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Abstract
We consider a voting scenario in which the resource to be voted upon may consist
of both indivisible and divisible goods. This setting generalizes both the well-studied
model ofmultiwinner voting and the recently introducedmodel of cake sharing. Under
approval votes, we propose two variants of the extended justified representation (EJR)
notion from multiwinner voting, a stronger one called EJR for mixed goods (EJR-M)
and a weaker one called EJR up to 1 (EJR-1). We extend three multiwinner voting
rules to our setting—GreedyEJR, the method of equal shares (MES), and proportional
approval voting (PAV)—and show that while all three generalizations satisfy EJR-1,
only the first one provides EJR-M. In addition, we derive tight bounds on the pro-
portionality degree implied by EJR-M and EJR-1, and investigate the proportionality
degree of our proposed rules.

1 Introduction

In multiwinner voting—a “new challenge for social choice theory”, as Faliszewski
et al. (2017) put it—the goal is to select a subset of candidates of fixed size from a
given set based on the voters’ preferences. The candidates could be politicians vying
for seats in the parliament, products to be shown on a company website, or places
to visit on a school trip. A common way to elicit preferences from the voters is via
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the approval model, wherein each voter simply specifies the subset of candidates that
he or she approves (Kilgour 2010; Lackner and Skowron 2023). While (approval-
based) multiwinner voting has received substantial attention from (computational)
social choice researchers in the past few years, a divisible analog called cake sharing
was recently introduced byBei et al. (2024). In cake sharing, the candidates correspond
to a divisible resource such as time periods for using a facility or files to be stored
in cache memory. Following the famous resource allocation problem of cake cutting
(Robertson andWebb 1998; Procaccia 2016), this divisible resource is referred to as a
“cake”, and cake sharing is the collective choice problem of selecting a subset of this
resource.

In this paper, we study a setting that simultaneously generalizes both multiwinner
voting and cake sharing, which we call (approval-based) voting with mixed goods.
Specifically, in our setting, the resource may consist of both indivisible and divisible
goods.1 This generality allows our model to capture more scenarios than either of
the previous models. For example, when reserving time slots, it is possible that some
hourly slots must be reserved as a whole, while other slots can be booked fractionally.
Likewise, in cachememory storage, certain filesmay need to be stored in their entirety,
whereas other files can be broken into smaller portions. Combinations of divisible and
indivisible goods have been examined in the context of fair division, where the resource
is to be divided among interested agents and the entire resource can be allocated (Bei
et al. 2021a, b; Bhaskar et al. 2021; Kawase et al. 2023; Nishimura and Sumita 2023).
By contrast, we investigate mixed goods in a collective choice context, where only a
subset of the resource can be allocated but the allocated resource is collectively shared
by all agents.2

There are multiple criteria that one can use to select a collective subset of resource
based on the approval votes. For example, one could try to optimize the social wel-
fare—the sum of the agents’ utilities—or the coverage—the number of agents who
receive nonzero utility. A representation criterion that has attracted growing interest
is justified representation (JR) (Aziz et al. 2017). In multiwinner voting, if there are
n agents and k (indivisible) goods can be chosen, then JR requires that whenever
a group of at least n/k agents approve a common good, some agent in that group
must have an approved good in the selected set. A well-studied strengthening of JR is
extended justified representation (EJR), which says that for each positive integer t, if
a group of at least t ·n/k agents approve no fewer than t common goods (such a group
is said to be t-cohesive), some agent in that group must have no fewer than t approved
goods in the selected set. Aziz et al. (2017) showed that the proportional approval
voting (PAV) rule always outputs a set of goods that satisfies EJR. In cake sharing,
Bei et al. (2024, Sec. 7) adapted EJR by imposing the condition for every positive
real number t, and proved that the resulting notion is satisfied by the maximum Nash

1 Since a “candidate” usually refers to an indivisible entity, we use the term “good” instead from here on.
2 We henceforth use the term “agent” instead of “voter”.
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welfare (MNW) rule.3 Canwe unify the two versions of EJR for our generalized setting
in such a way that the guaranteed existence is maintained?4

1.1 Our contributions

In Sect. 3, we introduce two variants of EJR suitable for the mixed-goods setting. The
stronger variant, EJR for mixed goods (EJR-M), imposes the EJR condition for any
positive real number t whenever a t-cohesive group commonly approves a resource of
size exactly t . The weaker variant, EJR up to 1 (EJR-1), again considers the condition
for every positive real number t but only requires that some member of a t-cohesive
group receives utility greater than t − 1. While EJR-M reduces to the corresponding
notion of EJR in both multiwinner voting and cake sharing, and therefore offers a
unification of both versions, EJR-1 does so only for multiwinner voting. We then
extend three multiwinner voting rules to our setting: GreedyEJR, the method of equal
shares (MES), and proportional approval voting (PAV). We show that GreedyEJR-M,
our generalization of GreedyEJR, satisfies EJR-M (and therefore EJR-1), which also
means that an EJR-M allocation always exists. On the other hand, we prove that our
generalizations of the other two methods provide EJR-1 but not EJR-M. Furthermore,
while GreedyEJR-M and Generalized MES guarantee the cake version of EJR in cake
sharing, Generalized PAV does not.

In Sect. 4, we turn our attention to the concept of proportionality degree, which
measures the average utility of the agents in a cohesive group (Skowron 2021). We
derive tight bounds on the proportionality degree implied by both EJR-M and EJR-1,
with the EJR-M bound being slightly higher. We also investigate the proportionality
degree of the three rules from Sect. 3; in particular, we find that Generalized PAV has a
significantly higher proportionality degree than both GreedyEJR-M and Generalized
MES.

An overview of our results can be found in Table 1.

2 Preliminaries

Let N = {1, 2, . . . , n} be the set of agents. In the mixed-goods setting, the resource R
consists of a cake C = [0, c] for some real number c ≥ 0 and a set of indivisible
goods G = {g1, . . . , gm} for some integer m ≥ 0. Assume without loss of generality
that max(c,m) > 0. A piece of cake is a union of finitely many disjoint (closed)
subintervals of C . Denote by �(I ) the length of an interval I , that is, �([x, y]) :=
y − x . For a piece of cake C ′ consisting of a set of disjoint intervals IC ′ , we let
�(C ′) := ∑

I∈IC ′ �(I ). A bundle R′ consists of a (possibly empty) piece of cake
C ′ ⊆ C and a (possibly empty) set of indivisible goods G ′ ⊆ G; the size of such a

3 They also noted that JR does not admit a natural analog for cake sharing, since there is no discrete unit
of cake.
4 As further evidence for the generality of our setting, we remark that, as Bei et al. (2024, Sec. 1.2) pointed
out, cake sharing itself generalizes another collective choice setting called fair mixing (Aziz et al. 2020).
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Table 1 Overview of our results. The check mark (✓) indicates that the rule satisfies the property; the cross
mark (✗) indicates that it does not

GreedyEJR-M Gen. MES Gen. PAV

EJR-M ✓ ✗ ✗

EJR-1 ✓ ✓ ✓

Proportionality degree �t� ·
(
1 − �t�+1

2t

)
≈ t

2

[
t−2+1/t

2 ,
	t
+1

2

]
≈ t

2 > t − 1

Indivisible-goods EJR ✓∗ ✓∗ ✓∗
Cake EJR ✓ ✓ ✗

Polynomial-time computation ? ✓ ✗∗

Entriesmarked by an asterisk follow from known results inmultiwinner voting; the entry on the computation
of Generalized PAV relies on the assumption that P �= NP. We also show that the proportionality degree

implied by EJR-M and EJR-1 is �t� ·
(
1 − �t�+1

2t

)
and t−2+1/t

2 , which are both approximately t/2,

respectively

Fig. 1 A mixed-goods instance
with two agents N = {1, 2}, two
indivisible goods G = {g1, g2},
a cake C of length 0.9, and
α = 2. Agent 1 approves
R1 = {g1} ∪ C, while agent 2
approves R2 = {g2} ∪ C . If the
allocation A = {g1, g2} is
chosen, both agents receive a
utility of 1

G C

g1 g2
0 0.9

R

R1

R2

bundle R′ is s(R′) := �(C ′) + |G ′|. We sometimes write R′ = (C ′,G ′) instead of
R′ = C ′ ∪ G ′.

We assume that the agents have approval preferences (also known as dichotomous
or binary), i.e., each agent i ∈ N approves a bundle Ri = (Ci ,Gi ) of the resource.5

The utility of agent i for a bundle R′ is given by ui (R′) := s(Ri ∩ R′) = �(Ci ∩C ′)+
|Gi ∩ G ′|. Let α ∈ (0, c +m] be a given parameter, and assume that a bundle A with
s(A) ≤ α can be chosen and collectively allocated to the agents6; we also refer to an
allocated bundle as an allocation. (Note that we allow s(A) ≤ α rather than requiring
s(A) = α; this is a slight deviation from the standard multiwinner voting model.) An
instance consists of the resource R, the agents N and their approved bundles (Ri )i∈N ,

and the parameter α. We say that an instance is a cake instance if it does not contain
indivisible goods (i.e.,m = 0), and an indivisible-goods instance if it does not contain
cake (i.e., c = 0).7 An example instance is shown in Fig. 1.

A mechanism or rule M maps any instance to an allocation of the resource. For
any property P of allocations, we say that a rule M satisfies property P if for every

5 Approval preferences can be given explicitly as part of the input for algorithms, so we do not need
the cake-cutting query model of Robertson and Webb (1998). In particular, the cake preferences can be
described by the endpoints of the cake intervals approved by each agent.
6 Instead of the variable k as in multiwinner voting, we use α, as this variable may not be an integer in our
setting. This is consistent with the notation used by Bei et al. (2024) for cake sharing.
7 When c = 0 the cake consists of a single point, which yields utility 0 to every agent, so we may ignore it.
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instance, the allocation output byM satisfies P.An example of a rule is themaximum
Nash welfare (MNW) rule, which returns an allocation A that maximizes the product∏

i∈N ui (A) of the agents’ utilities.8

3 EJR notions and rules

In order to reason about extended justified representation (EJR), an important concept
is that of a cohesive group. For any positive real number t, a set of agents N∗ ⊆ N
is said to be t-cohesive if |N∗| ≥ t · n/α and s(

⋂
i∈N∗ Ri ) ≥ t . For an indivisible-

goods instance, Aziz et al. (2017) defined EJR as follows: an allocation A satisfies
EJR if for every positive integer t and every t-cohesive group of agents N∗, at least
one agent in N∗ receives utility at least t . Bei et al. (2024) adapted this axiom to cake
sharing by considering every positive real number t instead of only positive integers.9

To distinguish between these two versions of EJR, as well as from versions for mixed
goods that we will define next, we refer to the two versions as indivisible-goods EJR
and cake EJR, respectively.

A first attempt to define EJR for mixed goods is to simply use the cake version.
However, as we will see shortly, the resulting notion is too strong. Hence, we relax it
by lowering the utility threshold.

Definition 3.1 (EJR-β) Let β ≥ 0. Given an instance, an allocation A with s(A) ≤ α

is said to satisfy extended justified representation up to β (EJR-β) if for every positive
real number t and every t-cohesive group of agents N∗, it holds that u j (A) > t − β

for some j ∈ N∗.10

Proposition 3.2 For each constant β ∈ [0, 1), there exists an indivisible-goods
instance in which no allocation satisfies EJR-β. This remains true even if we relax the
inequality u j (A) > t − β in Definition 3.1 to u j (A) ≥ t − β.

