes the partially adaptive estimator for the censored regres-
sion model (PAM), suggested by Caudill (2012). In terms of the FMT estimator, the
PAM estimator equals the FMT with the restriction of equal slope coefficients over
mixture components, i.e., if βs

k denotes the slope coefficients in βk , then βs
k = βs

l for
all k, l ∈ {1, 2, . . . , K }.

Data is generated from the following model

Yi = max(0, X T
i β0 + ε), (6)

where Xi = (1, X1i ) and X1i is uniformly distributed on [0, 20], the slope coefficient
of β0 equals 1. The error term ε is generated according to the five designs listed below
and the intercept is chosen such that the censoring rate is either 25, 50, or 70 %.
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The designs considered are:

– Design 1: Laplace. The errors term, ε, is Laplace distributed with mean 0 and
variance 100.

– Design 2: Normal mixture (right skewed). The error term, ε, is normally distributed
with mean 12 and variance 220 with probability 0.2 and normally distributed
with mean −3 and variance 25 with probability 0.8. This yields a right skewed
distribution.

– Design 3: Gumbel (right skewed). The error term, ε, is Gumbel distributed with
location

√
600/π2γ and scale

√
600/π2, where γ is the Euler-Mascheroni con-

stant = 0.57721 . . . This means that the mean of ε is 0 and variance is 100 as it is
in the other models.

– Design 4: Heteroskedastic errors (ε = √
(cex ) · N (0, 1)). The error term ε =√

(cex ) · N (0, 1) with c = 4.122307 × 10−6 chosen so that the average variance
of ε is 100 as it is in the other models.

– Design 5: Heteroskedastic errors (ε = √
(α0 + α1 · x) · N (0, 1)). The error term

ε = √
(α0 +α1 · x) · N (0, 1) where α0 = 50 and α1 = 5 chosen so that the average

variance of ε is 100 as it is in the other models.

Similar to Honoré and Powell (1994), sample sizes of 200 and 800 are included
and, in addition, n = 2, 000 is also considered. Another difference in the study design
compared to the design of Honoré and Powell (1994) is the inclusion of the higher
censoring rate, i.e., 70 % censoring. This is a common situation when measuring the
time to a rare event where many individuals will not experience the event before the
end of the study period, or when measuring consumer desired spendings on a particular
brand where a majority do not purchase the brand at all (e.g., Marell et al. 2004; Jedidi
et al. 1993; Fack and Landais 2010).

4.1 Results

Samples from designs 1–3 is replicated 1,000 times and the results in terms of average
and median bias, root mean square error (RMSE), and median absolute deviation
(MAD) of the estimators of the slope coefficient are found in Tables 1, 2, and 3. A
general result for all estimators is decreasing bias, RMSE, and MAD with increasing
sample size and decreasing censoring rate.

Apparent is that when the censoring rate is high the FMT and PAM estimators are
better than their semi-parametric competitors. When the censoring rate is 70 % they
out-perform the two other estimators in terms of bias, RMSE, and MAD. The SCLS
estimator does worst and is associated with large bias estimates, especially when the
sample size is small.

At the lower censoring rate of 50 %, the FMT and PAM are generally associated
with better results then the SCLS and CLAD estimators in terms of RMSE and MAD.
Again the SCLS estimator does worst while, e.g., bias estimates are notably smaller
than in the 70 % censoring case. In some cells, the biases of the SCLS are on par with
those of the other estimators. In the Laplace and Gumbel distribution cases, the CLAD
estimator has the smallest bias estimates (average and median bias) among all the four
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Table 1 Average and median bias, RMSE, and MAD of the estimators of the slope coefficient in a Monte
Carlo simulation of 1,000 replicates from Design 1 (Laplace).

Estimator Average bias RMSE Median bias MAD

25 % censoring, n = 200 FMT 0.025 0.169 0.020 0.101
SCLS 0.051 0.253 0.003 0.131
CLAD 0.018 0.147 0.003 0.091
PAM 0.032 0.127 0.028 0.081

25 % censoring, n = 800 FMT 0.015 0.075 0.012 0.050
SCLS 0.012 0.101 0.002 0.063
CLAD 0.007 0.073 0.002 0.046
PAM 0.026 0.070 0.023 0.045

25 % censoring, n = 2, 000 FMT 0.009 0.048 0.006 0.031
SCLS −0.000 0.058 −0.003 0.040
CLAD −0.001 0.046 −0.002 0.028
PAM 0.015 0.044 0.012 0.028

