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Abstract
The classic cake cutting problem concerns the fair allocation of a heterogeneous 
resource among interested agents. In this paper, we study a public goods variant of 
the problem, where instead of competing with one another for the cake, the agents 
all share the same subset of the cake which must be chosen subject to a length con-
straint. We focus on the design of truthful and fair mechanisms in the presence of 
strategic agents who have piecewise uniform (i.e., approval) utilities over the cake. 
On the one hand, we show that the leximin solution is excludably truthful (meaning 
it is truthful when it can block each agent from accessing parts of the cake that the 
agent does not claim to desire) and moreover maximizes the guaranteed normal-
ized egalitarian welfare among all excludably truthful and position oblivious mecha-
nisms. On the other hand, we demonstrate that the maximum Nash welfare solution 
is excludably truthful for two agents (as it coincides with leximin in that case) but 
not in general. We also provide an impossibility result on truthfulness when block-
ing is not allowed, and adapt notions of representation to our setting.

1 Introduction

A fundamental problem in social choice theory is the fair allocation of scarce 
resources among multiple agents. When the resource is heterogeneous and divisible, 
this problem is commonly known as cake cutting, with the cake serving as a meta-
phor for the heterogeneous resource. Cake cutting has been extensively studied for 
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over half a century in mathematics and economics, and more recently in computer 
science (Brams and Taylor 1996; Robertson and Webb 1998; Procaccia 2016).

In this paper, we consider a variant of the classic cake cutting problem where 
instead of competing with one another for the cake, the agents all share the same 
subset of the cake, which must be chosen subject to a length constraint. We refer 
to this setting as cake sharing. The cake sharing problem captures many real-world 
scenarios, for example:

• A group of workers need to decide the time periods for which they should 
reserve a sports facility or a conference room for collective use given their lim-
ited budget. One worker is an early riser but has commitments in the afternoon, 
so she is available between 7:40 am–12:55 pm and after 5:10 pm. Another 
worker has an early morning commitment and is therefore free from 10:35 am 
onwards.

• A number of agents seek to agree upon the files to store in a shared cache mem-
ory. These files could contain movie series, lecture series, or music, and the 
agents have varying preferences on parts that they like to watch or listen to. The 
parts that are stored in the cache can be accessed at high speed, so the agents can 
benefit from having as much of their preferred parts in the cache as possible.1

• An ice-cream company has received permission to sell its ice-cream on the city’s 
main tourist street, but they are only entitled to a certain length of the street. 
The employees of the company want to decide on the locations via a vote. One 
employee likes an area close to the subway entrance because a large number of 
people pass through it, while another employee prefers a location near the park 
since she believes people are more likely to buy ice-cream there.

Our goal is to design cake sharing mechanisms that are both truthful and fair. Truth-
fulness requires that it should be in every agent’s best interest to report her true 
underlying preferences to the mechanism. A truthful mechanism makes it easy for 
agents to participate in, as they do not have to act strategically and reason about 
beneficial manipulations; it also simplifies the job of the mechanism designer when 
reasoning about the possible behavior of the agents. Note that truthfulness by itself 
is easy to obtain, for example by ignoring the agents’ reports completely and allocat-
ing a prespecified subset of the cake. However, this is a patently unfair mechanism, 
as it leaves any agent who has no value for that subset empty-handed. Is there a 
mechanism that is truthful and at the same time satisfies a certain degree of fairness 
for all agents?

Two mechanisms that have been used in various resource allocation settings and 
often shown to exhibit attractive fairness properties are the maximum Nash welfare 
(MNW) solution and the leximin solution. The MNW solution chooses an allocation 
that maximizes the product of the agents’ utilities among all feasible allocations. 
The leximin solution considers all feasible allocations that maximize the minimum 

1 Alternatively, the constraint may be in terms of time instead of cache memory—imagine that the 
agents are choosing the parts of a 10-h TV series or soccer highlights to watch together at a 2-h party.
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among the agents’ utilities; among all such allocations, it considers those maximiz-
ing the second smallest utility, and so on. Due to their optimization nature, both solu-
tions fulfill an important economic efficiency criterion of Pareto optimality: there is 
no other feasible outcome that makes some agent better off and no agent worse off 
compared to the chosen outcome. Indeed, any such improved outcome would also be 
an improvement with respect to the corresponding optimization objective. Given the 
broad appeal of the two mechanisms, are they appropriate choices for our cake shar-
ing setting, especially from the truthfulness perspective?

1.1  Our results

As is standard in the cake cutting literature, we model the cake as an interval [0, 1]; 
for a given parameter � ∈ [0, 1] , a subset of length at most � of the cake can be 
collectively allocated to the agents. We assume that the agents have piecewise uni-
form utilities, meaning that each agent has a desired subset of the cake (correspond-
ing to a finite union of intervals) which she values uniformly. Except in Sect. 6, we 
also assume that once a mechanism chooses a subset of the cake, it can “block” 
each agent from accessing certain parts of the cake, usually those that the agent 
does not desire according to her report. We remark here that blocking can be eas-
ily implemented in most aforementioned applications of cake sharing, for example 
by disallowing agents from accessing the part of the cache memory that they do not 
demand or restricting their access to the sports facility during the times that they 
claim to be unavailable. When a mechanism uses its ability to block, we speak of 
excludable truthfulness in order to distinguish it from truthfulness for non-blocking 
mechanisms.