Proof We work with the weaker condition u j (A) ≥ t −β. Fix β ∈ [0, 1), and choose
a rational constant β ′ ∈ (β, 1). Consider an indivisible-goods instance with integers
n and α such that α = β ′ · n, and assume that all agents approve disjoint nonempty
subsets Gi of goods. Each individual agent forms a β ′-cohesive group, so in an EJR-β
allocation, every agent must receive utility at least β ′ − β > 0. Hence, any EJR-β
allocation necessarily includes at least one good from each approval set Gi , and must
therefore contain at least n goods in total. However, since α = β ′ ·n < n, no allocation
can satisfy EJR-β. ��

Proposition 3.2 raises the question of whether EJR-1 can always be satisfied. We
will answer this question in the affirmative in Sect. 3.1. Before that, we introduce

8 Ties can be broken arbitrarily except when the highest possible product is 0. In this exceptional case, the
MNW rule first gives positive utility to a set of agents of maximal size and then maximizes the product of
utilities for the agents in this set.
9 Note that the indivisible-goods version with positive integers t may be meaningless in the cake setting,
e.g., if the entire cake has length less than 1.More generally, the restriction to positive integers t is unnatural
for cake, as there is no discrete unit of cake.
10 For β = 1, Peters et al. (2021) considered a somewhat similar notion called “EJR up to one project” in
the setting of participatory budgeting with indivisible projects.
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EJR-M, another variant of EJR tailored to mixed goods. The intuition behind EJR-M
is that a t-cohesive group of agents should be able to claim a utility of t for some
member only when there exists a commonly approved resource of size exactly t . This
rules out such cases as in the proof of Proposition 3.2, where a group can effectively
claim utility higher than t due to the indivisibility of the goods.

Definition 3.3 (EJR-M) Given an instance, an allocation A with s(A) ≤ α is said
to satisfy extended justified representation for mixed goods (EJR-M) if the following
holds:

For every positive real number t and every t-cohesive group of agents N∗ for which
there exists R∗ ⊆ R such that s(R∗) = t and R∗ ⊆ Ri for all i ∈ N∗, it holds that
u j (A) ≥ t for some j ∈ N∗.

Note that for indivisible-goods instances, the condition s(R∗) = t can only hold for
integers t, so EJR-M reduces to indivisible-goods EJR. Likewise, for cake instances,
if a group is t-cohesive then a commonly approved subset of size exactly t always
exists, so EJR-M reduces to cake EJR. Hence, EJR-M unifies EJR from both settings.

Proposition 3.4 Let t be a positive real number. For an EJR-M allocation A and a
t-cohesive group of agents N∗, it holds that u j (A) ≥ �t� for some j ∈ N∗.

Proof Let R∗ = ⋂
i∈N∗ Ri , so s(R∗) ≥ t, and let m∗ be the number of indivisible

goods in R∗. If m∗ ≥ �t�, then by Definition 3.3, there exists j ∈ N∗ such that
u j (A) ≥ �t�. Else, m∗ < �t�, which means that R∗ contains a piece of cake of length
at least t − m∗. In this case, by considering the m∗ indivisible goods and a piece of
cake of length exactly t −m∗ commonly approved by all agents in N∗, Definition 3.3
implies the existence of j ∈ N∗ such that u j (A) ≥ t ≥ �t�. ��

Since �t� > t − 1 for every real number t, we have the following corollary.

Corollary 3.5 EJR-M implies EJR-1.

For indivisible-goods instances, EJR-1 reduces to indivisible-goods EJR, since for
every positive real number t, the smallest integer greater than t−1 is �t�.On the other
hand, for cake instances, EJR-1 is weaker than cake EJR.

In the cake setting, Bei et al. (2024) proved that the MNW rule satisfies cake EJR.
However, in the indivisible-goods setting, the fact that MNW tries to avoid giving
utility 0 to any agent at all costs means that it sometimes attempts to help individual
agents at the expense of large deserving groups. This is formalized in the following
proposition.

Proposition 3.6 For any constant β ≥ 0, there exists an indivisible-goods instance in
which no MNW allocation satisfies EJR-β.

Proof It suffices to prove the statement for every positive integer β. Indeed, once we
have this, then for any nonnegative real number β ′, there exists a positive integer
β > β ′. Since EJR-β ′ implies EJR-β, in an instance in which no MNW allocation
satisfies EJR-β, there also does not exist an MNW allocation satisfying EJR-β ′.
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Fix a positive integer β, and let γ = β + 2. Consider an indivisible-goods instance
with n = γ 2 + γ agents, m = 2γ goods, and α = γ + 1. The first γ 2 agents all
approve goods g1, . . . , gγ ,while agent γ 2+i only approves good gγ+i for 1 ≤ i ≤ γ.

Notice that the first γ 2 agents form a γ -cohesive group, so at least one of them must
receive utility no less than γ −β = 2 in an EJR-β allocation. In particular, at least two
goods among g1, . . . , gγ must be chosen. However, every MNW allocation contains
gγ+1, gγ+2, . . . , g2γ along with exactly one of g1, . . . , gγ . It follows that no MNW
allocation satisfies EJR-β. ��

3.1 GreedyEJR-M

Proposition 3.6 implies that the MNW rule cannot guarantee EJR-M or EJR-1 in the
indivisible-goods setting, let alone in the mixed-goods setting. We show next that a
greedy approach can be used to achieve these guarantees. The rule that we use is an
adaptation of the GreedyEJR rule from the indivisible-goods setting (Bredereck et al.
2019; Peters et al. 2021; Elkind et al. 2022); we therefore call it GreedyEJR-M and
describe it below.

GreedyEJR-M

Step 1: Initialize N ′ = N and R′ = ∅.

Step 2: Let t∗ be the largest nonnegative real number for which there exist
∅ �= N∗ ⊆ N ′ and R∗ ⊆ R such that N∗ is a t∗-cohesive group, R∗ ⊆ Ri for all
i ∈ N∗, and s(R∗) = t∗. Consider any such pair (N∗, R∗). Remove N∗ from N ′
and add the part of R∗ that is not already in R′ to R′.

Step 3: If N ′ = ∅, return R′. Else, go back to Step 2.

Example 3.7 Consider the instance in Fig. 1. We have n/α = 1, and Step 2 of
GreedyEJR-M chooses t∗ = 1, along with (as one possibility) N∗ = {1} and
R∗ = {g1}. We are left with N ′ = {2}, and the next iteration of Step 2 chooses
t∗ = 1, N∗ = {2}, and R∗ = {g2}. Finally, the rule returns R′ = {g1, g2}.
Theorem 3.8 The GreedyEJR-M rule satisfies EJR-M (and therefore EJR-1).

Proof By Corollary 3.5, it suffices to prove the claim for EJR-M. We break the proof
into the following four parts.

• The procedure is well-defined. To this end, we must show that the largest nonnega-
tive real number t∗ in Step 2 always exists. Observe that for each nonempty group
of agents X ⊆ N ′, the set

TX :=
{

t ≥ 0

∣
∣
∣
∣ |X | ≥ t · n

α
and there exists Y ⊆

⋂

i∈X
Ri with s(Y ) = t

}
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is a union of a finite number of (possibly degenerate) closed intervals, and is
nonempty because 0 ∈ TX . Therefore, TX has a maximum. The value t∗ chosen in
Step 2 is then the largest among the maxima of TX across all nonempty X ⊆ N ′.

• The procedure always terminates. This is because each iteration of Step 2 removes
at least one agent from N ′.

• The procedure returns an allocation R′ with s(R′) ≤ α. Indeed, if an iteration
of Step 2 uses value t∗, it removes11 at least t∗ · n/α agents from N ′ and adds a
resource of size at most t∗ to R′. Since only n agents can be removed in total, the
added resource has size at most α.

• The returned allocation R′ satisfies EJR-M. Assume for contradiction that for
some group X , Definition 3.3 fails for X and parameter t . Consider the moment
after the procedure removed the last group with parameter t∗ ≥ t . If no agent
in X has been removed, the procedure should have removed X with parameter
t, a contradiction. Else, some agent j ∈ X has been removed. In this case, the
procedure guarantees that u j (R′) ≥ t,which means that X satisfies Definition 3.3
with parameter t, again a contradiction. ��

3.2 GeneralizedMethod of Equal Shares

Despite the strong representation guarantee provided by GreedyEJR-M, the rule does
not admit an obvious polynomial-time implementation.12 In the indivisible-goods
setting, Peters and Skowron (2020) introduced the Method of Equal Shares (MES),
originally known asRule X, and showed that it satisfies indivisible-goods EJR and runs
in polynomial time. We now extend their rule to our mixed-goods setting. At a high
level, in Generalized MES, each agent is given a budget of α/n, which can be spent
on buying the resource—each piece of cake has cost equal to its length whereas each
indivisible good costs 1. In each step, a piece of cake or an indivisible good that incurs
the smallest cost per utility for agents who approve it is chosen, and these agents pay
as equally as possible to cover the cost of the chosen resource. The rule stops once no
more cake or indivisible good is affordable. Note that when the resource consists only
of indivisible goods, Generalized MES is equivalent to the original MES of Peters and
Skowron (2020).

11 If t∗ = 0, the iteration still removes at least one agent from N ′, but we do not need this fact here.
12 Indeed, determining t∗ in Step 2 of GreedyEJR-M potentially requires inspecting an exponential number
of subsets N∗ ⊆ N ′.

123



Approval-based voting with mixed goods

Generalized MES
Step 1: Initialize R′ = (C ′,G ′) = (∅,∅) and bi = α/n for each i ∈ N .

Step 2: Divide the remaining cake C into intervals I1, . . . , Ik so that each agent
approves each interval either entirely or not at all. For each interval I j = [x0, x1],
x ∈ (x0, x1], and ρ ≥ 0, we say that I j is (x, ρ)-affordable if

∑

i∈NI j

min(bi , (x − x0) · ρ) = x − x0,

where NI j ⊆ N denotes the set of remaining agents who approve I j . Similarly,
for each remaining good g ∈ G and ρ ≥ 0, we say that g is ρ-affordable if

∑

i∈Ng

min(bi , ρ) = 1,

where Ng ⊆ N denotes the set of remaining agents who approve g.

Step 3: If for every ρ, no ρ-affordable good or (x, ρ)-affordable piece of cake
exists, return R′.

Else, take either an interval I j with the smallest ρ along with the largest x
such that I j is (x, ρ)-affordable, or a good g with the smallest ρ such that g
is ρ-affordable, depending on which ρ is smaller. In the former case, deduct
min(bi , (x − x0) · ρ) from bi for each i ∈ NI j , and set C = C\[x0, x] and
C ′ = C ′ ∪ [x0, x]. In the latter case, deduct min(bi , ρ) from bi for each i ∈ Ng,

and set G = G\{g} and G ′ = G ′ ∪ {g}. Remove all agents who have run out of
budget from N , and go back to Step 2.

Example 3.9 For the instance in Fig. 1, each agent starts with a budget of α/n = 1.
The first iteration of Step 2 selects the entire cake (with ρ = 1/2), and each agent
pays 0.9/2 = 0.45 for this cake. Since neither agent has enough budget left to buy
the indivisible good that she approves (which costs 1), the procedure terminates with
only the cake.

In the instance above, each agent on her own is 1-cohesive and approves a subset of
the resource of size exactly 1, so the only EJR-M allocation is {g1, g2}. In particular,
the allocation chosen by Generalized MES is not EJR-M.

