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Abstract In this paper an estimator of finite population kurtosis computed under
the two-phase sampling for nonresponse is proposed. The formulas characterizing
its asymptotic properties are derived using Taylor linearization technique for the
general situation of arbitrary sampling designs in both phases and stochastic non-
response represented by arbitrary response distribution. An important special case of
simple random sampling without replacement and deterministic nonresponse is also
considered.
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1 Introduction

Several approaches have been proposed to deal with nonresponse bias including
weighting adjustments (Bethlehem 1988; Ekholm and Laaksonen 1991), imputation
methods (Rubin 1987; Schafer 1997; Meeden 2000), indirect estimation using aux-
iliary data (Rueda and González 2004; González et al. 2008) as well as randomized
response techniques (Warner 1965; Chaudhuri 1987; Arnab 1998). Another procedure
known as two-phase (or double) sampling relies on re-approaching some non-respon-
dents in order to acquire a subsample of missing data which is needed to preserve
unbiasedness. Possibilities of applying the two-phase sampling scheme to compen-
sate for the nonresponse bias are thoroughly explored in the literature. This procedure
is mostly considered in the context of estimating simple population parameters that
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may be expressed as linear combinations of population values such as the population
total and population mean. Examples include recent papers of Okafor and Lee (2000),
Sodipo and Obisesan (2007), Singh et al. (2010) as well as Singh and Kumar (2010).
However, the two-phase sampling may also be adopted to estimate parameters which
are defined as nonlinear functions of population values such as covariance, coefficient
of variation or skewness. This paper focuses on constructing the estimators for finite
population kurtosis on the basis of two-phase sample.

Let U be a finite population of size N . Let X be some fixed characteristic of popu-
lation units taking values x1, . . . , xN . Several population parameters may be defined
including the r -th raw moment of X :

mr = 1

N

∑

i∈U

xr
i (1)

and the r -th central moment of X about the mean:

Mr = 1

N

∑

i∈U

(xi − m1)
r (2)

In particular this includes population total of the r -th power of X : tr = Nmr ,
population variance S2 = M2 and population standard deviation S = M0.5

2 . This
paper focuses on the problem of estimating the dimensionless measure of distribution
peakedness known as kurtosis and defined by the formula:

K = M4

M2
2

(3)

It is worth noting that sometimes the kurtosis is defined in a slightly different way,
as K multiplied by some positive function of the sample size (Lütkepohl and Theilen
1991) or as a result of subtracting some constant from it, as in the case of excess
kurtosis discussed by Zwillinger and Kokoska (2000). Anyway, the interpretation of
so-defined kurtosis is the same: the higher value of K , the more leptokurtic is the dis-
tribution of X , and the lower K , the more platykurtic (flatter) is the distribution of X .
The results presented in following paragraphs are easily applicable to the estimation
of these quantities as well.

To estimate K the well-known sampling procedure attributed to Hansen and
Hurwitz (1946) is adopted. In the first phase of the survey a random sample s of
size n is drawn from U using some general sampling design p(s) characterized by
the set of inclusion probabilities of the first order πi = ∑

s�i p(s) and of the second
order πi j = ∑

s�i, j p(s) for i, j ∈ U . Assume that some population units may fail to
provide responses and corresponding values of X may remain unobserved. As a result
the sample s splits into two subsets s1 and s2 of sizes n1 and n2, such that units from
s1 respond and units from s2 do not. This may be described in terms of a probability
distribution q(s1|s) known as response distribution (Cassel et al. 1983) determining
individual response probabilities of the first order ρi |s = ∑

s1�i q(s1|s) and of the
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second order ρi j |s = ∑
s1�i, j q(s1|s) for i, j ∈ U . To acquire knowledge about nonre-

sponding units a second phase of the survey is then carried out. A subsample s′ of size
n′ is drawn from s2 according to another sampling design p′(s′|s, s2) characterized
by another set of inclusion probabilities of the first order π ′

i |s,s2
= ∑

s′�i p′(s′|s, s2)

and second order π ′
i j |s,s2

= ∑
s′�i, j p′(s′|s, s2). It is assumed that all units from s′

respond in the second phase of the survey. As indicated by Lessler and Kalsbeek
(1992) this assumption—although sometimes difficult to satisfy—is essential for the
bias reduction.

