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Abstract We modify the union-of-rejection unit root test of Harvey et al. “Unit Root
Testing in Practice: Dealing with Uncertainty over the Trend and Initial Condition”
(Harvey, Econom Theory 25:587–636, 2009). This test rejects if either of two different
unit root tests rejects but controls the inherent multiple testing issue by suitably mod-
ifying the critical values to ensure the desired null rejection probability. We evaluate
the new tests’ power relative to existing ones’ and to the Gaussian asymptotic power
envelope. An empirical application illustrates the usefulness of the new statistics.
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1 Introduction

As there is no uniformly most powerful unit root test (Elliott et al. 1996), there is and
will be no consensus to always use a single test. Specifically, Müller and Elliott (2003)
show the Dickey and Fuller (1979) test (O for OLS detrended) to be powerful if the
initial condition of the series is large, while the GLS test of Elliott et al. (1996, Q for
quasi-differenced) performs well for small initial conditions.1 Since the statistics are
imperfectly correlated, one test might reject the unit root null while the other does not,

1 Similar considerations arise under uncertainty over the presence of a deterministic trend. We focus
on the problem of uncertainty over the initial condition for brevity, but most conclusions also apply
under uncertainty over the trend.
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768 C. Hanck

complicating the test decision. The ‘solution’ to reject if either O or Q reject does not
yield a level-α test as it ignores the multiple testing nature of the problem.

Harvey et al. (2009, HLT) propose a level − α ‘Union-of-Rejections’ (U R) test
that rejects if either O or Q exceed their α-level critical value adjusted by a suitable
constant ψα . Building on Bayer and Hanck (2009), we modify their idea by showing
that power gains are possible in parts of the parameter space when scaling each criti-
cal value by separate constants ψαO , ψ

α
Q . We also use Fisher’s (1932) famous P-value

combination test to derive ‘meta’ unit root tests.
The Fisher test is more powerful than the best of the individual tests when these

have similar power, and has good power when combining more than two tests. Our
modified U R test is most useful when the individual tests’ power differ strongly; its
power is always close to that of the better individual test, and slightly higher than
HLT’s for moderate and large initial conditions.

Section 2 presents the model and test procedures. Section 3 provides local power
results. Section 4 reports the empirical application. Section 5 summarizes and dis-
cusses possible further research.

2 Model and combination tests

Assumption 1 specifies the standard DGP considered in this paper.

Assumption 1 For t = 1, . . . , T, yt = μ+ut ,where ut = ρut−1 +εt , t = 2, . . . , T .
{et } is a martingale difference sequence with (0, σ 2) and E e4

t < ∞. The error pro-
cess satisfies εt = C(L)et where C(L) = 1 + ∑∞

i=1 Ci Li ,C(z) �= 0 for all |z| �
1 and

∑∞
i=0 i |Ci | < ∞.2

We test H0 : ρ = 1 against H1 : |ρ| < 1 using the Dickey and Fuller (1979)
test (denoted ξO ) and the t-ratio of Elliott et al. (1996), denoted ξQ . First compute
ût = yt − y. The t-ratio for H0 in the regression ût = ρût−1 + ∑P

p=1 νp	ût−p + et

gives ξO . For Q, let ρ̄T = 1 − 7/T, z1c̄ = z1, y1c̄ = y1, ztc̄ = 1 − ρ̄T and ytc̄ =
yt − ρ̄T yt−1 for t = 2, . . . , T . Calculate φ̂c̄ =

(∑T
t=1 z2

t c̄

)−1 ∑T
t=1 ztc̄ yt c̄ and ûQ =

yt − φ̂c̄. The t − ratio for H0 in ûQ
t = ρûQ

t−1 + ∑P
p=1 ν

Q
p 	ûQ

t−p + eQ
t gives ξQ .

Assumption 2 controls, throughκ, the magnitude of the initial condition u1 = y1−μ
under ρT = 1 − c/T, c > 0 (Müller and Elliott 2003). It ensures that u1 = Op(T 1/2)

such that u1 matters for the local distribution. The normality assumption allows to
provide a power envelope, see below.

Assumption 2 For ρ = ρT , η ∼ N (0, κ2) and ω2
ε = σ 2C(1)2, u1 is generated as

u1 = ηωε(1 − ρ2
T )

−0.5.3

The following Lemma of HLT recalls the local distribution of the ξ j .