Proposition 3.10 Generalized MES does not satisfy EJR-M.

Nevertheless, we prove that Generalized MES satisfies EJR-1 and, moreover, can
be implemented efficiently. We do not prove the result directly, but instead introduce a
stronger notion than EJR-1 and show that GeneralizedMES satisfies even this stronger
notion.
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Definition 3.11 (Strong EJR-1) Given an instance, an allocation A with s(A) ≤ α

satisfies strong EJR-1 if for every positive real number t and every t-cohesive group
of agents N∗, at least one of the following two conditions holds:

• ⋂
i∈N∗ Ci ⊆ A and there exists some j ∈ N∗ with u j (A) > t − 1; or

• there exists some j ∈ N∗ with u j (A) ≥ t .

It follows directly from the definition that strong EJR-1 implies EJR-1, since in
either case, there exists some agent in the t-cohesive group who receives utility greater
than t − 1. Strong EJR-1 is more demanding than EJR-1 in that if no agent in a t-
cohesive group receives utility at least t, then the cake commonly approved by all
agents in that group must be entirely included in the allocation.

On the one hand, like EJR-1, for indivisible-goods instances, strong EJR-1 reduces
to indivisible-goods EJR, since (i) for any cohesive group N∗, it holds trivially that⋂

i∈N∗ Ci = ∅ ⊆ A, and (ii) for every positive real number t, the smallest integer
greater than t−1 is �t�.On theother hand, unlikeEJR-1, for cake instances, strongEJR-
1 reduces to cake EJR, since for any t-cohesive group N∗ such that

⋂
i∈N∗ Ci ⊆ A, it

must be the case that some agent (in fact, all agents) in the cohesive group receives a
utility of at least t . Due to its somewhat unintuitive definition, we view strong EJR-1
as a technical strengthening of EJR-1 rather than a practical one.

It is tempting to believe that strong EJR-1 lies between EJR-M and EJR-1. This is,
however, not the case. The proof of this claim can be found in Appendix A.

Proposition 3.12 Neither EJR-M nor strong EJR-1 implies each other. Moreover,
GreedyEJR-M does not satisfy strong EJR-1.

As we will see later, Generalized PAV does not satisfy cake EJR for cake instances
(Proposition 3.19), so it does not satisfy strong EJR-1 either. We now show that Gen-
eralized MES satisfies strong EJR-1.

Theorem 3.13 Generalized MES satisfies strong EJR-1 and can be implemented in
polynomial time.

Proof First, observe that for each interval I j , provided that NI j �= ∅, the value of
ρ chosen in Step 3 will be ρ = 1/|NI j |, and the value of x will be either x1 or the
smallest value such that (x − x0) · ρ = bi for some i ∈ NI j , whichever is smaller. For
each indivisible good g, the value of ρ can also be computed in polynomial time.13

After each iteration of Step 3, if the procedure has not terminated, at least one of the
following occurs: an entire interval I j is removed from C, an indivisible good g is
removed from G, or one or more agents run out of budget. Hence, the procedure can
be implemented in polynomial time.

Next, note that whenever a resource of some size y is added to R′, the agents
together pay a total of y. Since the agents have a total starting budget of n · (α/n) = α,

Generalized MES returns an allocation of size at most α.

We now show that the returned allocation R′ = (C ′,G ′) satisfies strong EJR-1. To
begin with, assume for contradiction that for some real number t > 0, there exists a t-
cohesive group N ′ with

⋂
i∈N ′ Ci ⊆ C ′ and ui (R′) ≤ t−1 for all i ∈ N ′. In particular,

13 See Footnote 9 in the extended version of Peters and Skowron (2020)’s work.
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all cake commonly approved by the agents in N ′ has already been included in R′ by
Generalized MES. Due to t-cohesiveness, there must still exist a good from

⋂
i∈N ′ Gi

left in G. Moreover,
∑

i∈N ′ bi < 1 at the termination of the procedure—indeed, if∑
i∈N ′ bi ≥ 1, then the agents in N ′ together have enoughbudget to afford a commonly

approved good, so the procedure should not have terminated without choosing this
good. Since |N ′| ≥ t · n

α
, we have bi < α

tn for some i ∈ N ′. In particular, agent i
receives a utility of at most t − 1 but has spent more than α

n − α
tn = α

n · t−1
t . Thus,

the cost per utility for i is strictly greater than 1
t−1

(
α
n · t−1

t

) = α
tn . Now, consider the

first cake interval or indivisible good added in Step 3 for which the cost per utility
for some agent in N ′ exceeds α

tn ; the existence of such an interval or good follows
from the previous sentence. Note that the value of ρ in this step must be larger than
α
tn . However, since this is the first step in which an agent from N ′ pays more than α

tn
per utility and the utility of each agent in N ′ is at most t − 1, each agent in N ′ must
have budget at least α

n − α
tn · (t −1) = α

tn remaining before this step. Since |N ′| ≥ tn
α

,

before this step, there is still an indivisible good from
⋂

i∈N ′ Gi which is ρ-affordable
for some ρ ≤ α

tn . This contradicts the fact that Generalized MES chooses a resource
with ρ > α

tn . Hence, if
⋂

i∈N ′ Ci ⊆ C ′, then ui (R′) > t − 1 for some i ∈ N ′.
Next, assume for contradiction that for some real number t > 0, there exists a t-

cohesive group N ′ with (
⋂

i∈N ′ Ci )\C ′ �= ∅ and ui (R′) < t for all i ∈ N ′. Let δ > 0
be such that ui (R′) < t − δ for all i ∈ N ′. Since (

⋂
i∈N ′ Ci )\C ′ �= ∅ and this piece

of cake is not affordable at the end, the budget of all agents in N ′ must have run out.
Hence, the cost per utility for every agent in N ′ is strictly greater than α

(t−δ)n . Now,
consider the first cake interval or indivisible good added in Step 3 for which the cost
per utility for some agent in N ′ exceeds α

tn ; the existence of such an interval follows
from the previous sentence since α

(t−δ)n > α
tn . Note that the value of ρ in this step

must be larger than α
tn . However, since this is the first step in which an agent from N ′

pays strictly more than α
tn per utility and the utility of each agent in N ′ is at most t −δ,

each agent in N ′ must have budget at least α
n − α(t−δ)

tn = αδ
tn > 0 remaining before this

step. Since |N ′| ≥ t · n
α
, before this step there is still an interval I j = [x0, x1] from⋂

i∈N ′ Ci which is (x0+ε, ρ)-affordable for some ε > 0 and ρ ≤ α
tn . This contradicts

the fact that Generalized MES chooses a resource with ρ > α
tn . ��

As a corollary, we have the following result.

Corollary 3.14 For cake instances, Generalized MES satisfies cake EJR.

3.3 Generalized PAV

In the indivisible-goods setting, a well-studied rule is proportional approval voting
(PAV), which chooses an allocation R′ that maximizes

∑
i∈N Hui (R′), where Hx :=

1 + 1
2 + · · · + 1

x is the x-th harmonic number. We now show how to generalize PAV
to the mixed-goods setting. To this end, we will use a continuous extension of the
harmonic numbers based on the digamma function, defined as Hx := ψ(x + 1) + γ

for all real numbers x ≥ 0, where ψ is the digamma function and γ is the Euler–
Mascheroni constant. A known fact about the digamma function (e.g., (Abramowitz
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and Stegun 1972, p. 259, Formula 6.3.16)) implies that

Hx =
∞∑

k=1

x

k(x + k)
=

∞∑

k=1

(
1

k
− 1

k + x

)

for each real number x ≥ 0; in particular, these infinite sums converge. It is clear
from the definition that the generalized harmonic numbers indeed extend the original
harmonic numbers,14 and that Hx > Hy for all x > y ≥ 0. Moreover, Hx+1 − Hx =
1

x+1 for all x ≥ 0.

Definition 3.15 (Generalized PAV) The Generalized PAV rule selects an allocation R′
with s(R′) ≤ α that maximizes

∑
i∈N Hui (R′).

For ease of notation, we let H(R′) := ∑
i∈N Hui (R′) for any allocation R′, and

call H(R′) the GPAV-score of R′. Given the instance in Fig. 1, since H1.9 + H0.9 >

1.45 + 0.93 > 1 + 1 = H1 + H1, Generalized PAV selects the entire cake together
with one of the indivisible goods. As the only EJR-M allocation in this instance is
{g1, g2}, the allocation selected by Generalized PAV is not EJR-M.

Proposition 3.16 Generalized PAV does not satisfy EJR-M.

To show that Generalized PAV satisfies EJR-1, we establish a useful lemma on the
growth rate of the generalized harmonic numbers.

Lemma 3.17 For any x ∈ (0,∞) and y ∈ [0, 1], it holds that Hx+y − Hx ≤ y
x+y .

Proof First, note that for any positive integer r ,

r∑

k=1

x + y

k(x + y + k)
−

r∑

k=1

x

k(x + k)
=

r∑

k=1

(
1

k
− 1

k + x + y

)

−
r∑

k=1

(
1

k
− 1

k + x

)

=
r∑

k=1

(
1

k + x
− 1

k + x + y

)

=
r∑

k=1

y

(k + x)(k + x + y)

≤
r∑

k=1

y

(k + x + y − 1)(k + x + y)
.

Hence, we have

Hx+y − Hx = lim
r→∞

r∑

k=1

x + y

k(x + y + k)
− lim

r→∞

r∑

k=1

x

k(x + k)

14 The extension that we use is in a certain sense the canonical extension of the harmonic numbers. Indeed,
ψ is known to be the unique monotonic solution of the functional equation F(x + 1) = F(x) + 1/x that
satisfies F(1) = −γ. If we tried to extend the harmonic numbers using, say, the piecewise linear extension
Ĥ , we would have Ĥ0.5 = 0.5 and Ĥ1.5 = 1.25, so Ĥ1.5 − Ĥ0.5 = 0.75 �= 1/1.5.
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= lim
r→∞

(
r∑

k=1

x + y

k(x + y + k)
−

r∑

k=1

x

k(x + k)

)

≤ lim
r→∞

r∑

k=1

y

(k + x + y − 1)(k + x + y)

=
∞∑

k=1

y

(k + x + y − 1)(k + x + y)

=
∞∑

k=1

(
y

k + x + y − 1
− y

k + x + y

)

= y

x + y
,

where the inequality follows from the previous paragraph and the last sum telescopes.
��

Theorem 3.18 Generalized PAV satisfies EJR-1.

Proof Let R′ = (C ′,G ′) be a Generalized PAV allocation. By adding a piece of
cake approved by no agent to the resource R as well as R′ if necessary, we may
assume without loss of generality that s(R′) = α. Assume also that the cake C ′ is
represented by the interval [0, c′]. Whenever x + y > c′, the interval [x, x + y] refers
to [x, c′] ∪ [0, x + y − c′], i.e., we cyclically wrap around the cake C ′.15

Suppose for contradiction that for some t > 0, there exists a t-cohesive group N ′
with ui (R′) ≤ t − 1 for all i ∈ N ′. Hence, there exists either a piece of cake of size 1
that is approved by all agents in N ′ but not contained in R′, or an indivisible good
with the same property. We assume the latter case; the proof proceeds similarly in the
former case. Denote this good by g∗, and let G ′′ := G ′ ∪ {g∗} and R′′ := (C ′,G ′′).
We have

H(R′′) − H(R′) ≥
∑

i∈N ′

(
Hui (R′)+1 − Hui (R′)

)

=
∑

i∈N ′

1

ui (R′) + 1

≥ |N ′|2
∑

i∈N ′(ui (R′) + 1)
≥ |N ′|2

|N ′| · (t − 1) + |N ′| = |N ′|
t

≥ n

α
,

where the second inequality follows from the inequality of arithmetic and harmonic
means and the last inequality from the definition of a t-cohesive group. In other words,
adding g∗ increases the GPAV-score of R′ by at least n/α.