50 % censoring, n = 200 FMT 0.042 0.206 0.028 0.124
SCLS 0.189 0.770 0.038 0.231
CLAD 0.049 0.295 −0.009 0.151
PAM 0.051 0.167 0.040 0.105

50 % censoring, n = 800 FMT 0.021 0.088 0.017 0.056
SCLS 0.032 0.194 −0.003 0.108
CLAD 0.015 0.139 −0.006 0.078
PAM 0.038 0.097 0.032 0.061

50 % censoring, n = 2, 000 FMT 0.014 0.055 0.015 0.012
SCLS 0.005 0.109 −0.007 0.073
CLAD −0.001 0.077 −0.005 0.052
PAM 0.021 0.065 0.013 0.038

70 % censoring, n = 200 FMT 0.072 0.347 0.042 0.150
SCLS 2.630 19.67 0.102 0.418
CLAD 0.193 0.913 −0.003 0.242
PAM 0.063 0.215 0.045 0.139

70 % censoring, n = 800 FMT 0.021 0.105 0.020 0.069
SCLS 0.151 0.611 0.013 0.206
CLAD 0.039 0.273 −0.020 0.137
PAM 0.040 0.122 0.035 0.086

70 % censoring, n = 2, 000 FMT 0.010 0.063 0.009 0.041
SCLS 0.049 0.261 0.010 0.135
CLAD 0.016 0.173 −0.013 0.099
PAM 0.017 0.080 0.012 0.049

estimators for the larger sample sizes. Results of the FMT and PAM are close where
the average bias and RMSE tend to be smaller for the FMT for the larger sample sizes.

In the cases of a 25 % censoring degree, results for the FMT, PAM, and CLAD
estimators are comparable and better than those of the SCLS estimator over all designs
and sample sizes. Bias and RMSE estimates are all small in general.

Simulation results obtained under the heteroskedasticity designs 4 and 5 are
depicted in Tables 4 and 5. The relative performance of estimators according to the
results are somewhat different from those indicated by Tables 1, 2, and 3. Large bias
and RMSE estimates are observed for the FMT and PAM estimators when the vari-
ance function is of a multiplicative form (Table 4), while results in general associates
small bias and RMSE for the CLAD estimator. Small bias and RMSE estimates are
also obtained for the SCLS estimator in the 25 % censoring case. With an additive
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Table 2 Average and median bias, RMSE, and MAD of the estimators of the slope coefficient in a Monte
Carlo simulation of 1,000 replicates from Design 2 (Normal mixture).

Estimator Average bias RMSE Median bias MAD

25 % censoring, n = 200 FMT 0.002 0.129 0.001 0.084
SCLS 0.118 0.254 0.082 0.125
CLAD 0.012 0.157 −0.002 0.096
PAM 0.001 0.093 0.002 0.0193

25 % censoring, n = 800 FMT 0.004 0.059 0.001 0.040
SCLS 0.103 0.141 0.095 0.096
CLAD 0.008 0.075 0.002 0.048
PAM 0.005 0.046 0.002 0.031

25 % censoring, n = 2, 000 FMT −0.002 0.036 −0.001 0.023
SCLS 0.091 0.109 0.089 0.089
CLAD 0.000 0.045 −0.003 0.030
PAM 0.001 0.029 0.002 0.019

50 % censoring, n = 200 FMT 0.007 0.175 −0.003 0.107
SCLS 0.390 2.281 0.025 0.294
CLAD 0.039 0.423 −0.032 0.202
PAM 0.008 0.166 −0.007 0.105

50 % censoring, n = 800 FMT 0.007 0.078 0.006 0.051
SCLS 0.126 0.327 0.078 0.150
CLAD 0.026 0.200 −0.009 0.119
PAM 0.009 0.075 0.006 0.050

50 % censoring, n = 2, 000 FMT −0.001 0.046 −0.002 0.030
SCLS 0.082 0.171 0.070 0.103
CLAD 0.009 0.119 −0.003 0.076
PAM 0.002 0.046 0.001 0.031

70 % censoring, n = 200 FMT 0.043 0.347 0.001 0.180
SCLS 6.287 35.21 −0.429 6.288
CLAD −0.021 2.370 −0.266 1.524
PAM 0.027 0.307 −0.006 0.183

70 % censoring, n = 800 FMT 0.016 0.136 0.004 0.082
SCLS 2.583 43.47 −0.194 1.524
CLAD −0.041 1.535 −0.140 0.481
PAM 0.016 0.135 0.010 0.084

70 % censoring, n = 2, 000 FMT 0.002 0.079 0.001 0.049
SCLS 0.437 7.931 −0.165 0.803
CLAD −0.074 0.935 −0.109 0.301
PAM 0.005 0.083 0.005 0.054

variance function (Table 5) and 25 % censoring, bias and RMSE estimates are small for
all estimators. For 50 % censoring, only CLAD has small bias and RMSE estimates.
None of the estimators works well under 70 % censoring according to the results in
Table 5.