In Sect. 3, we focus on the leximin solution. Our main technical result establishes 
the excludable truthfulness of the solution for any number of agents with arbitrary 
piecewise uniform utilities. At a high level, our proof proceeds by showing that the 
leximin solution is immune to certain types of manipulations, and then arguing that 
this immunity is sufficient to protect the solution against all possible manipulations. 
Along the way, we introduce the notion of an �-change—a tiny change from one 
utility vector or allocation towards another—which may be useful in related settings. 
Additionally, we show that each agent receives the same utility in all leximin alloca-
tions (which means that tie-breaking is inconsequential) and that such an allocation 
can be computed in polynomial time.

Since truthfulness by itself can be trivially obtained as we explained earlier, 
we consider in Sect.  4 the fairness of mechanisms. In order to perform meaning-
ful interpersonal comparisons of utilities, we normalize the utility of each agent 
for the entire cake to 1, and define the guaranteed normalized egalitarian welfare 
(GNEW) of a mechanism to be the worst-case egalitarian welfare (based on the nor-
malized utilities) that the mechanism provides over all instances. We show that for 
any � and number of agents n, the leximin solution (based on the unnormalized utili-
ties) has GNEW exactly �∕(n − (n − 1)�) . We also prove that this GNEW is opti-
mal among all mechanisms that are excludably truthful and position oblivious (see 
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Definition  4.5). Our results in Sects.  3 and 4 establish the leximin solution as an 
attractive mechanism in cake sharing.

In Sect. 5, we turn our attention to the MNW solution. We show that the solu-
tion is equivalent to the leximin solution in the case of two agents, and is there-
fore excludably truthful in that case. In general, however, a result of Aziz et  al. 
(2020, Theorem 3) implies the failure of the MNW solution to satisfy excludable 
truthfulness in our setting. We strengthen their result by showing that MNW is not 
excludably truthful even when an agent is only allowed to report a subset of her true 
desired piece.2 Moreover, in contrast to Aziz et al.’s example, the symmetry struc-
ture in our example allows us to provide a relatively short proof of the violation of 
excludable truthfulness that can be easily verified by hand.

Next, we demonstrate in Sect. 6 that the ability to block is crucial for the truthful-
ness of mechanisms. In particular, we show that even for two agents, no truthful, 
Pareto optimal, and position oblivious mechanism can achieve a positive GNEW 
when blocking is not allowed.

Finally, in Sect. 7, we adapt known notions of representation, proportional justi-
fied representation (PJR) and extended justified representation (EJR), to our cake 
sharing setting. We show that unlike with truthfulness, MNW fares better than lexi-
min with respect to these notions: MNW satisfies both of the notions, whereas lexi-
min fails both of them. We further characterize MNW as the only “welfare-maxi-
mizer rule” that satisfies either of these notions.

1.2  Related work

While the model of cake sharing is new to the best of our knowledge, the selection 
of a collective subset from a given set subject to a size or budget constraint has been 
studied in several lines of work. In multiwinner voting, the goal is to choose a certain 
number of candidates to form a committee, where criteria can include excellence 
and diversity—see the surveys by Faliszewski et al. (2017) and Lackner and Skow-
ron (2023). In that setting, Peters (2018) proved that no rule can simultaneously sat-
isfy a form of fairness and a form of truthfulness when agents have approval pref-
erences (analogous to piecewise uniform utilities in our setting). A key difference 
between multiwinner voting and cake sharing is that the candidates in the former 
are discrete and cannot be divided into arbitrarily small pieces. The representation 
notions that we study in Sect. 7 are adapted from the multiwinner voting literature.

A long list of recent papers have addressed the problem of participatory budgeting, 
where the citizens decide how a public budget should be spent on possible projects in 
their community—see the survey by Aziz and Shah (2021). Some models assume that 
projects are discrete (each project can either be fully completed or not at all), while 
others assume that they are divisible (partial completion of a project yields some utility 
to the citizens). In either case, there is a prespecified set of projects and the preference 
of an agent within a project is uniform, so our cake sharing model, in which there is 

2 Peters (2018) noted that reporting a subset is a “particularly simple fashion” of manipulating.
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no predetermined division of the cake into homogeneous units, does not fall under the 
framework of participatory budgeting.

Aziz et al. (2020) studied a probabilistic voting setting called fair mixing, in which 
agents have dichotomous preferences over m alternatives and the goal is to output a 
probability distribution over the alternatives. Their model corresponds to a special case 
of our model where for each j = 1,… ,m , the interval [(j − 1)∕m, j∕m] represents alter-
native j, and � = 1∕m ; in this special case, agents are not allowed to have “breakpoints” 
that are not multiples of 1/m in their utility functions (see the precise definition of a 
breakpoint in Sect. 2). Like us, Aziz et al. showed that the leximin solution is excluda-
bly truthful. Our results on the leximin solution generalize and strengthen theirs in three 
ways. First, we allow agents to report arbitrary breakpoints—this enlarges the strategy 
space of the agents and introduces an aspect that cannot be captured by their model. 
Second, our model allows an arbitrary value of � instead of only � = 1∕m . Third, we 
establish a tight bound on the GNEW and show that the leximin solution achieves this 
bound. Therefore, we believe that overall, our results make a stronger case in favor of 
the leximin solution. We refer to the related literature section of Aziz et al.’s paper for 
further work on fair mixing and similar settings.