2 Assumption 1 rules out drift in yt . The working paper discusses (similar) results to those below with drift
in yt .
3 HLT find similar results for u1 fixed, whence we omit a detailed discussion thereof.
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Lemma 1 (Harvey et al. 2009) Under Assumptions 1, 2 and c � 0, ξO →d

(Kμ
c (1)2 − Kμ

c (0)2 − 1)(4
∫ 1

0 Kμ
c (r)2dr)−1/2 and ξQ →d (Kc(1)2 − 1)(4

∫ 1
0 Kc(r)2

dr)−1/2, where Kc(r) = W (r) for c = 0 and Kc(r) = κ(e−rc − 1)/
√

2c + Wc(r) for
c > 0, and Kμ

c (r) = Kc(r) − ∫ 1
0 Kc(s)ds, Wc(r) = ∫ r

0 e−(r−s)cdW (s) and W (r) a
standard Wiener process.

Lemma 1 reveals that the ξ j are differentially affected by κ under c > 0. Hence,
different tests are powerful for different κ . This is the basis of the combination tests,
which aim at more robust, and possibly even more powerful, tests using J := {O, Q}.
HLT’s U R test rejects when ξO or ξQ exceed adjusted critical values ensuring an over-
all level-α test. Denote test j ′s level − α critical value by cvαj . The ‘naive’ statistic
U Rn := I{ξO < cvαO} + I{ξO � cvαO}I{ξQ < cvαQ}, with I the indicator function,

rejects if U Rn = 1. As U Rn is oversized,4 HLT suggest to reject if U Rψ = 1, where

U Rψ := I{ξO < ψαcvαO} + I{ξO � ψαcvαO}I{ξQ < ψαcvαQ} (1)

andψα satisfies Pr(ξO < ψαcvαO ∪ ξQ < ψαcvαQ) = α. However, one need not apply

ψα to both cvαj . In fact, there is a continuum of constants (ψ̃αO , ψ̃
α
Q) yielding level-α

UR tests. Let

U RψJ := I
{
ξO < ψ̃αOcvαO

} + I
{
ξO � ψ̃αOcvαO

}
I

{
ξQ < ψ̃αQcvαQ

}

and reject if U RψJ = 1. The admissible tuples ψα are implicitly defined by

Pr(ξO < ψαOcvαO ∪ ξQ < ψαQcvαQ) = α. (2)

For each ψαO , there is exactly one ψαQ such that (2) holds. HLT’s solution ψα is a
special case of (2). The availability of a family of tests raises the issue of which ψα to
use. We suggest to minimize the number of cases where, given (2), ξO and ξQ reject
under H0, i.e. to make the tests as ‘uncorrelated’ as possible. Since the tests’ prop-
erties under local alternatives change continuously from those under H0, a powerful
test will result. Concretely, select ψα such that

ψαO = arg minψ̃αO∈[1,∞)

⎧
⎨

⎩

Pr
(
ξO < ψ̃αOcvαO ∩ ξQ < ψαQcvαQ

)

min{Pr(ξO < ψ̃αOcvαO),Pr(ξQ < ψαQcvαQ)}

⎫
⎬

⎭
. (3)

Table 1 reports the ψα .5 We find (ψαO +ψαQ)/2 ≈ ψα . Hence, U RψJ ‘reweighs’ the
ξ j .

4 Under H0, Pr(ξ j < cvαj ) = α. The size of U Rn hence equals Pr(ξO < cvαO ∪ ξQ < cvαQ) = Pr(ξO <

cvαO ) + Pr(ξQ < cvαQ) − Pr(ξO < cvαO ∩ ξQ < cvαQ) = 2α − Pr(ξO < cvαO ∩ ξQ < cvαQ) � α, since

Pr(ξO < cvαO ∩ ξQ < cvαQ) � Pr(ξ j < cvαj ) = α.
5 It is enough to minimize over ψαO , since ψαQ is uniquely determined by (2). We use a two-dimensional
grid search to find (3), and add an ε to the numerator to penalize borderline cases in which, due to simulation
imprecision of W, the numerator would else be zero and the denominator very small, but positive.
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Table 1 U R Correction factors and critical values

α ψαO for ξO ψαQ for ξQ cvα{O,Q} for χ2
J

0.01 1.059 1.071 15.730
0.05 1.086 1.110 10.440
0.10 1.095 1.164 8.248

Columns 2 and 3 give the constants to adjust the critical values of the statistics ξO and ξQ for the U R test
(2). The corresponding scaling factors ψα from HLT (see (1)) are 1.065, 1.095 and 1.126. Column 4 gives
critical values of the Fisher test (4) combining ξO and ξQ

Remark 1 Bayer and Hanck (2009) show that U RψJ with (3) is equivalent to reject-
ing if the smaller P-value rejects when using as cutoff the level α′ < α at which one
needs to test to avoid the oversizedness of the ‘naive’ approach. Moreover, they show
U RψJ to outperform Bonferroni.