4.2 Heteroskedastic components

In an effort to improve the performance of the FMT and PAM estimators in the het-
eroskedastic cases considered, a skedastic variance function is included in the regres-
sion models. The function used is σk = exp(α0k +α1k x) in (1). The results in terms of
bias and RMSE of the regression slope estimators for the simulation designs 4 and 5
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Table 3 Average and median bias, RMSE, and MAD of the estimators of the slope coefficient in a Monte
Carlo simulation of 1,000 replicates from Design 3 (Gumbel).

Estimator Average bias RMSE Median bias MAD

25 % censoring, n = 200 FMT1 0.046 0.170 0.037 0.105
SCLS 0.152 0.335 0.091 0.150
CLAD 0.028 0.213 −0.007 0.128
PAM 0.053 0.155 0.046 0.100

25 % censoring, n = 800 FMT 0.040 0.087 0.036 0.056
SCLS 0.103 0.162 0.089 0.096
CLAD 0.012 0.106 0.005 0.070
PAM 0.044 0.092 0.039 0.058

25 % censoring, n = 2, 000 FMT 0.036 0.061 0.032 0.040
SCLS 0.087 0.112 0.084 0.085
CLAD 0.001 0.068 −0.002 0.043
PAM 0.027 0.062 0.020 0.037

50 % censoring, n = 200 FMT1 0.062 0.233 0.039 0.136
SCLS 0.395 1.253 0.135 0.302
CLAD 0.084 0.429 −0.028 0.217
PAM 0.060 0.205 0.050 0.134

50 % censoring, n = 800 FMT 0.037 0.100 0.032 0.066
SCLS 0.134 0.328 0.074 0.147
CLAD 0.029 0.212 −0.010 0.123
PAM 0.053 0.122 0.048 0.081

50 % censoring, n = 2, 000 FMT 0.031 0.067 0.028 0.043
SCLS 0.085 0.178 0.067 0.101
CLAD 0.001 0.121 −0.009 0.083
PAM 0.036 0.086 0.029 0.053

70 % censoring, n = 200 FMT1 0.089 0.511 0.047 0.178
SCLS 5.321 34.52 0.122 0.717
CLAD 0.504 4.217 0.002 0.441
PAM 0.064 0.246 0.045 0.158

70 % censoring, n = 800 FMT 0.035 0.128 0.034 0.087
SCLS 0.977 5.643 0.070 0.403
CLAD 0.204 0.807 −0.040 0.237
PAM 0.055 0.142 0.051 0.093

70 % censoring, n = 2, 000 FMT 0.023 0.079 0.023 0.054
SCLS 0.525 3.004 0.077 0.299
CLAD 0.096 0.470 −0.016 0.191
PAM 0.041 0.098 0.037 0.066

1 For sample size n = 200 the FMT did not converge in a few replicates of the simulation study and the
results are based on 999, 999, and 997 replicates for the three different censoring levels respectively

are reported in Tables 6 and 7 respectively. Estimators defined by the heteroskedastic
mixtures are denoted FMT.vf and PAM.vf, respectively.

As is indicated by the results, the modification of the FMT and PAM estimators
drastically improves their performance under heteroskedasticity. Average biases are
small and in comparison with the CLAD estimator, results are similar to those in
Tables 1, 2, and 3. The FMT.vf and PAM.vf estimators works better than the CLAD
estimator for large censoring, and are generally associated with smaller RMSE and
MAD values. The results for the FMT.vf and PAM.vf estimators are comparable with
one exception. In Table 6 under 70 % censoring, the PAM.vf has large bias and RMSE
estimates, while the FMT.vf estimator has small bias and RMSE estimates.
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Table 4 Average and median bias, RMSE, and MAD of the estimators of the slope coefficient in a Monte
Carlo simulation of 1,000 replicates from Design 4 (Heteroskedastic errors, ε = √

(cex ) · N (0, 1)).