Friedman et al. (2019) investigated a model in which agents share a cache mem-
ory unit, focusing on truthfulness and fairness like we do. In their model, each agent 
has a private file that no other agent is interested in, and there is a large public file 
that may be of interest to multiple agents. The challenge of the mechanism is to elicit 
the true ratio between each agent’s utility for the public file and that for her private 
file. These authors demonstrated that the ability to block can also help mechanisms 
achieve better guarantees in their setting, in particular by preventing “free riding”.

Truthfulness in cake cutting has been considered in several papers (Maya and 
Nisan 2012; Chen et al. 2013; Kurokawa et al. 2013; Aziz and Ye 2014; Brânzei and 
Miltersen 2015; Bei et al. 2017; Menon and Larson 2017; Bei et al. 2020; Bu et al. 
2023). Like our paper, a number of these papers also address the case of piecewise 
uniform utilities. Two important fairness properties in cake cutting are envy-free-
ness and proportionality. Note that envy-freeness is always fulfilled in our setting 
(as long as the mechanism does not block any agent’s valued cake), since all agents 
share the same subset of the cake. On the other hand, proportionality has a similar 
flavor as our GNEW notion, where we want to guarantee a certain level of utility for 
every agent.

Finally, both the leximin and MNW solutions have been examined in a variety of 
settings and often shown to exhibit desirable properties (Bogomolnaia and Moulin 
2004; Kurokawa et al. 2018; Caragiannis et al. 2019; Segal-Halevi and Sziklai 2019; 
Aziz et  al. 2020; Halpern et  al. 2020; Plaut and Roughgarden 2020; Brandl et  al. 
2022; Suksompong 2023; Yuen and Suksompong 2023).

2  Preliminaries

Our setting includes a set of agents denoted by N = {1, 2,… , n} and a heteroge-
neous divisible good (or cake) represented by the normalized interval [0, 1]. A 
piece of cake is a union of finitely many disjoint (closed) intervals. Denote by 
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�(I) the length of an interval I, that is, �([a, b]) = b − a . For a piece of cake S con-
sisting of a set of intervals IS , we denote �(S) =

∑
I∈IS

�(I) . Each agent i ∈ N is 
endowed with a density function fi ∶ [0, 1] → ℝ≥0 , which captures how the agent 
values different parts of the cake. We assume that the agents have piecewise uni-
form utilities: each agent i has a (not necessarily contiguous) piece of cake Ai that 
she desires, and her density function  fi takes on the value 1 for all desired parts 
and 0 for all remaining parts. The utility of agent i for any piece of cake S is given 
by ui(S) ∶= �(S ∩ Ai) . We assume that �(Ai) > 0 for every i, since we can simply 
ignore an agent i with �(Ai) = 0.

Let � ∈ [0, 1] be a given parameter. We refer to a setting with agents, their den-
sity functions, and the parameter � as an instance. A mechanism M(R) chooses 
from any given instance R a piece of cake W with �(W) ≤ � . However, this does 
not mean all agents have full access to W, because we allow the mechanism to 
block each agent from accessing certain parts of the selected piece. Specifi-
cally, after choosing W, the mechanism assigns piece Wi ⊆ W  to agent i; we call 
W = (W,W1,… ,Wn) an allocation. The utility of agent  i from the allocation W 
is ui(Wi) . Since the cases � = 0 and � = 1 are trivial, we assume from now on 
that � ∈ (0, 1) . Given an instance, every point that is a left or right endpoint of an 
interval in Ai for at least one i is called a breakpoint; the points 0 and 1 are also 
considered to be breakpoints. Observe that for any instance, the agents’ utilities 
for a piece of cake S depend only on the amounts of cake between consecutive 
pairs of breakpoints included in S.

We now define the central property of our paper.

Definition 2.1 (Excludable truthfulness) A mechanism is excludably truthful if for 
any instance R with M(R) = (W,W1,… ,Wn) and any agent i ∈ N , if the agent 
reports A′

i
≠ Ai and the mechanism returns the allocation W� = (W �,W �

1
,… ,W �

n
) on 

the modified instance, then ui(Wi) ≥ ui(W
�
i
).

If the mechanism does not use its ability to block (that is, it sets Wi = W  for all 
i ∈ N ), then we refer to excludable truthfulness simply as truthfulness.

Next, we define the two main mechanisms in this paper.

Definition 2.2 (Leximin) Given an instance, the leximin solution considers pieces of 
cake W with �(W) ≤ � such that the minimum among the utilities u1(W),… , un(W) 
is maximized; among all such pieces W, it considers those for which the second 
smallest utility is maximized, and so on, until after considering the largest utility, it 
chooses one of the pieces W that remain. It then assigns Wi = W ∩ Ai for all i ∈ N.

Definition 2.3 (MNW) Given an instance, the maximum Nash welfare (MNW) solu-
tion chooses a piece of cake W with �(W) ≤ � such that the product 

∏
i∈N ui(W) is 

maximized. It then assigns Wi = W ∩ Ai for all i ∈ N.