Another plausible aggregator for the ξ j is Fisher’s (1932) famous test P-value
combination statistic

χ2
J := −2

∑

j∈J ln(p j ). (4)

χ2
J has a well-defined asymptotic null distribution FJ as the ξ j converge jointly.

Since the ξ j are nuisance parameter free and FJ takes the dependence between
the ξ j into account, so is FJ . It is straightforward to combine |J | > 2 tests, see
Section 3 for results.6 FJ is found by simulating (4). Table 1 reports critical values
cvαJ , obtained from 50,000 draws, approximating W with Gaussian random walks of

length T = 1,000. As the ξ j correlate positively, a cv0.05
J > 9.487, the 5% χ2(2|J |)

critical value that applies under independence, is necessary for a level-α test.χ2
J rejects

whenever both ξ j reject, as cvαJ < −2
∑

j∈J ln(α), and is consistent, as p j = op(1)

and thus χ2
J →p ∞.

3 Asymptotic power

We approximate rejection probabilities by simulating 100,000 replications of the dis-
tributions in Sect. 2, for T = 1,000, c ∈ {0, 1, . . . , 30} and |κ| ∈ {0, 0.1, . . . , 6}.
Figure 1 plots power against |κ|, for c = {10, 20}. (The end of sect. 3 discusses ξρ̂ and
χ2

{O,Q,ρ̂}.) ξQ is more powerful than ξO for small |κ|. The power of ξO increases in

|κ|, that of ξQ decreases. By Müller and Elliott (2003), κ = 1 yields asymptotics for
samples where u1 equals one standard deviation of the unconditional distribution of
yt . Thus, ξO outperforms ξQ for a ‘moderate’ to ‘large’ u1. Figure 1 also reports the
Gaussian asymptotic power envelope under Assumptions 1 and 2. Specifically, Müller
and Elliott (2003, p. 1274) show that the member Qμ

a (c, κ2) of the family Qμ
a (g, k) is

6 This also holds for U Rψ from (1). One can also extend U RψJ to |J | > 2, but it is more cumbersome
to find ψα .
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Multiple unit root tests under uncertainty over the initial condition 771

Fig. 1 Local power as a function of |κ|, c = 10 and c = 20

point optimal against an alternative having a normal u1 with multiple κ of the standard
deviation of an AR(1) process with ρ = ρT . Hence, Qμ

a (g, k) traces out the power
envelope over c and κ .

U Rψ,U RψJ and χ2
J have power often close to the power envelope. The tests’

power is always much closer to that of the better single test. Around the intersection of
the individual tests, χ2

J even outperforms the individual tests. Intuitively, the ξ j then
often just do not reject, but the joint evidence suffices. The tests are therefore “close
to admissible” asymptotically (Müller 2009): Fig. 6 in HLT shows that U Rψ,U RψJ
and χ2

J are never much less, and sometimes more powerful than Qμ
a (10, 3.8). Hence,

there cannot be a test with much higher power for all κ .
U Rψ is slightly more powerful than U RψJ for small |κ|. The ranking reverses

around |κ| � 0.9, with U RψJ outperforming U Rψ by up to about 1.5% (for c = 14
and κ = 3.7). This pattern is intuitive: Table 1 shows that, relative to HLT, (3) yields
a higher (lower) scaling factor for ξQ (ξO ). Since ξQ has low power for large |κ|,
little power is lost when increasing ψαQ, whereas some is gained with a lower ψαO .