Estimator Average bias RMSE Median bias MAD

25 % censoring, n = 200 FMT 0.531 0.607 0.531 0.531
SCLS 0.076 0.361 0.012 0.136
CLAD 0.001 0.032 0.001 0.018
PAM 0.090 0.117 0.087 0.087

25 % censoring, n = 800 FMT 0.552 0.569 0.569 0.569
SCLS 0.007 0.104 −0.004 0.068
CLAD −0.000 0.013 −0.000 0.009
PAM 0.140 0.151 0.132 0.132

25 % censoring, n = 2, 000 FMT 0.560 0.565 0.563 0.563
SCLS 0.001 0.062 −0.002 0.040
CLAD 0.000 0.008 −0.000 0.005
PAM 0.168 0.174 0.165 0.165

50 % censoring, n = 200 FMT 1.218 1.430 1.124 1.124
SCLS 1.664 11.06 0.024 0.271
CLAD 0.022 0.187 0.001 0.099
PAM 0.284 0.357 0.262 0.262

50 % censoring, n = 800 FMT 1.238 1.268 1.263 1.263
SCLS 0.070 1.153 −0.006 0.129
CLAD 0.001 0.077 −0.001 0.052
PAM 0.349 0.371 0.341 0.341

50 % censoring, n = 2, 000 FMT 1.260 1.269 1.262 1.262
SCLS 0.009 0.125 −0.004 0.078
CLAD 0.001 0.046 −0.003 0.030
PAM 0.418 0.432 0.407 0.407

70 % censoring, n = 200 FMT 3.113 4.112 2.402 2.402
SCLS 10.65 117.9 0.062 0.661
CLAD 0.286 1.244 0.015 0.310
PAM 1.461 1.637 1.394 1.394

70 % censoring, n = 800 FMT 2.936 3.114 3.038 3.038
SCLS 1.610 10.79 0.008 0.308
CLAD 0.040 0.282 0.005 0.167
PAM 1.254 1.301 1.232 1.232

70 % censoring, n = 2, 000 FMT 3.020 3.121 3.233 3.233
SCLS 0.185 1.085 −0.007 0.189
CLAD 0.009 0.160 −0.005 0.106
PAM 1.253 1.272 1.250 1.250

In case of homoskedasticity, the FMT.vf and PAM.vf estimators are oveparame-
terized which might affect their properties. In Table 8, simulation results for these
estimators under designs 1–3 and n = 200 is presented. Results shows on large bias
and RMSE results for the estimators.

5 An empirical example: the Mroz data

To illustrate the usefulness of the FMT estimator, the FMT model is applied to data
on annual work hours of married women studied by Mroz (1987), which is available,
e.g., in the package Ecdat (Croissant 2011) in R (R Core Team 2012).
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Table 5 Average and median bias, RMSE, and MAD of the estimators of the slope coefficient in a Monte
Carlo simulation of 1,000 replicates from Design 5 (Heteroskedastic errors, ε = √

(α0 + α1 · x) · N (0, 1)).

Estimator Average bias RMSE Median bias MAD

25 % censoring, n = 200 FMT 0.060 0.148 0.061 0.098
SCLS 0.055 0.251 0.009 0.128
CLAD 0.027 0.193 0.008 0.102
PAM 0.080 0.157 0.082 0.105

25 % censoring, n = 800 FMT 0.052 0.086 0.051 0.061
SCLS 0.009 0.098 0.003 0.063
CLAD 0.009 0.087 0.004 0.057
PAM 0.076 0.102 0.074 0.077

25 % censoring, n = 2, 000 FMT 0.053 0.068 0.051 0.052
SCLS 0.004 0.060 0.002 0.040
CLAD 0.004 0.056 −0.000 0.038
PAM 0.078 0.089 0.077 0.077

50 % censoring, n = 200 FMT 0.156 0.247 0.147 0.159
SCLS 0.518 2.830 0.064 0.325
CLAD 0.116 0.492 0.008 0.208
PAM 0.189 0.251 0.185 0.189

50 % censoring, n = 800 FMT 0.147 0.170 0.145 0.145
SCLS 0.070 0.327 0.000 0.155
CLAD 0.036 0.225 0.008 0.125
PAM 0.186 0.203 0.182 0.182

50 % censoring, n = 2, 000 FMT 0.157 0.168 0.161 0.161
SCLS 0.019 0.166 −0.002 0.101
CLAD 0.015 0.136 0.001 0.084
PAM 0.188 0.195 0.188 0.188