2 Estimation of totals

We will now briefly review known results concerning the estimation of the population
total. Let us consider the statistic:

t̂r∗ =
∑

i∈s1

xr
i

πi
+

∑

i∈s′

xr
i

π∗
i

(4)

where

π∗
i = πiπ

′
i |s,s2

(5)

for i ∈ U . As indicated by Särndal et al. (1992) it is unbiased for t̂r irrespective of
underlying response distribution and its variance may be expressed as

V (t̂r∗) =
∑

i, j∈U

xr
i xr

j

πiπ j
�i j + E pq

⎛

⎝
∑

i, j∈s2

xr
i xr

j

π∗
i π∗

j
�′

i j |s,s2

⎞

⎠ (6)

where

�i j = πi j − πiπ j (7)

�′
i j |s,s2

= π ′
i j |s,s2

− π ′
i |s,s2

π ′
j |s,s2

(8)

while E pq(·) represents the expectation computed with respect to the joint distribution
of p(s) and q(s1|s). This expectation operator may be eliminated from the variance
formula by making additional assumptions on q(s1|s) and second-phase response
probabilities. Särndal et al. (1992) also propose an assumption-independent estimator
of this variance taking the form:

V̂ (t̂r∗) =
∑

i, j∈s1∪s′

xr
i xr

j

πiπ jπ
∗
i j

�i j +
∑

i, j∈s′

xr
i xr

j

π∗
i π∗

j π
′
i j |s,s2

�′
i j |s,s2

(9)
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where

π∗
i j =

⎧
⎪⎪⎨

⎪⎪⎩

πi jπ
′
i j |s,s2

for i, j ∈ s2

πi jπ
′
i |s,s2

for i ∈ s2, j ∈ s1

πi jπ
′
j |s,s2

for i ∈ s1, j ∈ s2

πi j for i, j ∈ s1

(10)

The estimator V̂ (t̂r∗) is unbiased for t̂r∗ irrespective of the response distribution.

3 Estimation of kurtosis

In order to estimate the population kurtosis K let us express this parameter as a function
of population totals. This leads to the formula:

K = N 3t4 − 4N 2t3t1 + 6Nt2t2
1 − 3t4

1

(Nt2 − t2
1 )2

(11)

By replacing these unknown totals with respective unbiased two-phase based estima-
tors we obtain the following estimator of K :

K̂∗ = N 3 t̂4∗ − 4N 2 t̂3∗ t̂1∗ + 6Nt̂2∗ t̂2
1∗ − 3t̂4

1∗
(Nt̂2∗ − t̂2

1∗)2
(12)

Using Taylor linearization method we may express the approximate variance of K̂∗ in
the form:

AV (K̂∗) =
∑

i, j∈U

zi z j

πiπ j
�i j + E pq

⎛

⎝
∑

i, j∈s2

zi z j

π∗
i π∗

j
�′

i j |s,s2

⎞

⎠ (13)

where

zi = 1

N S6

4∑

h=1

ah xh
i (14)

and

a1 = 4(m4m1 − m3m2 + 3m2
2m1 − 3m3m2

1) (15)

a2 = 2(4m3m1 − 3m2m2
1 − m4) (16)

a3 = −4(m1m2 − m3
1) (17)

a4 = m2 − m2
1 (18)
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The same method leads to the derivation of its second-order approximate bias:

AB(K̂∗) =
∑

i, j∈U

zi j

πiπ j
�i j + E pq

⎛

⎝
∑

i, j∈s2

zi j

π∗
i π∗

j
�′

i j |s,s2

⎞

⎠ (19)

where

zi j = 1

N 2S8

4∑

g=1

min(g,2)∑

h=1

agh(xg
i xh

j + xg
j xh

i ) (20)

and

a11 = 2(m4m2 + 3m3
2 − 12m3m2m1 + 5m4m2

1 + 15m2
2m2

1 − 12m3m3
1) (21)

a21 = 4(2m3m2 − 3m2
2m1 + 10m3m2

1 − 6m2m3
1 − 3m4m1) (22)

a22 = 3(2m4
1 − 4m3m1 + 2m2m2

1 + m4) (23)

a31 = 4(3m4
1 − 2m2m2

1 − m2
2) (24)

a32 = 8(m1m2 − m3
1) (25)

a41 = 4(m1m2 − m3
1) (26)

a42 = −2(m2 − m2
1) (27)

Moreover, the assumption-free variance estimator may be constructed as:

V̂ (K̂∗) =
∑

i, j∈s1∪s′

ẑi ẑ j

π∗
i jπiπ j

�i j +
∑

i, j∈s′

ẑi ẑ j

πiπ jπ
′
i |s,s2

π ′
j |s,s2

π ′
i j |s,s2

�′
i j |s,s2

(28)

where

ẑi = 1

Nâ3
4

4∑

h=1

âh xh
i (29)

for i ∈ U and â1, . . . , â1 are respectively obtained from a1, . . . , a4 by replacing each
unknown population moment mr in expressions (15)– (18) with its two-phase based
unbiased estimator m̂r = t̂r∗/N . If all ẑi ’s were exactly equal to corresponding zi ’s,
then the estimator (28) would be unbiased for AV (K̂∗). In practice this will not hold
exactly, but one may hope that the bias remains modest and tends to zero in large
samples.

