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Abstract Let κ̂ and κ̂r denote the best linear unbiased estimators of a given vector
of parametric functions κ = Kβ in the general linear models M = {y, Xβ, σ 2V }
and Mr = {y, Xβ | Rβ = r, σ 2V }, respectively. A bound for the Euclidean dis-
tance between κ̂ and κ̂r is expressed by the spectral distance between the dispersion
matrices of the two estimators, and the difference between sums of squared errors
evaluated in the model M and sub-restricted model M∗

r containing an essential part
of the restrictions Rβ = r with respect to estimating κ .

1 Introduction and preliminaries

For a given matrix A, let A−, A+, C(A), r(A) and ‖ A ‖s denote a g-inverse, the
Moore-Penrose inverse, the column space, the rank and the spectral norm of A, respec-
tively. Let A⊥ denote a matrix of the maximum rank such that A′A⊥ = 0. Moreover,
let QA = I − P A, where I stands for an identity matrix and P A = AA+. For a

nonnegative definite (n.n.d.) matrix A, let A
1
2 denote a matrix such that (A

1
2 )2 = A.

Finally, for a given vector a, let ‖ a ‖ denote the Euclidean norm of a.
Consider the general linear model

M = {y, Xβ, σ 2V } (1.1)

in which y is an n × 1 observable random vector with expectation E(y) = Xβ and
dispersion matrix D(y) = σ 2V , where the matrices X and V are known, both allowed
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to be rank-deficient, while the vector β and the positive scalar σ 2 are unknown param-
eters. The model M is assumed to be consistent, that is, y ∈ C(X : V ). Let κ = Kβ

denote a given vector of parametric functions linearly estimable in the model M, i.e.
C(K ′) ⊆ C(X′), and let κ̂ stand for its best linear unbiased estimator (blue) in M.

Furthermore, consider the restricted linear model

Mr = {y, Xβ |Rβ = r, σ 2V } (1.2)

obtained by supplementing the model M with linear constraints specified by an m × p
known matrix R and an m × 1 known vector r such that r ∈ C(R). Let κ̂r denote the
blue of κ in the model Mr .

The aim of this note is to constrain the Euclidean distance between the estimators
κ̂ and κ̂r in terms that allow a clear statistical interpretation. The bound involves two
factors; the first one is the spectral distance between the dispersion matrices of the two
estimators (measuring the sub-optimality of the lue κ̂ in Mr , or conversely, the gain in
matrix risk of the biased estimator κ̂r in the model M). The second factor, depending
on y through goodness of fit statistics, is the difference between sums of squared errors
evaluated in the model M and sub-restricted model {y, Xβ |ARβ = Ar, σ 2V } with
implied restrictions being an essential part of Rβ = r with respect to estimating κ ;
cf. Baksalary and Pordzik (1992).

Considering a linear model with nuisance parameters, the bound established in
Sect. 2 allows to assess how sensitive the estimation of the main parameters might
be with respect to possible overparametrization of the inference base. In this context,
some improvement of the result by Baksalary (1984, Theorem 2.4) is presented in
Sect. 3. A bound for the Euclidean distance between competing estimators is a natural
tool to explore geodetic data. For numerical examples, concerned with the precise
levelling problem, see Mäkinen (2002) and Mäkinen (2000); see also Schaffrin and
Grafarend (1986) for application to Global Positioning System (GPS) data.

2 Results

Referring to the corner-stones of the inverse-partitioned-matrix method for statistical
inference in the general linear model M, assume that G1, G3 and G4 are any matrices
such that

X′G1(X : V ) = 0, V G1X = 0, (V − V G1V )QX = 0, (2.1)

XG3(X : V QX ) = (X : 0) (2.2)

and

XG4X
′ = V − V QX (QXV QX )−QXV , (2.3)

i.e., the partitioned matrix ((G′
1 : G′

3)
′ : (G3 : −G′

4)
′) is a g-inverse of the bordered

matrix ((V : X)′ : (X′ : 0)′); cf. Rao (1971, 1972). Then the blue of κ , its dispersion
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matrix and the sum of squared errors in the model M can be expressed as κ̂ = KG3y,
D(̂κ) = σ 2KG4K

′ and SSE = y′G1y.
Let R1β = r1 be an estimable part of the restrictions Rβ = r in the model

M, that is, R1 is a matrix such that C(R′
1) = C(R′) ∩ C(X′) and r1 = R1R

−r .
Note that R1β = r1 can be written as the implied restrictions LRβ = Lr , where
L = I − R0R

−
0 with R0 = R(I − X−X); for the proof, observe that, by the equal-

ity C(R′) ∩ C(X′) = C(R′(RX′⊥)⊥), we have R1 = LR. Baksalary and Pordzik
(1989, Theorem 1) represented the consistency condition, the blue of κ and the sum
of squared errors for the restricted model Mr in terms referring to the model M and
a subset of estimable restrictions R1β = r1. The results useful for our purposes are
given in the following lemma.