For each good g ∈ G, denote by Ng ⊆ N the set of agents who approve it. For
each g ∈ G ′′, we have

H(R′′) − H(R′′\{g}) =
∑

i∈Ng

(
Hui (R′′) − Hui (R′′)−1

) =
∑

i∈Ng

1

ui (R′′)
,

15 For example, if c′ = 2, x = 1.2, and y = 1, then [x, x + y] refers to [1.2, 2] ∪ [0, 0.2] since
x + y − c′ = 0.2.
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where ui (R′′) − 1 ≥ 0 always holds because every agent i ∈ Ng approves g ∈ G ′′
and therefore has utility at least 1 for R′′ = (C ′,G ′′). Letting N+ consist of the
agents i ∈ N with ui (R′′) > 0, we get

∑

g∈G ′′
(H(R′′) − H(R′′\{g})) =

∑

g∈G ′′

∑

i∈Ng

1

ui (R′′)

=
∑

i∈N+

∑

g∈G ′′∩Gi

1

ui (R′′)

=
∑

i∈N+

ui (G ′′)
ui (R′′)

(1)

≤
∑

i∈N+
1 ≤ n.

If there is a good g ∈ G ′′ such that H(R′′) − H(R′′\{g}) < n/α (clearly, g �= g∗),
we can replace g with g∗ in R′ and obtain a higher GPAV-score, contradicting the
definition of R′. Hence, we may assume that H(R′′) − H(R′′\{g}) ≥ n/α for every
good g ∈ G ′′. It follows that

n ≥
∑

g∈G ′′
(H(R′′) − H(R′′\{g})) ≥ |G ′′| · n

α
.

Therefore, we have that |G ′′| ≤ α, and so c′ ≥ 1.
Now, for any x ∈ C ′, it holds that

H(R′′) − H(R′′\[x, x + 1]) =
∑

i∈N

(
Hui (R′′) − Hui (R′′)−ui ([x,x+1])

)

≤
∑

i∈N+

ui ([x, x + 1])
ui (R′′)

, (2)

where the inequality follows from Lemma 3.17. Using (1) and (2), we get

∑

g∈G ′′
(H(R′′) − H(R′′\{g})) +

∫

C ′
(H(R′′) − H(R′′\[x, x + 1])) dx

≤
∑

i∈N+

ui (G ′′)
ui (R′′)

+
∫

C ′

⎛

⎝
∑

i∈N+

ui ([x, x + 1])
ui (R′′)

⎞

⎠ dx

=
∑

i∈N+

ui (G ′′)
ui (R′′)

+
∑

i∈N+

(∫

C ′
ui ([x, x + 1])

ui (R′′)
dx

)

=
∑

i∈N+

[
1

ui (R′′)

(

ui (G
′′) +

∫

C ′
ui ([x, x + 1]) dx

)]
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=
∑

i∈N+

[
1

ui (R′′)
(
ui (G

′′) + ui (C
′)
)
]

≤
∑

i∈N
1 = n. (3)

Here, we have
∫
C ′ ui ([x, x + 1]) dx = ui (C ′) because

∫

C ′
ui ([x, x + 1]) dx =

∫

C ′
�(Ci ∩ [x, x + 1]) dx

=
∫

Ci∩C ′
�([y − 1, y]) dy =

∫

Ci∩C ′
1 dy = �(Ci ∩ C ′) = ui (C

′),

where the second equality holds because a point y ∈ Ci belongs to the interval [x, x+1]
if and only if x ∈ [y − 1, y].

If it were the case that H(R′′) − H(R′′\[x, x + 1]) ≥ n/α for every x ∈ C ′, we
would have

∑

g∈G ′′
(H(R′′) − H(R′′\{g})) +

∫

C ′
(H(R′′) − H(R′′\[x, x + 1])) dx

≥ |G ′′| · n
α

+ c′ · n
α

= (α + 1) · n
α

> n,

a contradiction with (3). Thus, it must be that H(R′′) − H(R′′\[x, x + 1]) < n/α for
some x ∈ C ′. By replacing the cake [x, x + 1] in R′ with the good g∗, we therefore
obtain a higher GPAV-score than that of R′. This yields the final contradiction and
completes the proof. ��

In contrast to Generalized MES, Generalized PAV does not satisfy EJR in cake
sharing.

Proposition 3.19 For cake instances, Generalized PAV does not satisfy cake EJR.

To prove this statement, we use the following proposition.

Proposition 3.20 (Bei et al. 2024) Let f : R≥0 → [−∞,∞) be a strictly increasing
function which is differentiable in (0,∞). For cake sharing, if a rule that always
chooses an allocation R′ maximizing

∑
i∈N f (ui (R′)) satisfies cake EJR, then there

exists a constant c such that f ′(x) = c/x for all x ∈ (0,∞).16

Proof of Proposition 3.19 For a positive integer r , one can check that the derivative
with respect to x of

∑r
k=1

x
k(x+k) is

∑r
k=1

1
(x+k)2

, which converges as r → ∞. This

means that Hx = ∑∞
k=1

x
k(x+k) is differentiable as a function of x, and its derivative

is
∑∞

k=1
1

(x+k)2
. In particular, there is no constant c such that H ′

x = c/x for all
x ∈ (0,∞)—for example, this can be seen by observing that, as x approaches 0
from above, H ′

x approaches
∑∞

k=1 1/k
2 = π2/6 rather than ∞. By Proposition 3.20,

Generalized PAV does not satisfy cake EJR. ��
16 This is Theorem 7.8 in their work. Bei et al. normalized the length of the cake to 1, but the same proof
works in our setting.

123



X. Lu et al.

4 Proportionality degree

In addition to the axiomatic study of representation in terms of criteria like EJR-M
and EJR-1, another relevant concept for cohesive groups is the proportionality degree,
which measures the average utility of the agents in each such group (Skowron 2021).
In this section, we first derive tight bounds on the proportionality degree implied by
EJR-M and EJR-1, and then investigate the proportionality degree of the rules that we
studied in Sect. 3.

Definition 4.1 (Average satisfaction) Given an instance and an allocation A, the aver-
age satisfaction of a group of agents N ′ ⊆ N with respect to A is 1

|N ′| ·∑i∈N ′ ui (A).

Definition 4.2 (Proportionality degree) Fix a function f : R>0 → R≥0. A rule M
has a proportionality degree of f if for each instance I , each allocation A that M
outputs on I , and each t-cohesive group of agents N∗, the average satisfaction of N∗
with respect to A is at least f (t), i.e.,

1

|N∗| ·
∑

i∈N∗
ui (A) ≥ f (t).

For indivisible goods, Sánchez-Fernández et al. (2017) showed that EJR implies a
proportionality degree of t−1

2 .Wewill show that in our setting, both EJR-M and EJR-1
imply a proportionality degree of roughly t/2, with the guarantee for EJR-M being
slightly higher. In addition, we will establish that both GreedyEJR-M and Generalized
MES have a proportionality degree of approximately t/2, while the proportionality
degree of Generalized PAV is higher than t − 1.

4.1 Proportionality degree implied by EJR-M and EJR-1

Our focus in this subsection is to establish tight bounds on the proportionality degree
implied by EJR-M and EJR-1. Observe that for t < 1, a t-cohesive group may have
an average satisfaction of 0 in an EJR-M or EJR-1 allocation. Indeed, if α = t and the
resource consists only of a single indivisible good, which is approved by all n agents,
then the set of all agents is t-cohesive, but the empty allocation is EJR-M and EJR-1.
We therefore assume t ≥ 1 for our results from here on.

Wefirst show that the proportionality degree implied byEJR-M is �t�·
(
1 − �t�+1

2t

)
,

beginning with the lower bound. Note that this quantity is roughly t/2.

Theorem 4.3 Given any instance and any real number t ≥ 1, let N∗ ⊆ N be a t-
cohesive group and A be an EJR-M allocation. The average satisfaction of N∗ with

respect to A is at least �t� ·
(
1 − �t�+1

2t

)
.

The high-level idea behind the proof of Theorem 4.3 is that, given a t-cohesive
group N∗ and an EJR-M allocation, a t−�t�

t fraction of the agents in N∗ are guaranteed
a utility of at least �t�. The remaining agents can then be partitioned into �t� disjoint
subsets so that each subset consists of a 1/t fraction of the agents in N∗ and the
guaranteed utilities for these subsets drop arithmetically from �t� − 1 to 0.
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Proof of Theorem 4.3 For ease of notation, let r := n/α, and note that |N∗| ≥ 	tr
.
Since N∗ is t-cohesive, by Proposition 3.4, some agent i1 ∈ N∗ gets utility at least �t�
from the allocation A. If |N∗\{i1}| ≥ �t� · r , then since N∗\{i1} is �t�-cohesive,
Proposition 3.4 implies that another agent i2 �= i1 gets utility at least �t� from A.

Applying this argument repeatedly, as long as there are at least 	�t� · r
 agents left,
Proposition 3.4 implies that one of them gets utility at least �t�. Let N ′�t� consist
of the agents with guaranteed utility �t� from this argument, and note that |N ′�t�| =
|N∗|−	�t�·r
+1 ≥ 	tr
−	�t�·r
+1.Let N̂ := N∗\N ′�t�;wehave |N̂ | = 	�t�·r
−1.
Denote by N�t� an arbitrary subset of N ′�t� of size exactly 	tr
 − 	�t� · r
 + 1.

Now, let us consider the agents in N̂ .Applying an argument similar to the one in the
previous paragraph but using (�t� − 1)-cohesiveness, we find that N̂ contains at least
	�t� · r
−	(�t� − 1) · r
 agents with a utility of at least �t�−1 each; let these agents
form N�t�−1.Continuing inductively, we can partition N̂ into �t� pairwise disjoint sets
N�t�−1, N�t�−2, . . . , N1, N0 such that for each j ∈ {0, 1, . . . , �t� − 1}, every agent
in N j gets utility at least j from the allocation A.

For each j ∈ {1, 2, . . . , �t�}, it holds that
∣
∣
∣
⋃ j−1

k=0 Nk

∣
∣
∣ = 	 jr
 − 1. Furthermore,

we have

j · 	tr
 ≥ j · t · r = t · ( jr + 1) − t ≥ t · 	 jr
 − t = t · (	 jr
 − 1),

which implies that

∣
∣
∣
⋃ j−1

k=0 Nk

∣
∣
∣

	tr
 = 	 jr
 − 1

	tr
 ≤ j

t
.