The following example illustrates some of our definitions.
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Example 2.4 Let � = 1∕2 . Consider an instance with two agents whose utility func-
tions are given as follows:

A possible piece W selected by both leximin and MNW is W = [1∕8, 5∕8].3 Then, 
agent 1 has access to the piece W1 = W ∩ A1 = [1∕8, 1∕2] while agent 2 has access 
to the piece W2 = W ∩ A2 = [1∕4, 5∕8] . Both agents receive utility 3/8.

Since both leximin and MNW always choose Wi = W ∩ Ai for all i ∈ N , we can 
represent an allocation W simply by the set W when we discuss these mechanisms. 
Note that ui(Wi) = �(Wi ∩ Ai) = �(W ∩ Ai) = ui(W) , so it also suffices to consider 
the agents’ utilities with respect to W. By a standard compactness argument and 
our observation above that the agents’ utilities depend only on the amounts of cake 
between breakpoints, both solutions are well-defined (i.e., the desired maxima are 
attained). There may be several maximizing allocations W to choose from, in which 
case we generally allow arbitrary tie-breaking—as we will see later, this tie-break-
ing does not influence the utility that each agent receives and therefore does not play 
a significant role. We call an allocation that is returned by the MNW solution (resp., 
leximin solution) under some tie-breaking an MNW allocation (resp., leximin allo-
cation). By our assumptions that 𝛼 > 0 and �(Ai) > 0 for every i, all MNW alloca-
tions and leximin allocations give every agent a strictly positive utility.

In order to perform meaningful interpersonal comparisons of utilities, we normal-
ize4 the utility of each agent for the entire cake to 1. Specifically, for each i ∈ N , we 
let ûi be the normalized utility function of agent i, where ûi(S) ∶= ui(S)∕ui([0, 1]) for 
any piece of cake S; note that ûi([0, 1]) = 1 . We sometimes refer to ui as the unnor-
malized utility function of agent i.

To build some intuition on normalization, observe that the rule that chooses an 
allocation  W maximizing the normalized utilitarian welfare (i.e., the sum of all 
agents’ normalized utilities) and sets Wi = W ∩ Ai for all i ∈ N is not excludably 
truthful. To see this, consider three agents with A1 = [0, 1∕2] , A2 = A3 = [1∕2, 1] , 
and � = 1∕2 . The normalized utilitarian rule chooses W = [1∕2, 1] , leaving agent 1 
with utility 0. This agent can then manipulate by reporting A1 = [0, 1∕6] , in which 
case the interval [0, 1/6] will be contained in the chosen piece W as well as in W1 . 

A1 = [0, 1∕2], A2 = [1∕4, 7∕8].

3 We show in Theorem 5.2 that leximin and MNW are equivalent in the case of two agents.
4 See the article by Aziz (2019) for further justifications of this normalization.
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On the other hand, one can check that the rule that chooses an allocation W maxi-
mizing the unnormalized utilitarian welfare (i.e., the sum of all agents’ unnormal-
ized utilities) is truthful even without blocking. However, this rule may still leave 
an agent empty-handed—for example, it also chooses W = [1∕2, 1] in the instance 
above, leaving agent 1 with utility 0.

Note that while a version of leximin defined using normalized utilities is different from 
the one using unnormalized utilities (Definition 2.2), both versions of MNW coincide.

3  Leximin solution

In this section, we consider the leximin solution (defined based on unnormalized 
utilities). We begin by establishing basic properties of the solution.

Our first result is that the utility of each agent is the same in all leximin alloca-
tions, which means that tie-breaking is not an important issue. The proof proceeds 
by assuming for contradiction that two leximin allocations give some agent different 
utilities, and arguing that the “average” of these two allocations would have been a 
better choice with respect to the leximin ordering. Recall that for the leximin solu-
tion, it suffices to consider the set W instead of the entire allocation W.

Proposition 3.1 Given any instance, for each agent i, the utility that i receives is the 
same in all leximin allocations.

Proof Assume for contradiction that two leximin allocations, W and W ′ , give some 
agent different utilities. Let W ′′ be an allocation such that for each pair of consecu-
tive breakpoints, the amount of cake between those breakpoints included in W ′′ is 
the average of the corresponding amounts for W and W ′ . By linearity, W ′′ is a feasi-
ble allocation, and ui(W ��) =

1

2
(ui(W) + ui(W

�)) for every i ∈ N.
Since the leximin ordering is a total order, the multiset of utilities that the n agents 

receive in W must be the same as the corresponding multiset in W ′ . Let j be an agent with the 
smallest min{uj(W), uj(W

�)} such that uj(W) ≠ uj(W
�) , and assume without loss of gener-

ality that uj(W) < uj(W
�) . All agents k with min{uk(W), uk(W

�)} < min{uj(W), uj(W
�)} 

have uk(W) = uk(W
�) , and this latter quantity is also equal to uk(W ��) . On the other hand, 

we have uj(W ��) =
1

2
(uj(W) + uj(W

�)) > uj(W) , which means that the number of agents 

who receive utility exactly uj(W) in W ′′ is strictly less than the corresponding numbers for 

W and W ′ . Hence, W ′′ is a better allocation with respect to the leximin ordering than W 
and W ′ , a contradiction.   ◻

Next, we show that a leximin allocation can be computed efficiently via a linear 
programming-based approach similar to the one used in Algorithm 1 of Airiau et al. 
(2023) in the context of portioning. Recall that in our setting, the utility functions of 
the agents can be described explicitly by the sets Ai.