χ2
J outperforms U RψJ for small-to-moderate |κ| ∈ [0, 2], and in particular when the

individual tests have similar power. U RψJ outperforms χ2
J when the gap between ξO

and ξQ is large. This is intuitive as U RψJ looks for one rejecting test, to then effectively
ignore the other. χ2

J uses evidence from both tests, such that a test with low power can

lead χ2
J to accept. E.g., given P1 = 0.03, χ2

J needs P2 � e−[10.440/2+ln(.03)] = 0.18
to reject. Since no test dominates, Fig. 2 follows HLT in comparing the tests’ asymp-
totic integrated powers over c, scaled relative to the power of the best test for each
|κ|. The minimum integrated relative powers are highest for U Rψ, U RψJ and χ2

J ,
suggesting robust power of combination tests.

Figure 1 also reports the power of the statistic ξρ̂ = T (ρ̂−1) as well as ofχ2
{O,Q,ρ̂}.

7

Recall ξρ̂ →d
(
Kμ

c (1)2 − Kμ
c (0)2 − 1

)
/
(

2
∫ 1

0 Kμ
c (r)2dr

)
. Especially for c = 20,

adding ξρ̂ makes χ2
J superior to U Rψ and U RψJ : as ξρ̂ then has high power across

7 We also tried tests such as MSB, the weighted symmetric test (Pantula et al. 1994), R (Bhargava 1986),
R/S or the MAX-test (Leybourne 1995). However, these tests’ local power is similar to that of ξQ , so that

adding these to χ2
J does not improve the performance of χ2

J . Detailed results are available.
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Fig. 2 Asymptotic relative
integrated powers against |κ|

|κ|, χ2
{O,Q,ρ̂} all but avoids the power dip for intermediate |κ| observed for U Rψ and

U RψJ . Conversely, it is unsurprising that U Rψ and U RψJ outperform χ2
{O,Q,ρ̂} for

larger |κ| as they are less affected by ξQ .

4 Recursive testing for Purchasing Power Parity

We study whether the tests mitigate the effect of the initial condition. Specifically, we
recursively test whether the Purchasing Power Parity (PPP) relation holds between the
United States and the United Kingdom. Let pt be the log UK price index in period
t, p∗

t the log price index of the US and st the log nominal Pound-Dollar exchange rate.
The real exchange rate is then given by

rt = pt − p∗
t − st . (5)

Tests of the PPP hypothesis are naturally formulated as unit root tests on rt (Rogoff
1996). In line with standard practice, a constant is used in the deterministic part. We
use the annual dataset of Taylor (2002), which is useful as it covers a long period, 1892
to 1996. We gradually increase the starting date of the test sample from t = 1892 to
1955, yielding sample sizes between 105 and 42.

Figure 3 plots the tests’ P − values, and whether U RψJ rejects. P is chosen with
the MAIC (Ng and Perron 2001). As power grows in T , all P-values unsurprisingly
trend upwards. ξO rarely rejects, whereas ξQ does. The decisions do, however, also
reverse: ξO rejects for samples starting during WW I, while ξQ does not, plausibly a
period with a large u1. Conversely, the rejections of ξQ during the calm late 19th/early
20th century is in line with the good power of ξQ for small u1.

Given only the ξ j , one would be unsure about the properties of rt . Except for sam-
ples starting after WW II, the combination tests typically reject. Moreover, U RψJ and
the χ2

J are less sensitive to the often arbitrary choice of starting date than the single
tests, exhibiting none of the abrupt shifts e.g. during WW I. Finally, for 1933–1943,
both χ2

J reject while U RψJ does not, as one marginal single rejection and one modest
acceptance suffice for a rejection for the former, but not the latter.

123



Multiple unit root tests under uncertainty over the initial condition 773

Fig. 3 P-values of US/UK real
exchange rate unit root tests as a
function of the starting date.
Visible stretches of U RψJ
correspond to rejection periods.
The horizontal dotted line is at
α = 0.05

5 Conclusion

We propose meta tests to combine individual unit root tests. The tests take into account
the multiple testing nature of running several tests and hence control size. They suit-
ably aggregate the individual statistics or modify their critical values, based on an idea
of Harvey et al. (2009). We find the tests to have good power that may be close to the
Gaussian asymptotic power envelope.

These combination procedures are applicable more generally. Further work might
hence develop such procedures for other problems without a uniformly most powerful
test. Examples from the unit root literature include tests against nonlinear alternatives
(e.g. Kruse 2011), tests which allow for general heteroscedasticity (e.g. Haldrup 1994)
or panel unit root tests (e.g. Jönsson 2008).
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