Since
∣
∣
∣
⋃�t�

k=0 Nk

∣
∣
∣ = 	tr
, it follows that

∣
∣
∣
⋃�t�

k= j Nk

∣
∣
∣

	tr
 ≥ t − j

t
= t − �t�

t
+ �t� − j

t
= t − �t�

t
+

�t�−1∑

k= j

1

t
. (4)

With this relationship in hand, we can bound the average satisfaction of N�t� ∪ N̂ =
⋃�t�

k=0 Nk as

1
∣
∣
∣
⋃�t�

k=0 Nk

∣
∣
∣

·
∑

i∈⋃�t�
k=0 Nk

ui (A) ≥ 1

	tr
 ·
⎛

⎝
�t�∑

k=0

|Nk | · k
⎞

⎠

=
�t�∑

k=0

|Nk |
	tr
 · k

=
�t�∑

d=1

�t�∑

k=d

|Nk |
	tr
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≥
�t�∑

d=1

⎛

⎝ t − �t�
t

+
�t�−1∑

k=d

1

t

⎞

⎠

= t − �t�
t

· �t� +
�t�∑

d=1

�t�−1∑

k=d

1

t

= t − �t�
t

· �t� + 1

t
· �t� · (�t� − 1)

2

= �t�
t

· 2t − �t� − 1

2

= �t� ·
(

1 − �t� + 1

2t

)

,

where the first inequality holds because each agent in Nk gets utility at least k and the
second inequality follows from (4).

Since every agent in N ′�t�\N�t� gets utility at least �t�, the average satisfaction of

N ′�t�\N�t� is at least �t� ≥ �t� ·
(
1 − �t�+1

2t

)
. As the average satisfaction of N∗ is a

convex combination of the corresponding quantities for N ′�t�\N�t� and N�t� ∪ N̂ , it is

at least �t� ·
(
1 − �t�+1

2t

)
, as desired. ��

We next give a matching upper bound.

Theorem 4.4 For any real numbers t ≥ 1 and ε > 0, there exists an instance, a
t-cohesive group N∗, and an EJR-M allocation A such that the average satisfaction

of N∗ with respect to A is at most �t� ·
(
1 − �t�+1

2t

)
+ ε.

We do not prove Theorem 4.4 directly, as we will establish a stronger statement
later in Theorem 4.7.

Next, we show that the proportionality degree implied by EJR-1 is t−2+1/t
2 =

(t−1)2

2t , which is slightly lower than that implied by EJR-M for every t > 1. For
the lower bound, we use a similar idea as in Theorem 4.3, but we need to be more
careful about agents with low utility guarantees. In particular, even when the guarantee
provided by the EJR-1 condition is negative, the actual utility is always nonnegative,
so we need to “round up” the EJR-1 guarantee appropriately.

Theorem 4.5 Given any instance and any real number t ≥ 1, let N∗ ⊆ N be a t-
cohesive group and A be an EJR-1 allocation. The average satisfaction of N∗ with
respect to A is greater than t−2+1/t

2 .

To prove this theorem, we will use the following claim, which provides a lower
bound for the average of a nonincreasing and nonnegative sequence with a particular
structure.

Claim 1 Let r > 0 and t ≥ 1 be real numbers. Consider any nonincreasing and
nonnegative sequence

t − 1, a1, a2, . . . , a	tr
−	r
, b1, b2, . . . , b	r
−1,
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in which a1, a2, . . . , a	tr
−	r
 forms an arithmetic subsequence with common differ-
ence −1/r . If t − 1 − a1 ≤ 1/r , then the average of the entire sequence is at least
t−2+1/t

2 .

Proof Westart by showing that the averageof the subsequence t−1, a1, a2, . . . , a	tr
−	r

is at least t−1

2 . The bound holds trivially if 	tr
 − 	r
 = 0; we therefore assume that
	tr
−	r
 ≥ 1. Let us continually decrease each of the numbers a1, a2, . . . , a	tr
−	r

by the same amount until (at least) one of the following two cases occurs:

• Case 1: The difference between t − 1 and a1 becomes 1/r , i.e., a1 = t − 1− 1/r .
Note that a	tr
−	r
 is still nonnegative in this case.

• Case 2: a	tr
−	r
 becomes 0. Note that the difference between t − 1 and a1 is still
at most 1/r .

Clearly, the average of the subsequence in question t − 1, a1, a2, . . . , a	tr
−	r
 does
not increase during this process. Thus, it suffices to show that in each of the above two
cases, this average is at least t−1

2 after the process.

• In Case 1, the subsequence t − 1, a1, a2, . . . , a	tr
−	r
 is now an arithmetic

sequence, so its average is (t−1)+a	tr
−	r

2 ≥ t−1

2 , where the inequality follows
from the fact that a	tr
−	r
 ≥ 0 in this case.

• In Case 2, consider the arithmetic sequence (dk)
	tr
−	r

k=0 with d0 = t − 1 and

d	tr
−	r
 = 0. Let −β be its common difference, so β is nonnegative. On the one
hand, we have

t − 1 = d0 = d	tr
−	r
 + β · (	tr
 − 	r
) = β · (	tr
 − 	r
).

On the other hand, we have

t − 1 = (t − 1 − a1) + a1
= (t − 1 − a1) + (	tr
 − 	r
 − 1) · 1/r ≤ (	tr
 − 	r
) · 1/r ,

where the inequality holds because t − 1 − a1 ≤ 1/r in Case 2. As a result,
we have β · (	tr
 − 	r
) ≤ (	tr
 − 	r
) · 1/r , that is, β ≤ 1/r . Hence, each
term of the sequence t − 1, a1, a2, . . . , a	tr
−	r
 is at least as large as the cor-

responding term of the sequence (dk)
	tr
−	r

k=0 . We conclude that the average of

t − 1, a1, a2, . . . , a	tr
−	r
 is at least that of (dk)
	tr
−	r

k=0 , which is d0+d	tr
−	r


2 =
t−1
2 .

In both cases,wehaveproven that the averageof the sequence t−1, a1, a2, . . . , a	tr
−	r

is at least t−1

2 .

Next, we show that the average of the entire sequence

t − 1, a1, a2, . . . , a	tr
−	r
, b1, b2, . . . , b	r
−1
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is at least t−2+1/t
2 . This can be done by taking all bi ’s to be 0 and applying the lower

bound on the average of t − 1, a1, a2, . . . , a	tr
−	r
 that we previously computed:

1

1 + (	tr
 − 	r
) + (	r
 − 1)
· t − 1

2
· (1 + (	tr
 − 	r
))

= 1 + 	tr
 − 	r

	tr
 · t − 1

2

=
(

1 + 1 − 	r

	tr


)

· t − 1

2

≥
(

1 + 1 − (r + 1)

	tr

)

· t − 1

2

=
(

1 − r

	tr

)

· t − 1

2

≥
(
1 − r

tr

)
· t − 1

2

= (t − 1)2

2t

= t − 2 + 1/t

2
.

The claim is thus proven. ��
We are now ready to establish Theorem 4.5.

Proof of Theorem 4.5 For notational convenience, let r := n/α. We have |N∗| ≥ tr ,
where the inequality holds because N∗ is t-cohesive. EJR-1 implies that some
agent i1 ∈ N∗ gets utility greater than t − 1 from the allocation A. If |N∗\{i1}| ≥ tr ,
then since there still exists a subset of the resource of size at least t commonly approved
by the agents in N∗\{i1}, EJR-1 implies that another agent i2 �= i1 gets utility greater
than t − 1 from A. Applying this argument repeatedly, as long as there are at least t · r
agents left, EJR-1 implies that one of them gets utility greater than t − 1. Let Nt−1
consist of the agents with guaranteed utility greater than t −1 from this argument. Let
N̂ := N∗\Nt−1 and n̂ := |N̂ |, and note that n̂ = 	tr
 − 1.

Now, let us consider the agents in N̂ . Since |N̂ | = n̂ ≥ n̂
r ·r and s (⋂i∈N̂ Ri

) ≥ t >
n̂
r , the agents in N̂ form an n̂

r -cohesive group. By EJR-1, some agent in N̂ gets utility
greater than n̂

r −1. Continuing inductively, the guaranteed utility drops arithmetically
with a common difference of 1/r . Note also that an agent’s actual utility is always
nonnegative.

To calculate the average satisfaction of the t-cohesive group N∗, we first focus
on the agents in N̂ along with agent i1 discussed earlier in the proof. The average
satisfaction of these agents is

1

1 + n̂
·
⎛

⎝ui1(A) +
∑

i∈N̂
ui (A)

⎞

⎠ >
1

1 + n̂
·
⎛

⎝t − 1 +
∑

i∈N̂
ui (A)

⎞

⎠
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≥ 1

1 + n̂
·
⎛

⎝t − 1 +
n̂∑

j=	r


(
j

r
− 1

)

+
	r
−1∑

j=1

0

⎞

⎠

≥ t − 2 + 1/t

2
.

The last inequality is due to Claim 1: We have a nonincreasing and nonnegative
sequence with t −1 as the first element, followed by a decreasing arithmetic sequence
with 	tr
 − 	r
 terms whose common difference is −1/r and whose first term,
	tr
−1

r − 1, is at most 1/r away from t − 1, and then followed by 	r
 − 1 zeros.
The average satisfaction of Nt−1\{i1}, if this set is not empty, is greater than t −1. As
the average satisfaction of N∗ is a convex combination of the corresponding quantities
for Nt−1\{i1} and N̂ ∪ {i1}, it is greater than t−2+1/t

2 , as desired. ��
We now derive a matching upper bound.

Theorem 4.6 For any real numbers t ≥ 1 and ε > 0, there exists an instance, a
t-cohesive group N∗, and an EJR-1 allocation A such that the average satisfaction of
N∗ with respect to A is at most t−2+1/t

2 + ε.

Proof Consider a cake instance with a sufficiently large number of agents n (to be
specified later). Let α = t . Thus, we have |N | = t · n/t ≥ t · n/α. The cake is given
by the interval [0, 2t], and the agents’ preferences are as follows.

• Each agent i ∈ {1, 2, . . . , 	n/α
 − 1} approves the interval [0, t].
• Eachagent i ∈ {	n/α
, 	n/α
 + 1, . . . , n} approves the interval

[
0, t+ i−n/α

n/α
+δ

]
,

where δ ∈ (0, 1) is sufficiently small (to be specified later).

Since all n agents approve the interval [0, t], they form a t-cohesive group N .

We claim that allocation A = [t, 2t], which has size t = α, satisfies EJR-1.
Consider a t ′-cohesive group for some value of t ′ > 0. If t ′ ∈ (0, 1), the requirement of
EJR-1 is trivially fulfilled. Since n = t ·n/α,wemay therefore assume that t ′ ∈ [1, t].
Consider agent

⌈
t ′ · n/α

⌉ ∈ N , who approves the interval
[
0, t + 	t ′·n/α
−n/α

n/α
+ δ

]
;

this agent gets utility at least 	t ′·n/α
−n/α

n/α
+ δ ≥ t ′·n/α−n/α

n/α
+ δ > t ′ − 1 from the

allocation A. Since every t ′-cohesive group contains at least
⌈
t ′ · n/α

⌉
agents, it must

contain an agent who gets utility greater than t ′−1 from A. This means that A satisfies
EJR-1, as claimed.