Proposition 3.2 There exists an algorithm that computes a leximin allocation in time 
polynomial in the input size.
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Proof First, we divide the cake into a set M of intervals I1,… , Im using all break-
points, so each interval is either desired in its entirety or not desired at all by each 
agent. Let xj denote the length of the interval Ij that we include in our allocation. 

Thus, the utility of agent i can be written as 
∑m

j=1
1Ij⊆Ai

xj , where 1X denotes the indi-
cator variable for event X.

We proceed by formulating linear programs. Initially, the set N′ of agents whose 
utility we have already fixed is empty. We determine the smallest utility in a leximin 
allocation by solving for the maximum t∗ such that the utility of every agent is at 
least t∗ . We then determine an agent who receives utility t∗ in a leximin allocation—
to this end, for each agent, we solve for the maximum � such that this agent receives 
utility at least t∗ + � and every other agent receives utility at least t∗ . We choose an 
agent i′ who returns � = 0 , fix the utility of this agent by setting ti� = t∗ , and continue 
by finding the next smallest utility among the remaining agents. The pseudocode of 
our algorithm is given as Algorithm 1.

Algorithm 1  Computing a leximin allocation
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Since our algorithm requires solving O(n2) linear programs, it runs in polynomial 
time.5 We now establish its correctness. Consider the first iteration of the while-
loop, and the returned value t∗ of the first linear program. We claim that for at least 
one i� ∈ N , the linear program for i′ returns � = 0 . Indeed, if this is not the case, then 
for every i′ , there is a feasible allocation that gives i′ a utility strictly greater than t∗ 
and gives every other agent a utility of at least t∗ ; by taking the “average” of all such 
allocations similarly to the proof of Proposition 3.1, we obtain a feasible allocation 
that gives every agent strictly greater than t∗ , contradicting the definition of t∗ . For i′ 
such that � = 0 , we therefore have that the utility of i′ is equal to t∗ in every leximin 
allocation. We then apply a similar argument for the remaining n − 1 iterations to 
conclude that the utility of each agent in the allocation that the algorithm returns is 
equal to the corresponding utility in every leximin allocation. It therefore follows 
that the returned allocation is a leximin allocation.   ◻

We now come to our main result of this section, which establishes the excludable 
truthfulness of the leximin solution. Since tie-breaking is unimportant due to Propo-
sition 3.1, we assume that ties are broken in any consistent manner.

Theorem 3.3 The leximin solution is excludably truthful.

At a high level, the proof of Theorem 3.3 proceeds by identifying specific types 
of manipulations, arguing that such manipulations cannot be beneficial when the 
leximin solution is used, and then showing that being immune to these manipula-
tions implies being immune to all manipulations. We start by defining an �-change, a 
useful concept in our proof.

Definition 3.4 (�-change) Given two vectors of real numbers x = (x1, x2,… , xn) and 
x� = (x�

1
, x�

2
,… , x�

n
) , an �-change from x towards x′ refers to the following continuous 

operation: for each i ∈ {1, 2,… , n} , xi changes linearly to x��
i
∶= xi + �(x�

i
− xi) , 

where � is sufficiently small so that if xi < xj , then x′′
i
< x′′

j
.

For ease of expression, we will also use an �-change to refer to the outcome of 
such an operation, i.e., the vector x′′ . When we discuss �-changes, we will not spec-
ify the exact value of � : any � satisfying the above condition works. The following 
lemma establishes a useful property of �-changes.

Lemma 3.5 Given two vectors x and y , if y is a better vector with respect to the lexi-
min ordering than x , then an �-change from x to y is also a leximin improvement.

Proof Sort the numbers of x in non-descending order and group them into buckets 
so that numbers within each bucket are the same and those in different buckets are 

5 It follows from known results that the values t
i
 are of polynomial size; see the proof of Theorem 1 of 

Airiau et al. (2023) for a discussion of this point.
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different. Observe that an �-change improves x with respect to the leximin ordering 
if and only if for the lowest bucket where there is a change, some number increases 
and no number decreases.

Consider an �-change from x towards a better leximin vector y . If some number in 
the lowest bucket of x decreases, then y would not be a leximin improvement of x , so 
no number in this bucket decreases. If some number in this bucket increases, we are 
done by the above observation. Else, there is no change in this bucket, and we move 
on to the next bucket and repeat the same argument. Because x and y are different, 
there must be a change in at least one bucket, which gives our desired conclusion.  
 ◻

We now extend the definition of an �-change to allocations. Given two allocations 
W and W ′ , an �-change from W towards W ′ can be captured by dividing the cake into 
intervals according to the breakpoints and changing W towards W ′ so that the length 
of cake included in the allocation in each interval changes linearly. Note that when 
we perform an �-change from W towards W ′ , by linearity, we also obtain a corre-
sponding �-change from the vector (u1(W),… , un(W)) towards (u1(W �),… , un(W

�)) , 
and any allocation obtained during the process is feasible.