Lemma 1 The restricted model Mr = {y, Xβ |Rβ = r, σ 2V } is consistent if and
only if the model M is consistent, i.e. y ∈ C(X : V ), and

�̂1 − r1 ∈ C(S), (2.4)

where S = R1G4R
′
1 while �̂1 = R1G3y is the blue of �1 = R1β in M. If the model

Mr is consistent, then the blue of κ and its dispersion matrix are

κ̂r = κ̂ − CS−(̂�1 − r1) and D(̂κr ) = D(̂κ) − σ 2CS−C′, (2.5)

where C = KG4R
′
1 and κ̂ is the blue of κ in the model M. Moreover, if SSEr and

SSE are the sums of squared errors in the models Mr and M, respectively, then

SSEr = SSE + (̂�1 − r1)
′S−(̂�1 − r1). (2.6)

Recall that, as far as only the estimation of κ in the model Mr is concerned, some
further reduction of the initial constraints is possible. Namely, R1β = r1 can be
reduced to a subset of implied restrictions which states the so-called essential part of
Rβ = r with respect to estimating κ = Kβ. Concerning the problem of reducing the
linear constraints in the restricted model Mr , Baksalary and Pordzik (1992, Theorem
2) showed that the blue of κ in the sub-restricted model {y, Xβ |ARβ = Ar, σ 2V }
continues to be the blue of κ in Mr if and only if C(C′) ⊆ C(SB ′), where B is a
matrix such that C(R′

1B
′) = C(R′A′) ∩ C(X′). Hence an essential part of Rβ = r

with respect to κ , understood as a minimal set of the implied restrictions ARβ = Ar

satisfying the condition above, can be written as BR1β = Br1, where B is such that

C(C′) = C(SB ′); (2.7)

note thatCS− may be chosen as a representation ofB; cf. Baksalary and Pordzik (1992,
Corollary 2). The notion of essential restrictions occurs to be crucial for improving
standard lines of majorization of the Euclidean distance between κ̂r and κ̂ .

Theorem 1 Let κ̂ and κ̂r be the best linear unbiased estimators of κ = Kβ in the
models M = {y, Xβ, σ 2V } and Mr = {y, Xβ |Rβ = r, σ 2V }, respectively. Then

‖ κ̂ − κ̂r ‖2 ≤ λ (SSE∗
r − SSE), (2.8)
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where λ is the largest eigenvalue of the matrix σ−2[D(̂κ) − D(̂κr )], SSE and SSE∗
r

are the sums of squared errors in the models M and M∗
r = {y, Xβ | BR1β =

Br1, σ 2V }, wherein BR1β = Br1 is an essential part of the restrictions Rβ = r

with respect to κ .

Proof From Lemma 1 it follows that κ̂ − κ̂r = CS−(̂�1 − r1) ∈ C(CS−C′) and,
consequently,

‖ κ̂ − κ̂r ‖2 ≤ ‖ (CS−C′)
1
2 ‖2

s ‖ (CS−C′)
1
2 (CS−C′)−CS−(̂�1 − r1) ‖2 .

By definition of the spectral norm and invariance of the expression with respect to the
choice of a g-inverse of the matrix S, this inequality can be written in the form

‖ κ̂ − κ̂r ‖2 ≤ λ (̂�1 − r1)
′(S+)

1
2 P

(S+)
1
2 C ′(S

+)
1
2 (̂�1 − r1),

where λ is the largest eigenvalue of the matrix CS−C′ = σ−2[D(̂κ) − D(̂κr )]. Fur-
thermore, adopting the result stated in (2.6) to the restricted model M∗

r one obtains

SSE∗
r = SSE + (̂�1 − r1)

′B ′(BSB ′)−B (̂�1 − r1), (2.9)

with B satisfying (2.7). By the assumption of consistency of the model Mr , it holds
SS+(̂�1 − r1) = (̂�1 − r1) and hence

SSE∗
r − SSE = (̂�1 − r1)

′(S+)
1
2 P

(S+)
1
2 SB′(S

+)
1
2 (̂�1 − r1).

Making use of the equality P
(S+)

1
2 C ′ = P

(S+)
1
2 SB′ , implied by (2.7), completes the

proof. 
�
By the proof above, it is clear that SSE∗

r is invariant with respect to the choice of
an essential part of Rβ = r for estimating κ ; as mentioned earlier, these essential
restrictions can be represented by CS−(R1β − r1) = 0.