The average satisfaction of the t-cohesive group N with respect to the EJR-1 allo-
cation A is

1

|N | ·
∑

i∈N
ui (A) = 1

n
·

n∑

i=	n/α


(
i − n/α

n/α
+ δ

)

= α

n2
·

n∑

i=	n/α

(i − n/α) + 1

n
·

n∑

i=	n/α

δ

= α

n2
· (	n/α
 − n/α) + (n − n/α)

2
· (n − 	n/α
 + 1)
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+ δ

n
· (n − 	n/α
 + 1)

≤ α

n2
· (n − n/α + 1)2

2
+ δ

n
· (n − n/α + 1)

= α − 2 + 1/α

2
+ δ · (α − 1)

α
+ α

2n2
+ α − 1 + δ

n

= t − 2 + 1/t

2
+ δ · (t − 1)

t
+ t

2n2
+ t − 1 + δ

n
,

where the inequality holds because 	n/α
 − n/α ≤ 1 and −	n/α
 ≤ −n/α. Finally,
we choose a sufficiently largen and a sufficiently small δ so that δ·(t−1)

t + t
2n2

+ t−1+δ
n ≤

ε; this ensures that the average satisfaction of N is at most t−2+1/t
2 +ε, as desired. ��

4.2 Proportionality degree of specific rules

In this subsection, we investigate the proportionality degree of the rules that we studied
in Sect. 3.

We begin with GreedyEJR-M. Since GreedyEJR-M satisfies EJR-M, Theorem 4.3
immediately yields a lower bound. We derive a matching upper bound, which implies

that the proportionality degree of GreedyEJR-M is �t� ·
(
1 − �t�+1

2t

)
.

Theorem 4.7 For any real numbers t ≥ 1 and ε > 0, there exists an instance, a t-
cohesive group N∗, and an allocation A output byGreedyEJR-M such that the average

satisfaction of N∗ with respect to A is at most �t� ·
(
1 − �t�+1

2t

)
+ ε.

We first provide an intuition behind the proof of Theorem 4.7. We construct an
indivisible-goods instance, make α an integer, and choose n to be a multiple of α.

Our goal is to construct a target t-cohesive group of agents N∗ with as small utilities
as possible. Since GreedyEJR-M outputs an EJR-M allocation, the largest number of
agents in N∗ that receive utility 0—denote the set of these agents by N0—is n/α − 1;
otherwise, these agents would form a 1-cohesive group and cannot all receive utility 0.
Similarly, among the agents in N∗\N0, the largest number of agents that receive
utility 1—denote the set of these agents by N1—is n/α, as we do not want N0 ∪ N1
to form a 2-cohesive group. Continuing inductively, we want to partition N∗ into
N0 ∪ N1 ∪ · · · ∪ N�t�, with the agents in Nk receiving utility exactly k for each k.
We add dummy agents and goods in order to make sure that, instead of all agents in
N∗ being satisfied at once by the GreedyEJR-M execution, the agents in N�t� are first
satisfied along with some dummy agents via some dummy goods, then those in N�t�−1
are satisfied along with other dummy agents via other dummy goods, and so on. The
dummy agents and goods need to be carefully constructed tomake this argument work.

Proof of Theorem 4.7 Letα = �t�·(�t�+1)
2 +1 = �t�2+�t�+2

2 , and note thatα is an integer.
We will construct an indivisible-goods instance with a sufficiently large number of
agents n (to be specified later), where n is a multiple of α that is at least 2α. Observe
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that
⌈
t · n

α

⌉
=
⌈
�t� · n

α
+ (t − �t�) · n

α

⌉
= �t� · n

α
+
⌈
(t − �t�) · n

α

⌉
.

Since t − �t� < 1, we can choose n large enough so that
⌈
(t − �t�) · n

α

⌉ ≤ n
α

− 1.
When this holds, we have

t · n
α

≤
⌈
t · n

α

⌉
≤ �t� · n

α
+ n

α
− 1 = (�t� + 1) · n

α
− 1. (5)

This inequality will help ensure that we can construct a t-cohesive group that is not
(�t�+1)-cohesive. Note that in an indivisible-goods instance, a t-cohesive groupmust
commonly approve at least 	t
 indivisible goods.

We now describe our instance. Let G = {g1, g2, . . . , g	t
} ∪
(⋃�t�

k=1 D
G
k

)
be the

set of indivisible goods, where for each k ∈ {1, 2, . . . , �t�}, DG
k contains exactly k

indivisible goods. In particular, the sets

{g1, g2, . . . , g	t
}, DG
1 , DG

2 , . . . , DG�t�

are all disjoint. Our specifications for the agents are slightly different depending on
whether t ≥ 2 or t ∈ [1, 2); we distinguish between the two cases below.

Case 1: t ≥ 2 Recalling that n/α is an integer, we partition the set of all agents N
into the following pairwise disjoint sets:

N0 =
{
1, 2, . . . ,

n

α
− 1

}
,

N1 =
{ n

α
,
n

α
+ 1, . . . , 2 · n

α
− 1

}
,

...

Nk =
{
k · n

α
, k · n

α
+ 1, . . . , (k + 1) · n

α
− 1

}
,

...

N�t�−1 =
{
(�t� − 1) · n

α
, (�t� − 1) · n

α
+ 1, . . . , �t� · n

α
− 1

}
,

N�t� =
{
�t� · n

α
, �t� · n

α
+ 1, . . . ,

⌈
t · n

α

⌉}
,

D1, D2, . . . , D�t�−1, D�t�,

where N∗ := ⋃�t�
k=0 Nk = {

1, 2, . . . ,
⌈
t · n

α

⌉}
is our target t-cohesive group and

⋃�t�
k=1 Dk consists of “dummy agents”. More specifically:

• D1 contains a single agent;
• For each k ∈ {2, . . . , �t� − 1}, Dk contains (k − 1) · n

α
agents;
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• D�t� contains �t� · n
α

− (⌈
t · n

α

⌉− �t� · n
α

+ 1
) = 2�t� · n

α
− ⌈

t · n
α

⌉ − 1 agents.
Observe that

∣
∣N�t� ∪ D�t�

∣
∣ = �t� · n

α
.

Note that D1 and D�t� are different sets because t ≥ 2.We verify that the total number
of agents is indeed n:

|N | =
∣
∣
∣
∣
∣
∣

⎛

⎝
�t�⋃

k=0

Nk

⎞

⎠ ∪
⎛

⎝
�t�⋃

k=1

Dk

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

⎛

⎝
�t�−1⋃

k=0

Nk

⎞

⎠ ∪ D1 ∪
⎛

⎝
�t�−1⋃

k=2

Dk

⎞

⎠ ∪ (
N�t� ∪ D�t�

)
∣
∣
∣
∣
∣
∣

=
(
�t� · n

α
− 1

)
+ 1 +

�t�−1∑

k=2

(k − 1) · n
α

+ �t� · n
α

= 2�t� · n
α

+ n

α
· (2 − 1) + ((�t� − 1) − 1)

2
· ((�t� − 1) − 2 + 1)

= n

α
·
(

2�t� + (�t� − 1) · (�t� − 2)

2

)

= n

α
· �t�2 + �t� + 2

2
= n.

The agents’ preferences are as follows.

• The agents in N0 approve the goods in {g1, g2, . . . , g	t
}.
• For each k ∈ {1, 2, . . . , �t�}, the agents in Nk approve the goods in

{g1, g2, . . . , g	t
} ∪ DG
k , and the agents in Dk approve the goods in DG

k .

This completes the description of our instance. Since |N∗| = ⌈
t · n

α

⌉
, inequality (5)

implies that N∗ is not (�t� + 1)-cohesive. On the other hand, since the agents in N∗
commonly approve the goods g1, g2, . . . , g	t
, N∗ is t-cohesive. Also, notice that
t∗ = �t� is the largest integer such that a t∗-cohesive group exists in our instance.

We now consider the execution of GreedyEJR-M on the above instance. Since our
instance consists exclusively of indivisible goods, only integers t∗ are relevant for
the EJR-M condition in each round of GreedyEJR-M. We claim that GreedyEJR-M
can return the allocation A = ⋃�t�

k=1 D
G
k , which has size �t�·(�t�+1)

2 ≤ α. Given the
instance, at the beginning, t∗ = �t� is the largest number such that theEJR-Mcondition

is satisfied: it is satisfied with
(
N�t� ∪ D�t�, DG�t�

)
, because

∣
∣N�t� ∪ D�t�

∣
∣ = �t� · n

α

and the agents in N�t� ∪ D�t� commonly approve all goods in DG�t�, which has size

exactly �t�.17 GreedyEJR-M removes the agents in N�t� ∪ D�t� and adds the goods
in DG�t� to the allocation A.Now, there is nomore �t�-cohesive group, and t∗ = �t�−1
becomes the largest number such that the EJR-M condition is satisfied: it is satisfied

17 At this stage, the EJR-M condition with t∗ = �t� also holds with (N∗, {g1, g2, . . . , g�t�}).

123



Approval-based voting with mixed goods

with
(
N�t�−1 ∪ D�t�−1, DG�t�−1

)
. More generally, for each integer k from �t� − 1

down to 2, the EJR-M condition is satisfied for t∗ = k with
(
Nk ∪ Dk, DG

k

)
because

|Nk ∪ Dk | = n

α
+ (k − 1) · n

α
= k · n

α

and the agents in Nk ∪ Dk commonly approve the goods in DG
k , which has size

exactly k; moreover,

|N0 ∪ N1 ∪ · · · ∪ Nk | = (k + 1) · n
α

− 1 < (k + 1) · n
α

.

Hence, at each stage, GreedyEJR-M can remove the agents in Nk ∪ Dk and add the
goods in DG

k to the allocation A. Finally, when only the agents in N0∪N1∪D1 remain,
there is no 2-cohesive group; however, the EJR-M condition is satisfied for t∗ = 1
with

(
N1 ∪ D1, DG

1

)
because |N1 ∪ D1| = n

α
+ 1 ≥ n

α
and the agents in N1 ∪ D1

commonly approve the single good in DG
1 . Once N1 ∪ D1 is removed by GreedyEJR-

M and DG
1 is added to A, the remaining agents in N0 do not form a 1-cohesive group,

so GreedyEJR-M terminates. Note that for every k ∈ {0, 1, 2, . . . , �t�}, each agent
in Nk gets utility exactly k from the allocation A.

The average satisfaction of N∗ with respect to the returned allocation A is

∑
i∈N∗ ui (A)

|N∗| = 1

|N∗| ·
�t�∑

k=0

|Nk | · k

=
�t�−1∑

k=0

|Nk | · k
|N∗| +

∣
∣N�t�

∣
∣ · �t�

|N∗|

=
�t�−1∑

d=1

�t�−1∑

k=d

|Nk |
|N∗| +

∣
∣N�t�

∣
∣ · �t�

|N∗|

=
�t�−1∑

d=1

∣
∣
∣
⋃�t�−1

k=d Nk

∣
∣
∣

|N∗| +
∣
∣N�t�

∣
∣ · �t�

|N∗|

=
�t�−1∑

d=1

(�t� · n
α

− 1
)− (

d · n
α

− 1
)

⌈
t · n

α

⌉ +
(⌈
t · n

α

⌉− �t� · n
α

+ 1
) · �t�

⌈
t · n

α

⌉

=
�t�−1∑

d=1

(�t� − d) · n
α⌈

t · n
α

⌉ +
(⌈�t� · n

α
+ (t − �t�) · n

α

⌉− �t� · n
α

+ 1
) · �t�

⌈
t · n

α

⌉

≤
�t�−1∑

d=1

(�t� − d) · n
α

t · n
α

+
(�t� · n

α
+ ⌈

(t − �t�) · n
α

⌉− �t� · n
α

+ 1
) · �t�

t · n
α

≤ 1

t
·
�t�−1∑

d=1

(�t� − d) +
(
(t − �t�) · n

α
+ 2

) · �t�
t · n

α
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= 1

t
· �t� · (�t� − 1)

2
+ �t� · (t − �t�)

t
+ 2α�t�

nt

= �t� ·
(�t� − 1

2t
+ t − �t�

t

)

+ �t� · (�t�2 + �t� + 2)

nt

= �t� ·
(

1 − �t� + 1

2t

)

+ �t� · (�t�2 + �t� + 2)

nt
.