70 % censoring, n = 200 FMT 0.268 0.568 0.227 0.234
SCLS 8.354 44.79 0.370 1.612
CLAD 1.502 6.159 0.189 0.674
PAM 0.299 0.371 0.291 0.291

70 % censoring, n = 800 FMT 0.256 0.283 0.257 0.257
SCLS 2.626 11.83 0.167 0.567
CLAD 0.492 1.943 0.055 0.331
PAM 0.297 0.316 0.294 0.294

70 % censoring, n = 2, 000 FMT 0.278 0.286 0.276 0.276
SCLS 1.380 8.981 0.079 0.425
CLAD 0.226 1.022 −0.008 0.249
PAM 0.299 0.306 0.298 0.298

The data set contains data on hours worked outside the home for 753 married
women, of whom 325 worked zero hours, and data on several other characteristics of
the women. In Caudill (2012), the PAM estimator and the Tobit estimator are both
applied to the Mroz data. However, the results presented below and in Caudill (2012)
are not directly comparable because in the data set in Ecdat there is no data on the
“nonwife income”, i.e., family income exclusive of the wifes income, as was included
in the model of Caudill (2012).

Here the explantory variables included in the model are the wife’s education in years
(educw), the wife’s previous labor market experience (exper), the wife’s previous labor
market experience squared (exper*exper) and the wife’s age (agew). The response
variable is the wife’s annual work hours outside the home. A two component finite
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Table 6 Results for the FMT.vf and PAM.vf estimators of the slope coefficient in a Monte Carlo simulation
of 1,000 replicates from Design 4 (Heteroskedastic errors, ε = √

(cex ) · N (0, 1)).

FMT.vf PAM.vf

Average bias RMSE Average bias RMSE

25 % censoring, n = 200 −0.005 0.010 0.000 0.006
25 % censoring, n = 800 −0.007 0.008 −0.000 0.003
25 % censoring, n = 2, 000 −0.007 0.008 0.000 0.002
50 % censoring, n = 200 0.040 0.061 0.002 0.050
50 % censoring, n = 800 0.040 0.046 −0.001 0.027
50 % censoring, n = 2, 000 0.041 0.044 −0.002 0.020
70 % censoring, n = 200 0.058 0.193 0.165 0.284
70 % censoring, n = 800 0.033 0.093 0.131 0.184
70 % censoring, n = 2, 000 0.030 0.060 0.124 0.161

Table 7 Results for the FMT.vf and PAM.vf estimators of the slope coefficient in a Monte Carlo simulation
of 1,000 replicates from Design 5 PAM=OK(Heteroskedastic errors, ε = √

(α0 + α1 · x) · N (0, 1).

FMT.vf PAM.vf

Average bias RMSE Average bias RMSE

25 % censoring, n = 200 0.012 0.130 0.016 0.134
25 % censoring, n = 800 0.006 0.066 0.009 0.067
25 % censoring, n = 2, 000 0.009 0.041 0.012 0.043
50 % censoring, n = 200 0.028 0.184 0.042 0.192
50 % censoring, n = 800 0.016 0.089 0.029 0.095
50 % censoring, n = 2, 000 0.019 0.058 0.031 0.066
70 % censoring, n = 200 0.027 0.320 0.062 0.320
70 % censoring, n = 800 0.008 0.146 0.044 0.158
70 % censoring, n = 2, 000 0.018 0.092 0.048 0.110

Table 8 Results for the FMT.vf and PAM.vf estimators of the slope coefficient in a Monte Carlo simulation
of 1,000 replicates from models with homoskedastic variance, i.e., Designs 1–3. Sample size, n = 200.

FMT.vf PAM.vf

% Average bias RMSE Average bias RMSE

Design 1 25 0.123 0.173 0.095 0.168
50 0.288 0.335 0.238 0.313
70 0.448 0.509 0.388 0.482

Design 2 25 −0.039 0.098 0.252 0.299
50 −0.420 0.465 0.711 0.785
70 0.564 0.658 0.997 1.182

Design 3 25 0.196 0.235 0.154 0.219
50 0.383 0.428 0.260 0.343
70 0.575 0.651 0.353 0.497

mixture of Tobit models is used to compute both the FMT and PAM estimates, the
latter by restricting the slope coefficients to be the same in the two components.
Also the usual (single component) Tobit models are estimated using the package
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Table 9 Estimation results for the Mroz data