Two other remarks are to be noted:
(i) The bound in (2.8) is equal to zero if and only if the estimator κ̂ continues to be

the blue of κ under the model Mr .
For the proof, let Sr denote the set of vectors y for which the restricted model Mr

is consistent, then we have

{̂�1 − r1 : y ∈ Sr } = C(S); (2.10)

cf. Baksalary and Pordzik (1992, p. 242). From this and (2.9) it follows that SSE∗
r =

SSE if and only if BS = 0. By (2.7), the latter equality is equivalent to C = 0,
which is necessary and sufficient condition under which κ̂r = κ̂ for every y ∈ Sr ;
cf. Baksalary and Pordzik (1992, Corollary 1). The equivalence of λ = 0 and C = 0
is obvious.
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(i i) The sums of squared errors SSE∗
r and SSEr coincide if and only if all estimable

restrictions are essential with respect to estimating κ in the model Mr .
To prove this statement, first observe that, by the equalities (2.6) and (2.9), it holds

SSEr − SSE∗
r = (̂�1 − r1)

′(S− − B ′(BSB ′)−B)(̂�1 − r1). (2.11)

Further, by (2.10), it follows that for every y ∈ Sr there exists a vector α such that
�̂1 − r1 = Sα and, consequently, the right-hand side of (2.11) can be written as

α′S 1
2 Q

S
1
2 B′S

1
2 α. This shows that SSEr ≥ SSE∗

r , wherein equality holds if and only

if r(S) = r(SB ′). In view of (2.7), we conclude that SSEr = SSE∗
r if and only if

r(S) = r(C), which means that R1β = r1 form an essential part of Rβ = r with
respect to κ ; this is the case, for instance, when the interest lies in estimating the
expectation of y, that is, K = X.

3 Applications

Consider the linear model M = {y, Wγ + Zδ, σ 2I } in which expectation consists
of two parts: Wγ and Zδ, involving main and nuisance parameters, respectively. Let
η = W ′QZWγ represent linearly estimable functions of the main parameters γ in
M. Clearly, the corresponding inference base without nuisance parameters can be
written as the restricted model Mr = {y, Wγ + Zδ | Zδ = 0, σ 2I }. Let η̂ and η̂r
denote the best linear unbiased estimators of η obtained in the models M and Mr ,
respectively. Discussing the consequences of the presence of concomitant variables
on estimating η, Baksalary (1984, Theorem 2.4) established a bound for the Euclidean
distance between the two estimators, namely

‖ η̂ − η̂r ‖2≤ λ · SSEr , (3.1)

where λ is the largest eigenvalue of the matrix σ−2[D(̂η) − D(̂ηr )] and SSEr is the
sum of squared errors in the model Mr . Some improvement of this bound can be
obtained by the approach presented in Sect. 2. For applying the result of Theorem 1,
we put X = (W : Z), β = (γ ′ : δ′)′, R = (0 : Z) and K = W ′QZX. By the
algebraic property C(A) ∩ C(B) = C(A(A′B⊥)⊥), it holds

C(W : Z)′ ∩ C(0 : Z)′ = C(0 : QW Z)′

which allows us to admit R1 = Z′QW X. For V = I , a possible choice of G1, G3
and G4 satisfying (2.1) to (2.3) is, respectively, QX , (X′X)−X′ and (X′X)−; cf. Rao
(1972). By this and the equality P (W :Z) = P W + P QW Z , we get C = W ′QZQW Z,
S = Z′QW Z and �̂1 = Z′QW y. Thus, referring to (2.8) and (2.9) with B = CS−,
we obtain

‖ η̂ − η̂r ‖2≤ λ (SSE∗
r − SSE), (3.2)
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where SSE = y′Q(W :Z)y and SSE∗
r = SSE + y′P QW PZ W y. By the remarks

following Theorem 1 and the equalities r(S) = r(QW Z) as well as

r(C) = r(X′QZP XQW Z) = r(QZP XQW Z) = r(QZQW Z), (3.3)

it is clear that SSE∗
r = SSEr if and only if C(QW Z) ∩ C(Z) = {0}. Furtheron,

note that the bound stated in (3.2) is equal to zero if and only if C = 0, that is,
C(QW Z) ⊆ C(Z); the latter relation is the orthogonality condition for the two-way
classification of data embraced by the model M. Finally, observe that even if one
gives up referring to an essential part of the restrictions Zδ = 0 with respect to η, it is
still possible to improve (3.1) by (3.2) with SSE∗

r being replaced by SSEr .

4 Conclusions

Mäkinen (2002) obtained a bound for the Euclidean distance between the best linear
unbiased estimator and any linear unbiased estimator in the general linear model. When
applied to κ̂ and κ̂r under the model Mr , this general approach leads to ‖ κ̂ − κ̂r ‖2

≤ λ · SSEr . The analogous bound was derived by Baksalary (1984) in the context of a
standard linear model with nuisance parameters. Both results can be viewed as a tool
for measuring the closeness of two competing estimators under a given inference base.
Being oriented towards a comparison of two given estimators under the linear models
M and Mr , our approach allows to improve the bound stated above. Making use of
the relationships between statistical inference in both models, the new bound for the
Euclidean norm of κ̂ − κ̂r is defined by two factors, based on the difference between
the corresponding characteristics evaluated in M and Mr . Thus, the bound stated in
Theorem 1 remains valid and allows a clear statistical interpretation independently of
the fact whether M or Mr is assumed to be a true inference base.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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