Next, we present auxiliary lemmas used for proving the excludable truthful-
ness of the leximin solution. These lemmas discuss how the leximin allocation 
can change when an agent modifies her density function in various ways. For 
notational convenience, in these lemmas we assume that instance R (resp., R′ ) 
contains the density functions corresponding to A1,… ,An (resp., A�

1
,… ,A�

n
 ). We 

write Lex(R) to denote the leximin allocation in instance R, and W ≻R W ′ to mean 
that W is a strictly better allocation with respect to the leximin ordering than W ′ 
in R (subject to our consistent tie-breaking). Further, we write ui(W;R) to denote 
agent i’s utility for W in R.

Our first lemma says that whenever an agent shrinks her desired piece in such 
a way that it contains the entire portion she receives, then she still receives the 
same portion in the new instance.

Lemma 3.6 Given an instance  R and the allocation W = Lex(R) , let R′ be an 
instance such that W ∩ Ai ⊆ A�

i
⊆ Ai for an agent i ∈ N and A�

j
= Aj for all 

j ∈ N⧵{i} . Then, W = Lex(R�).

Proof Suppose for contradiction that W ≠ Lex(R�) . Let W � = Lex(R�) . Since A′
i
⊆ Ai , 

we have ui(W �;R�) = �(W � ∩ A�
i
) ≤ �(W � ∩ Ai) = ui(W

�;R) . Moreover, for every agent 
j ≠ i , since A�

j
= Aj , it holds that uj(W �;R�) = �(W � ∩ A�

j
) = �(W � ∩ Aj) = uj(W

�;R) . 
On the other hand, since W ∩ Ai ⊆ A�

i
⊆ Ai , we have W ∩ Ai = W ∩ A�

i
 , and therefore 

ui(W;R�) = �(W ∩ A�
i
) = �(W ∩ Ai) = ui(W;R) . Moreover, for every agent j ≠ i , since 

A�
j
= Aj , it holds that uj(W;R�) = �(W ∩ A�

j
) = �(W ∩ Aj) = uj(W;R).

From the previous paragraph, we know that the vector

(u1(W;R�),… , un(W;R�))
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stays the same when R′ is changed to R. On the other hand, in the vector

when R′ is changed to R, the ith number increases or stays the same while the 
remaining n − 1 numbers stay the same. Since W ′ ≻R′ W by our assumption, we 
must also have W ′ ≻R W , contradicting W = Lex(R) .   ◻

Our second lemma says that when an agent shrinks her desired piece, under lexi-
min she does not get a higher utility than before.

Lemma 3.7 Given an instance  R and the allocation W = Lex(R) , let R′ be an 
instance such that A′

i
⊆ Ai for an agent i ∈ N and A�

j
= Aj for all j ∈ N⧵{i} . Let 

W � = Lex(R�) . Then, �(W � ∩ A�
i
) ≤ �(W ∩ Ai).

Proof Suppose for contradiction that �(W � ∩ A�
i
) > �(W ∩ Ai) ; let x′ and x denote 

the former and latter quantities, respectively. See Fig. 1 for an illustration. Note that 
�(W � ∩ A�

i
) = ui(W

�;R�) = x� and �(W ∩ Ai) = ui(W;R) = x.
Since A′

i
⊆ Ai , it holds that ui(W �;R) ≥ ui(W

�;R�) = x� . Since ui(W;R) = x , when 
changing from W ′ to W with respect to R, the utility of agent  i decreases from at 
least x′ to x. However, because W = Lex(R) , this change is in fact a leximin improve-
ment.6 Hence, even if the utility of agent i started at exactly x′ and decreased to x, 
the change would still be a leximin improvement.7

Now, consider the agents’ utilities with respect to R′ . We have ui(W �;R�) = x� , and 
since A′

i
⊆ Ai , it holds that ui(W;R�) ≤ ui(W;R) = x . Hence, when changing from W ′ 

to W, the utility of agent i with respect to R′ decreases from x′ to at most x. For every 
agent j ≠ i , since A�

j
= Aj , we have uj(W �;R�) = uj(W

�;R) and uj(W;R�) = uj(W;R) . 
This means that when changing from W ′ to W in R′ , agent i’s utility starts at x′ and 
decreases, while the change in every other agent’s utility is the same as the corre-
sponding change in the last sentence of the previous paragraph. We know that the 
change in that sentence is a leximin improvement. By Lemma 3.5, an �-change from 
W ′ towards W in R′ is also a leximin improvement. This contradicts the assumption 
that W � = Lex(R�) .   ◻

Our third lemma says that if an agent is already getting her entire desired piece, 
then whenever she shrinks her desired piece, she is still at maximum utility.

(u1(W
�;R�),… , un(W

�;R�)),

6 Note that this must be a strict leximin improvement in terms of utilities (i.e., not just due to tie-break-
ing). Indeed, Proposition  3.1 implies that agent  i receives the same utility in all leximin allocations, 
whereas here we have u

i
(W �;R) > u

i
(W;R).