Choosing a sufficiently large n so that �t�·(�t�2+�t�+2)
nt ≤ ε completes the proof for the

case t ≥ 2.

Case 2: 1 ≤ t < 2 In this case, we have �t� = 1 and thus α = �t�2+�t�+2
2 = 2.

Recalling again that n/α is an integer, we partition the n agents into three pairwise
disjoint sets as follows:

N0 =
{
1, . . . ,

n

α
− 1

}
,

N�t� =
{ n

α
, . . . ,

⌈
t · n

α

⌉}
,

D�t�,

where N∗ := N0 ∪ N�t� = {
1, 2, . . . ,

⌈
t · n

α

⌉}
is our target t-cohesive group and D�t�

contains the remaining n − ⌈
t · n

α

⌉
agents, who are “dummy agents”. From (5), there

is at least one agent in D�t�:

n −
⌈
t · n

α

⌉
= 2 · n

α
−
⌈
t · n

α

⌉
= (�t� + 1) · n

α
−
⌈
t · n

α

⌉
≥ 1.

The set of indivisible goods is {g1, g2, . . . , g	t
} ∪ DG�t�, where DG�t� contains a single
good. The agents’ preferences are as follows.

• The agents in N∗ approve the goods in {g1, g2, . . . , g	t
}.
• The agents in N�t� ∪ D�t� approve the good in DG�t�.

This completes the description of our instance. Since the total number of agents is
n = 2 · n/α but no good is approved by all n agents, there is no 2-cohesive group. On
the other hand, since the agents in N�t� ∪ D�t� commonly approve the good in DG�t�
and

∣
∣N�t� ∪ D�t�

∣
∣ = n −

( n

α
− 1

)
= n

2
+ 1 >

n

2
= n

α
,

N�t� ∪ D�t� is 1-cohesive. Thus, GreedyEJR-M can start by identifying the 1-cohesive
group N�t� ∪ D�t� and adding DG�t� to the allocation A. Once the agents in N�t� ∪ D�t�
are removed by GreedyEJR-M, the remaining agents in N0 do not form a 1-cohesive
group, so no more good is added to A.

Note that N∗ is a 1-cohesive group, since it has size
⌈
t · n

α

⌉ ≥ n
α
and the agents in

it commonly approve g1. The average satisfaction of N∗ with respect to the returned
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allocation A is

∑
i∈N∗ ui (A)

|N∗| = |N0| · 0
|N∗| +

∣
∣N�t�

∣
∣ · �t�

|N∗|
=

(⌈
t · n

α

⌉− �t� · n
α

+ 1
) · �t�

⌈
t · n

α

⌉

=
(⌈�t� · n

α
+ (t − �t�) · n

α

⌉− �t� · n
α

+ 1
) · �t�

⌈
t · n

α

⌉

≤
(�t� · n

α
+ ⌈

(t − �t�) · n
α

⌉− �t� · n
α

+ 1
) · �t�

t · n
α

≤
(
(t − �t�) · n

α
+ 2

) · �t�
t · n

α

= �t� · (t − �t�)
t

+ 2α�t�
nt

= �t� ·
(

1 − �t� + 1

2t

)

+ 2α�t�
nt

,

where the last equation follows from �t� = 1. Choosing a sufficiently large n so that
2α�t�
nt ≤ ε completes the proof for the case t ∈ [1, 2), and therefore the proof of

Theorem 4.7. ��
In the indivisible-goods setting, Lackner and Skowron (2023, Prop. A.10) showed

that for positive integers t, the proportionality degree of MES is between t−1
2 and

t+1
2 . Since Generalized MES satisfies EJR-1, Theorem 4.5 implies a lower bound of

t−2+1/t
2 on its proportionality degree. On the other hand, since any t ′-cohesive group

is also t-cohesive for t ≤ t ′, Lackner and Skowron’s result implies an upper bound of
	t
+1

2 for Generalized MES.
Finally, we prove that Generalized PAV has a significantly higher proportionality

degree than the other two rules that we study. In doing so, we extend a result of Aziz
et al. (2018) from the indivisible-goods setting.

Theorem 4.8 For any real number t ≥ 1, the average satisfaction of a t-cohesive
group with respect to a Generalized PAV allocation is greater than t − 1.

Proof The proof is almost identical to that of Theorem 3.18. Let R′ be a Generalized
PAV allocation, and assume for contradiction that a t-cohesive group N ′ has 1

|N ′| ·
∑

i∈N ′ ui (R′) ≤ t −1. Since the agents in N ′ commonly approve a resource of size at
least t, if the subset of this resource included in R′ has size larger than t−1,we would
have 1

|N ′| · ∑i∈N ′ ui (R′) > t − 1, a contradiction. Hence, there exists a resource of
size 1 approved by all agents in N ′ but not included in R′.The rest of the proof proceeds
in the same way as that of Theorem 3.18; in particular, the initial chain of inequalities
starting with H(R′′) − H(R′) still holds because

∑
i∈N ′ ui (R′) ≤ |N ′| · (t − 1). ��

We also demonstrate in Appendix B that the bound t − 1 is almost tight.
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5 Conclusion

In this work, we have initiated the study of approval-based voting with mixed divisible
and indivisible goods, which allows us to unify both the well-studied setting of mul-
tiwinner voting and the recently introduced setting of cake sharing. We generalized
three important rules frommultiwinner voting to our setting, determined their relations
to our proposed extensions of the EJR axiom, and investigated their proportionality
degree. In particular, we found that each of the three rules is superior in a certain way:
GreedyEJR-M satisfies EJR-M, Generalized MES satisfies strong EJR-1 and can be
computed in polynomial time, and Generalized PAV has a high proportionality degree.
Sincewe do not knowwhether GreedyEJR-M can be implemented in polynomial time,
an intriguing open question is whether there exists a polynomial-time algorithm for
computing an EJR-M allocation. Further directions for future work include exploring
other axioms such as proportional justified representation (PJR) (Sánchez-Fernández
et al. 2017) and the core. In fact, one can define PJR-M and PJR-1 analogously to
our EJR-M and EJR-1—since these PJR axioms are weaker than the respective EJR
axioms, our positive results on the EJR variants directly carry over to the PJR variants.
In addition, it could be interesting to generalize our results to a participatory budgeting
setting, where different parts of the resource may have different costs. This may entail,
for instance, extending the EJR notions of Peters et al. (2021) for discrete goods to
accommodate mixed goods.

Appendix A: Proof of Proposition 3.12

We prove that neither EJR-M nor strong EJR-1 implies each other. First, the allocation
in Example 3.9 satisfies strong EJR-1 but not EJR-M, which means that strong EJR-1
does not imply EJR-M.

Next, we show that GreedyEJR-M does not satisfy strong EJR-1; it immediately
follows that EJR-M does not imply strong EJR-1. Consider an instance with n = 5
agents, four indivisible goods g1, . . . , g4, a cake of length 1, and α = 3. The agents’
valuations over the resources are as specified in the following figure.

G C

g1 g2 g3 g4
0 0.2 0.5 1

R1, R2

R3

R4, R5

We start by stating several facts in relation to cohesive groups:
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• First, agents 1, 2, 3 form a 1.8-cohesive group, because |{1, 2, 3}| = 3 = 1.8 · 5
3

and the agents commonly approve a resource of size at least 1.8, that is,

s(∩i∈{1,2,3}Ri ) = |{g2, g3}| + �([0.2, 0.5]) = 2.3 ≥ 1.8.

However, it is worth noting that the EJR-M condition on this group does not work
for any t > 1.3, as the agents in this group do not commonly approve a resource
of size exactly t for any t ∈ (1.3, 1.8].

• Similarly, agents 3, 4, 5 form a 1.5-cohesive group, because |{3, 4, 5}| = 3 ≥
1.5 · 5

3 and s(
⋂

i∈{3,4,5} Ri ) = |{g4}| + �([0.5, 1]) = 1.5. In addition, the EJR-M
condition with t = 1.5 works for this group.

• Finally, agents 1, 2 form a 1.2-cohesive group, because |{1, 2}| = 2 = 1.2 · 5
3 and

the agents commonly approve a resource of size at least 1.2.Moreover, the EJR-M
condition with t = 1.2 works for this group.

Taking as input the above instance, GreedyEJR-M first chooses t∗ = 1.5, along
with N∗ = {3, 4, 5} and R∗ = {g4} ∪ [0.5, 1]. We are left with N ′ = {1, 2}, and the
next iteration of GreedyEJR-M chooses t∗ = 1.2, N∗ = {1, 2}, and, for example,
R∗ = {g1} ∪ [0, 0.2]. Hence, GreedyEJR-M terminates with the allocation A =
{g1, g4} ∪ [0, 0.2] ∪ [0.5, 1].

Recall that agents 1, 2, 3 forma1.8-cohesive group, andnote thatu1(A) = u2(A) =
1.2 < 1.8 and u3(A) = 1.5 < 1.8. In particular, all agents in this 1.8-cohesive group
receive utility strictly less than 1.8.Moreover, there is still a cake commonly approved
by this group that is not included in A (i.e., [0.2, 0.5]). Hence, GreedyEJR-M does
not satisfy strong EJR-1. As a result, EJR-M does not imply strong EJR-1.

Appendix B: (Almost) tightness of Theorem 4.8

In their work, Aziz et al. (2018) showed that, for indivisible-goods instances, the bound
t − 1 on the proportionality degree of PAV is tight for every positive integer t . In fact,
they proved a stronger statement that for any integer t ≥ 1 and real number ε > 0,
there exists an instance such that no allocation provides an average satisfaction of at
least t − 1 + ε to every t-cohesive group. We extend their result to our setting by
showing that for real numbers t ≥ 1, the bound t − 1 is essentially tight for large t;
our formal statement can be found below.

Theorem B.1 For any real number t ≥ 1 and ε > 0, let z = t − �t� denote the
fractional part of t . There exists an indivisible-goods instance in which no allocation
provides an average satisfaction of at least t −1+ z(1−z)

t + ε to all t-cohesive groups.

Proof We first assume that t (and therefore z) is a rational number. Let γ be a rational
number in (0, ε) such thatγ < 1−z.Let z = p/q andγ = p′/q for some p′, p, q ∈ Z,

and let k = �t� (so t = k + z). Our instance is given as follows.

• The set of agents N can be partitioned into the following pairwise disjoint sets:

– N0 contains q · ((k + 1)z + kγ ) agents;
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– Each of N1, . . . , Nk+1 contains q · (1 − z − γ ) agents.

Therefore, the total number of agents is

n = q · ((k + 1)z + kγ + (k + 1)(1 − z − γ )) = q · (k + 1 − γ ).

• The resource consists of (k + 1)2 indivisible goods, which can be partitioned into
k + 1 disjoint sets G1, . . . ,Gk+1, each with k + 1 goods.

• The agents’ preferences are such that for each i ∈ {1, . . . , k + 1}, the agents in
Mi := N\Ni commonly approve the goods in Gi . Note that each set Mi consists
of q · ((k + 1)z + kγ + k(1 − z − γ )) = q · (k + z) = q · t agents.