FMT SE PAM SE Tobit SE

constant 77.767 27.65 358.147 15.10 −55.738 403.46
educw 49.564 10.65 39.182 6.39 53.880 21.16
exper 134.104 14.32 151.341 8.37 151.558 18.01
exper*exper −1.917 0.51 −2.561 0.24 −2.279 0.56
agew −35.222 3.78 −29.469 2.15 −35.460 6.70
σ 946.948 1051.411 1184.418
λ1 0.879 0.793 –
Loglikelihood value −3819.95 −3843.80 −3855.79
AIC 7665.90 7705.60 7723.58
CAIC 7726.03 7747.22 7751.34
BIC 7726.01 7747.21 7751.33
ABIC 7684.75 7718.65 7732.28

censReg (Henningsen 2012) inR. The standard errors of the FMT and PAM estimates
are estimated by delete-one jackknife. The standard errors of the Tobit estimates are
estimated by taking the square root of the diagonal elements of minus the inverse of
the hessian matrix recieved from censReg.

The parameter estimates (FMT, PAM, and Tobit) are reported in Table 9 and differ
quite substantially between estimators. The maximized value of the log-likelihood
function is highest for the FMT model, −3,819.95. The values of the PAM and Tobit
models are −3,843.80 and −3,855.79 respectively. In Table 9 the informations criteria
Akaikes Information Criterion (AIC), consistent AIC (CAIC), Bayesian Information
Criterion (BIC), and adjusted BIC (ABIC) are given. The FMT model is the preferred
model according to all four of these model selection statistics. The Tobit model has
the highest AIC, CAIC, BIC and ABIC values of the three models considered.

6 Discussion

This paper is concerned with the estimation of censored regression models through
estimation of a finite mixture of Tobit models. Estimates of the parameters in the cen-
sored regression model are defined as weighted sums of the corresponding component
estimates. The properties of this FMT estimator are studied by means of simulation
where earlier suggested semiparametric estimators, the CLAD and STLS estimators,
are included for comparison. Another estimator included is the PAM estimator, which
is based on a censored regression model with a finite mixture of normal distributions
for the disturbance term.

The overall picture of the simulation study is that the results are promising and
the idea of mixing Tobit models can yield estimators with better properties than those
of previously suggested estimators. There are however some further developments
needed for the theory to work in practice. Our observation is that a finite mixture of
Tobit models performs generally better than the other estimators when the censored
regression model estimated has homoskedastic disturbances. In case of heteroskedas-
ticity, the approach does not work. However, extending the Tobit models in the mixture
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with skedastic functions for the variances again yield an estimator with better results
than the other estimators. Unfortunately, the skedastic function extended Tobit models
do not work under homoskedasticity.

In a comparison of the FMT and the PAM estimators, the results are not clearcut in
favour of the FMT estimator. However, it seems as if the extra parameters in a mixture
of Tobit models yields an extra flexibility which improves estimator properties. This
is conditional on a correct specification with respect to assumed homoskedasticity or
heteroskedasticity.

In further developments of the FMT estimator, it is of interest to define an approach
which encompasses both homoskedasticty and heteroskedasticity. One direct option is
to start with an FMT model including skedastic functions for potential heteroskedas-
ticity. A model specification test, e.g., a likelihood ratio (LR) test, can then be used for
discriminating between the FMT and the FMT.vf estimators. Several aspects have to be
considered here. One is the anticipated increase in the variance of the estimator, which
might rule out the advantages of the FMT estimator observed in this paper. Second, the
LR test would be valid if the true model is an FMT mixture. As the mixture of FMT is
here suggested as an approximation, the properties of the LR test have to be consid-
ered. A third aspect is the form of the skedastic function. Here an exponential function
has been used and results imply robustness against a misspecification of the form of
heteroskedasticity. However, other forms of skedastic functions can be considered, as
well as studying the performance under other forms of heteroskedasticity.

The number of components to include in a mixture of Tobit models has not been
addressed in this paper. Suggestions of criteria for choosing the number of components
are found in e.g., McLachlan and Peel (2000, Ch. 6). One important aspect here is the
use of the finite mixture for approximating an unknown distribution. It is therefore of
interest to assess the sufficient number of components rather than the true number of
components. An expected shortcoming of an estimator defined with a selection criteria
for the number of components is increased variance. Our simulation results indicate
that a fixed two components model can be sufficient for defining estimators with good
properties in terms of low bias and variance. Similar findings for non-censored data
are found in Bartolucci and Scaccia (2005).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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