7 For example, the change from the vector (7, 2) to (3, 6) is a leximin improvement, so the change from 
(5, 2) to (3, 6) must also be a leximin improvement. Indeed, we have (3, 6) ≻ (7, 2) ≻ (5, 2).
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Lemma 3.8 Given an instance R and the allocation W = Lex(R) such that Ai ⊆ W 
for an agent i ∈ N , let R′ be an instance such that A′

i
⊆ Ai and A�

j
= Aj for all 

j ∈ N⧵{i} . Let W � = Lex(R�) . Then, A′
i
⊆ W ′.

Proof Suppose for contradiction that W ′ does not contain the entire A′
i
 , and let 

x� = �(W � ∩ A�
i
) = ui(W

�;R�) < �(A�
i
) . See Fig. 2 for an illustration.

Since W = Lex(R) , we have that W ≻R W ′.8 By Lemma 3.5, an �-change from W ′ 
towards W is also a leximin improvement with respect to R, so by the characteriza-
tion of �-change improvements in the proof of the lemma, in the lowest bucket where 
there is a change, some number increases and no number decreases. Since A′

i
⊆ Ai , 

in this �-change, the utility of agent i increases from at least x′ towards �(Ai).
Now, consider the same �-change from W ′ towards W, but with respect to R′ . 

Since A′
i
⊆ Ai , the utility of agent  i increases from exactly x′ towards �(A�

i
) , and 

since A�
j
= Aj for all j ≠ i , the utilities of other agents change in the same way as 

before. Since agent i’s utility starts no higher than before and still increases, one can 
see that in the lowest bucket where there is a change, again some number increases 
and no number decreases. Hence, the characterization of �-change improvements 
implies that the change is also a leximin improvement with respect to R′ . This con-
tradicts the assumption that W � = Lex(R�) .   ◻

With these lemmas in hand, we are now ready to prove Theorem 3.3.

Proof (Proof of Theorem 3.3) Suppose for contradiction that the leximin solution is 
not excludably truthful. This means that there exists an instance R with W = Lex(R) 
such that if agent  i reports Âi instead of Ai , the new instance  R̂ with Ŵ = Lex(R̂) 
satisfies �( �W ∩ �Ai ∩ Ai) > �(W ∩ Ai) . See Fig. 3 for an illustration. We will keep the 
desired pieces Aj of agents j ∈ N ⧵ {i} unchanged throughout this proof.

Fig. 1  Illustration for the proof of Lemma 3.7

8 Like in the proof of Lemma 3.7, this is a strict relation in terms of utilities rather than tie-breaking.
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First, consider an instance R̂′ where Â�
i
= Âi ∩ Ŵ . By Lemma  3.6 applied to R̂ 

and R̂′ , Ŵ is also the leximin allocation for R̂′.
Next, consider an instance R̂′′ in which Â��

i
= Âi ∩ Ŵ ∩ Ai = Â�

i
∩ Ai  . Since 

�A′
i
⊆ �W , by Lemma 3.8 applied to R̂′ and R̂′′ , the leximin allocation for R̂′′  must 

contain the entire Â′′
i
 . Recall that �(�A��

i
) > �(W ∩ Ai).

Finally, consider the instances R and R̂′′ . From the former to the latter, agent i’s 
desired piece shrinks from Ai to �A′′

i
⊆ Ai . By Lemma 3.7, the agent should not get a 

higher utility through this shrinking. However, the agent’s utility is �(W ∩ Ai) before 
the shrinking, and �(Â��

i
) afterwards. This is a contradiction.   ◻

As we discussed at the end of Sect. 2, the leximin solution defined based on 
normalized utilities is different from the one based on unnormalized utilities 
that we have studied in this section. We remark here that normalized leximin is 
not excludably truthful. To see this, consider two agents with A1 = [0, 1∕3] and 
A2 = [1∕3, 2∕3] , and let � = 1∕3 . In this instance, normalized leximin gives each 
agent length 1/6 of the cake. However, if agent 2 misreports that A2 = [1∕3, 1] , 
then it is possible that the agent receives the interval [1/3,  5/9] and therefore 
length 2∕9 > 1∕6 of her valued cake.

4  Guaranteed normalized egalitarian welfare

As we mentioned in the introduction, truthfulness by itself is easy to achieve, 
for example by always allocating a fixed piece of cake of length � . However, this 
may leave certain agents with zero utility, a patently unfair outcome. To measure 
fairness, we consider the minimum among the utilities of all agents. In order to 
compare different agents’ utilities in a meaningful way, we use the normalized 
utilities in the following definition.

Fig. 2  Illustration for the proof of Lemma 3.8
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Definition 4.1 (GNEW) Given an instance R and an allocation W , the normalized 
egalitarian welfare (NEW) of W is defined as

For a mechanism M and parameters n and � , the guaranteed normalized egalitarian 
welfare (GNEW) of M with respect to n and � is defined as

where the infimum is taken over all instances with n agents and parameter �.

In other words, the GNEW of M with respect to n and � is the smallest nor-
malized utility of an agent for her piece allocated by M , taken over all instances 
with parameters n and � . For example, if a mechanism always allocates a fixed 
piece of length � regardless of the agents’ utility functions, then its GNEW with 
respect to any n and � ∈ (0, 1) is 0. We first present a tight upper bound on the 
GNEW.