• We set α = k+1−γ. Since each set Mi consists of q · t = t ·n/α agents and these
agents commonly approve |Gi | = k + 1 ≥ t goods, Mi is a t-cohesive group.

Because α = k+1−γ < k+1 and our instance consists only of indivisible goods,
any feasible allocation A can include at most k goods. Since we have k + 1 sets of
goods G1, . . . ,Gk+1, at least one of these sets is entirely excluded from A. Consider
an arbitrary allocation A, and assume without loss of generality that G1 is such a set.

We now analyze the average satisfaction of the t-cohesive group M1 with respect
to A. Note that for each i ∈ {2, . . . , k + 1}, any good selected from Gi contributes a
total utility of

|M1 ∩ Mi | = |N\(N1 ∪ Ni )|
= q · (k + 1 − γ − 2(1 − z − γ ))

= q · (t − (1 − z) + γ )

to agents in M1. Therefore, all goods in A combined give a total utility of at most

q · k · (t − (1 − z) + γ ) = q[(t − z)(t − (1 − z)) + kγ ]

to all agents in M1. It follows that the average satisfaction of M1 with respect to A is
at most

q[(t − z)(t − (1 − z)) + kγ ]
qt

= (t − z)(t − (1 − z)) + kγ

t

= (t2 − zt) − (t − z)(1 − z) + kγ

t

= t2 − zt + zt − t + z(1 − z) + kγ

t

≤ t − 1 + z(1 − z)

t
+ γ

< t − 1 + z(1 − z)

t
+ ε.

This completes the proof for the case where t is a rational number.
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Finally, assume that t is irrational. Let t ′ > t and ε′ < ε be rational numbers such
that �t ′� = �t� and t ′+ z′(1−z′)

t ′ +ε′ < t+ z(1−z)
t +ε,where z′ = t ′−�t ′�; the existence

of such a pair (t ′, ε′) is guaranteed by the fact that, as we increase t slightly, the value of
t + z(1−z)

t changes continuously. From our previous argument, there exists an instance

in which no allocation provides an average satisfaction of at least t ′ −1+ z′(1−z′)
t ′ + ε′

to all t ′-cohesive groups. Suppose for contradiction that there is an allocation that
provides an average satisfaction of at least t − 1+ z(1−z)

t + ε to all t-cohesive groups
in this instance. Because any t ′-cohesive group is also t-cohesive, this allocationwould
also provide an average satisfaction of at least t−1+ z(1−z)

t +ε > t ′−1+ z′(1−z′)
t ′ +ε′

to all t ′-cohesive groups, a contradiction. ��
We also show that the bound proved in Theorem B.1 is—perhaps surprisingly—

tight.

Theorem B.2 For any real number t ≥ 1, let z = t−�t� denote the fractional part of t .
Given any instance, there exists an allocation that provides an average satisfaction of
at least t − 1 + z(1−z)

t to all t-cohesive groups.

Proof Let I = 〈N , R, (Ri )i∈N , α〉 be an instance, and let k = �t� (so t = k + z). Let
T = {T1, T2, . . . , Tp} be the set of all t-cohesive groups in instance I. By definition,
for each i ∈ {1, 2, . . . , p}, it holds that |Ti | ≥ t · n/α and s(

⋂
j∈Ti R j ) ≥ t .

We create another instance Î = 〈N , R̂, (R̂i )i∈N , α〉 with the same set of agents N
and a modified resource R̂ = ⋃p

i=1 R̂
Ti such that

• for any pair of distinct i, j ∈ {1, . . . , p}, R̂Ti ∩ R̂Tj = ∅;
• for each i ∈ {1, . . . , p}, R̂Ti consists of k indivisible goods that are commonly
approved (only) by the agents in Ti .

Put differently, the resource R̂Ti in instance Î corresponds to the resource
⋂

j∈Ti R j in
instance I, but has a weakly smaller size. The idea here is that we are “worsening” the
instance in termsof the average satisfaction for all t-cohesive groups.More specifically,
given an allocation R̂′ for instance Î, we can select an allocation R′ for instance I
as follows: for each R̂Ti , if � ≤ k (indivisible) goods from R̂Ti are included in R̂′,
then we include a resource of size � from

⋂
j∈Ti R j in R′. (Even if some resource gets

included in R′ multiple times during this process, it is effectively only included once.)
Clearly, s(R′) ≤ s(R̂′) ≤ α. Moreover, it can be seen that for each i ∈ {1, . . . , p},

1

|Ti | ·
∑

j∈Ti
u j (R

′) ≥ 1

|Ti | ·
∑

j∈Ti
u j (R̂

′).

It is worth noting that in instance Î, each agent group Ti may no longer be a t-cohesive
group, because their set of commonly approved goods is now R̂Ti , whose size is only
k = �t�. Nevertheless, our goal is to find an allocation R̂′ for instance Î such that for
every i ∈ {1, . . . , p}, the average satisfaction of Ti with respect to R̂′ in instance Î is
at least t − 1 + z(1−z)

t , even if Ti is not a t-cohesive group in instance Î. As a result,
as we argued above, there exists a corresponding allocation R′ for instance I that has
the same or better average satisfaction for all t-cohesive groups in instance I.
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We apply the classic PAV rule to find the allocation R̂′ for instance Î (which
is an indivisible-goods instance). That is, we choose R̂′ that maximizes H(R̂′) =∑

i∈N Hui (R̂′), where Hx := 1 + 1
2 + · · · + 1

x is the x-th harmonic number. The
following analysis is similar to that of Theorem 3.18, but more refined. By adding an
indivisible good approved by no agent to the resource R̂ as well as R̂′ if necessary, we
may assume without loss of generality that s(R̂) = �α�.

To show that R̂′ satisfies the target average satisfaction value for each Ti ∈ T , we
assume for contradiction that there exists T∗ ∈ T such that

1

|T∗| ·
∑

i∈T∗
ui (R̂

′) < t − 1 + z(1 − z)

t

= t − z − 1 + z(t − z + 1)

t
= k − 1 + (k + 1)z

t
. (6)

Since (k+1)z
t < k+z

t = 1, we have

k − 1 ≤ k − 1 + (k + 1)z

t
< k, (7)

which means that there exists a good g∗ ∈ R̂T∗ that is not selected in R̂′. Let R̂′′ :=
R̂′ ∪ {g∗}; so |R̂′′| = �α� + 1. We have

H(R̂′′) − H(R̂′) ≥
∑

i∈T∗

(
Hui (R̂′)+1 − Hui (R̂′)

)
=
∑

i∈T∗

1

ui (R̂′) + 1
.

Inwhat follows,we provide a lower bound on
∑

i∈T∗
1

ui (R̂′)+1
.First, for each i ∈ T∗,

let yi = ui (R̂′). We thus have
∑

i∈T∗
1

ui (R̂′)+1
= ∑

i∈T∗
1

yi+1 . If there exists a pair

i, j ∈ T∗ with yi ≥ y j + 2, let y′
i = yi − 1 and y′

j = y j + 1. It is easy to verify that

1

yi + 1
+ 1

y j + 1
>

1

y′
i + 1

+ 1

y′
j + 1

.

By replacing yi (resp., y j ) with y′
i (resp., y

′
j ), we decrease

∑
b∈T∗

1
yb+1 . Repeat this

process until, for every pair i, j ∈ T∗, it holds that |yi − y j | ≤ 1. We now have

∑

i∈T∗

1

ui (R̂′) + 1
≥
∑

i∈T∗

1

yi + 1
.

Note that all yi ’s are integers and the following equation still holds:

∑

i∈T∗
ui (R̂

′) =
∑

i∈T∗
yi . (8)
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Together with (6) and (7), we have that yi ≤ k − 1 for some i ∈ T∗, and therefore
yi ≤ k for all i ∈ T∗.

If
∑

i∈T∗ yi ≤ |T∗| · (k − 1), then

∑

i∈T∗

1

yi + 1
≥ |T∗|2

∑
i∈T∗(yi + 1)

= |T∗|2
∑

i∈T∗ yi + |T∗| ≥ |T∗|2
|T∗| · (k − 1) + |T∗| ≥ |T∗|

t
≥ n

α
,

where the first transition follows from the inequality of arithmetic and harmonicmeans
and the second-to-last transition from the fact that t ≥ k.

Else,
∑

i∈T∗ yi > |T∗| ·(k−1). This means that there exists i ∈ T∗ such that yi = k.
Let T̃∗ := {i ∈ T∗ | yi = k}; we have |T̃∗| > 0. As argued earlier, for all i ∈ T∗\T̃∗,
it holds that yi = k − 1. Recall from (6) and (8) that

|T̃∗| · k + (|T∗| − |T̃∗|) · (k − 1) =
∑

i∈T̃∗

k +
∑

i∈T∗\T̃∗

(k − 1)

=
∑

i∈T∗
yi

=
∑

i∈T∗
ui (R̂

′) < |T∗| ·
(

k − 1 + (k + 1)z

t

)

,

which implies that |T̃∗| < |T∗| · (k+1)z
t . As a result, we have

∑

i∈T∗

1

yi + 1
=
∑

i∈T̃∗

1

k + 1
+

∑

i∈T∗\T̃∗

1

k
= |T̃∗|

k + 1
+ |T∗| − |T̃∗|

k
= (k + 1) · |T∗| − |T̃∗|

k(k + 1)

>
(k + 1) · |T∗| − |T∗| · (k+1)z

t

k(k + 1)

= |T∗| · (1 − z
t

)

k
= |T∗|

t
≥ n

α
.

Therefore, in either case, adding g∗ increases the PAV-score of R̂′ by at least n/α.

Finally, the rest of the proof proceeds in the same way as that of Theorem 3.18
when arguing about the marginal contribution of an indivisible good in R′′ (which
corresponds to R̂′′ in our proof here). For each good g ∈ R̂, denote by Ng ⊆ N the
set of agents who approve it. For each g ∈ R̂′′, we have

H(R̂′′) − H(R̂′′\{g}) =
∑

i∈Ng

(
Hui (R̂′′) − Hui (R̂′′)−1

)
=

∑

i∈Ng

1

ui (R̂′′)
.
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Letting N+ consist of the agents i ∈ N with ui (R̂′′) > 0, we get

∑

g∈R̂′′
(H(R̂′′) − H(R̂′′\{g}))

=
∑

g∈R̂′′

∑

i∈Ng

1

ui (R̂′′)
=

∑

i∈N+

∑

g∈R̂′′∩R̂i

1

ui (R̂′′)
= |N+| ≤ n.

If there is a good g ∈ R̂′′ such that H(R̂′′)− H(R̂′′\{g}) < n/α (clearly, g �= g∗), we
can replace g with g∗ in R̂′ and obtain a higher PAV-score, contradicting the definition
of R̂′. Hence, we may assume that H(R̂′′) − H(R̂′′\{g}) ≥ n/α for every g ∈ R̂′′. It
follows that

n ≥
∑

g∈R̂′′
(H(R̂′′) − H(R̂′′\{g})) ≥ |R̂′′| · n

α
.

Therefore, we have that |R̂′′| ≤ α, contradicting the fact that |R̂′′| = �α� + 1. This
completes the proof. ��

The proof of Theorem B.2, however, does not show that there exists an allocation
with the claimed average satisfaction guarantee for all t simultaneously, as the cre-
ation of the new instance Î depends on t . While it is conceivable that Generalized
PAV achieves this simultaneous guarantee, proving (or disproving) this seems to be a
challenging task.
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