4 A special case

Let us assume that nonresponse is deterministic. The population is divided into two
strata U1 and U2 of sizes N1 and N2 such that ρi |s = 1 for i ∈ U1 and ρi |s = 0
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otherwise. Moreover, assume that the simple random sampling without replacement
is used in both phases of the survey with first-phase inclusion probabilities πi = n/N ,
πi j = n(n −1)/(N (N −1)) and second-phase inclusion probabilities π ′

i |s,s2
= n′/n2,

π ′
i j |s,s2

= n′(n′ − 1)/(n2(n2 − 1)) for i �= j ∈ U where n′ = c · n2 and 0 < c < 1 is

a constant fixed in advance. The estimator t̂r∗ of tr may be expressed as:

t̂r◦ = N

n

⎛

⎝
∑

i∈s1

xr
i + 1

c

∑

i∈s′
xr

i

⎞

⎠ (30)

Consequently, the estimator K̂∗ of K takes the form:

K̂◦ = N 3 t̂4◦ − 4N 2 t̂3◦ t̂1◦ + 6Nt̂2◦ t̂2
1◦ − 3t̂4

1◦
(Nt̂2◦ − t̂2

1◦)2
(31)

From (13) we obtain its approximate variance:

AV (K̂◦) = N 2
(

1 − f

n
S2(z) + 1 − c

c

W2

n
S2

U2
(z)

)
(32)

where f = n/N , W2 = N2/N and

S2(z) = 1

N − 1

∑

i∈U

⎛

⎝zi − 1

N

∑

j∈U

z j

⎞

⎠
2

(33)

S2
U2

(z) = 1

N2 − 1

∑

i∈U2

⎛

⎝zi − 1

N2

∑

j∈U2

z j

⎞

⎠
2

(34)

Hence, the approximate variance is a decreasing function of n. From (19) we also
obtain the following second-order approximation of the bias:

AB(K̂◦) = 1

n
· 2

N 2S8 ·
4∑

g=1

min(g,2)∑

h=1

aghcgh (35)

where constants agh are given by expressions (21)–(27) and

cgh = (1 − f )Cov(X g, Xh) + W2
1 − c

c
CovU2(X g, Xh) (36)

Cov(X g, Xh) = 1

N − 1

∑

i∈U

⎛

⎝xg
i − 1

N

∑

j∈U

xg
j

⎞

⎠

⎛

⎝xh
i − 1

N

∑

j∈U

xh
j

⎞

⎠ (37)
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CovU2(X g, Xh) = 1

N2 − 1

∑

i∈U2

⎛

⎝xg
i − 1

N2

∑

j∈U2

xg
j

⎞

⎠

⎛

⎝xh
i − 1

N2

∑

j∈U2

xh
j

⎞

⎠ (38)

Hence, the approximate bias is also a decreasing function of n. The general variance
estimator (28) takes now the form:

V̂ (K̂◦) = A0

(
A1S2

s1
(ẑ◦) + A2S2

s′(ẑ◦) + A3
(
z◦

s1
− z◦

s′
)2

)
(39)

where

A0 = N (N − 1)

n(n − 1)
(40)

A1 = n1 − 1 (41)

A2 = N (n2 − 1) − cn2(n − 1) + n1

c(N − n)
(42)

A3 = n1n2

n
(43)

while

z◦
s1

= 1

n1

∑

i∈s1

ẑ◦
i (44)

z◦
s′ = 1

n′
∑

i∈s′
ẑ◦

i (45)

S2
s1

(ẑ◦) = 1

n1 − 1

∑

i∈s1

⎛

⎝ẑ◦
i − 1

n1

∑

j∈s1

ẑ◦
j

⎞

⎠
2

(46)

S2
s′(ẑ◦) = 1

n′ − 1

∑

i∈s′

⎛

⎝ẑ◦
i − 1

n′
∑

j∈s′
ẑ◦

j

⎞

⎠
2

(47)

with

ẑ◦
i = 1

Nâ3
4◦

4∑

h=1

âh◦xh
i (48)

and âh◦’s are obtained from ah’s by replacing unknown raw moments m1, . . . , m4 in
expressions (15)–(18) with respective estimators: m̂1◦, . . . , m̂4◦ where m̂g◦ = t̂g◦/N
for g = 1, . . . , 4.
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5 Conclusions

In this paper an estimator for the finite population kurtosis was proposed. It is con-
structed on the basis of a two-phase sample drawn in a nonresponse situation. A general
double sampling procedure with arbitrary sampling designs in both phases was con-
sidered. The approximate bias and approximate variance formulas were derived for a
stochastic nonresponse situation. They may be applied to assess the properties of the
estimator in a wide range of situations. Finally, a special case of simple random sam-
pling without replacement and deterministic nonresponse was considered. Presented
results suggest that the proposed estimator is consistent at least in this special case.
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