Proposition 4.2 For all n ≥ 1 and � ∈ (0, 1),

for any mechanism M . Moreover, for each inequality, there exists a mechanism M 
such that the inequality is tight.

Proof The lower bound of 0 holds trivially, and is achieved by the mechanism dis-
cussed before the proposition.

For the upper bound, note that if some agent i values the whole cake (i.e., 
Ai = [0, 1] ), then ui([0, 1]) = 1 and ui(Wi) ≤ � , so no mechanism can achieve GNEW 
larger than � . The tightness follows from a mechanism that, given any instance, 

NEWR(W) ∶= min
i∈N

ûi(Wi) = min
i∈N

ui(Wi)

ui([0, 1])
.

GNEWn,�(M) ∶= inf
R
NEWR(M(R)),

0 ≤ GNEWn,�(M) ≤ �

Fig. 3  Illustration for the proof of Theorem 3.3
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divides the cake into intervals using all breakpoints, chooses an (arbitrary) � fraction 
from each interval, and sets Wi = W for all i—this results in ûi(Wi) = � for all i.   ◻

Our next result gives the precise GNEW of the leximin solution.

Theorem 4.3 For all n ≥ 1 and � ∈ (0, 1),

Proof For the upper bound, consider the instance R with Ai = [(i − 1)�∕n, i�∕n] 
for i = 1,… , n − 1 , and An = [(n − 1)�∕n, 1] . Every leximin allocation W gives a 
desired cake of length �∕n to every agent, so

We now prove the lower bound. Since the mechanism can allocate length � of the 
cake and there are n agents, it can give every agent  i a utility of at least 
min{�∕n,�(Ai)} . Hence, all leximin allocations give each agent i at least this much 
utility. If an agent has �(Ai) ≤ 1 − (n − 1)�∕n , the normalized utility of this agent is 
at least �∕n

1−(n−1)�∕n
=

�

n−(n−1)�
 . Else, suppose that �(Ai) = 1 − (n − 1)�∕n + x for some 

x > 0 . In this case, no matter how the mechanism allocates length � of the cake, the 
(unnormalized) utility of this agent is at least

Hence, the normalized utility of this agent is at least

where the inequality follows from the fact that the expression on the left-hand side is 
non-decreasing for x ∈ [0,∞) .   ◻

Theorem  4.3 shows that the leximin solution achieves a non-trivial GNEW. 
However, it is unclear how good this GNEW is compared to that of other exclud-
ably truthful mechanisms. We will therefore show that the solution attains the 
highest possible GNEW among all excludably truthful mechanisms satisfy-
ing a natural condition. Given a vector of piecewise uniform density functions 
f = (f1,… , fn) , let Lf be a vector with 2n components such that each component 
represents a distinct subset of agents and the value of the component is the length 
of the piece desired by exactly that subset of agents (and not by any agent outside 
the subset).

GNEWn,�(leximin) =
�

n − (n − 1)�
.

NEWR(W) ≤ un(W)

un([0, 1])
=

�∕n

1 −
(n−1)�

n

=
�

n − (n − 1)�
.

� −

(
1 −

(
1 −

(n − 1)�

n
+ x

))
=

�

n
+ x.

�∕n + x

1 − (n − 1)�∕n + x
≥ �

n − (n − 1)�
,
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Example 4.4 Consider the instance in Example  2.4. The corresponding Lf of this 
instance is (1/8, 1/4, 3/8, 1/4), where the components correspond to the lengths of 
the pieces desired by exactly the set of agents ∅ , {1} , {2} , and {1, 2} , respectively.

Definition 4.5 (Position obliviousness) A mechanism M is position oblivious if the 
following holds:

Let f and f′ be any vectors of density functions such that Lf = Lf� , and let R and 
R′ be instances represented by these respective vectors and a given parameter � . If 
M(R) = (W,W1,… ,Wn) and M(R�) = (W �,W �

1
,… ,W �

n
) , then ui(Wi) = u�

i
(W �

i
) for 

every i ∈ N.

Position obliviousness has previously been studied by Bei et  al. (2020). Intui-
tively, for a position oblivious mechanism, the utility of an agent depends only on 
the lengths of the pieces desired by various subsets of agents and not on the posi-
tions of these pieces. It follows directly from the definition that the leximin solu-
tion is position oblivious.9 We provide two examples of mechanisms that are truthful 
(even without blocking) but not position oblivious:

• A mechanism that returns a fixed piece of cake of length � , for example the piece 
[0, �];

• A mechanism that considers B ∶= A1 ∪ A2 ∪⋯ ∪ An , returns B if �(B) ≤ � , and 
returns the leftmost subset of B of length � otherwise.

Theorem  4.6 Let M be an excludably truthful and position oblivious mechanism. 
Then, for all n ≥ 1 and � ∈ (0, 1),

Proof Assume for the sake of contradiction that there exists an excludably truthful 
and position oblivious mechanism M with GNEWn,�(M) =

�

n−(n−1)�
+ � for some 

𝛿 > 0 . For each i ∈ N , let Ci be a piece of length �(Ci) = �∕n + � such that 
Ci ∩ Cj = � for every pair i, j ∈ N , where 𝜀 > 0 is such that

Consider an instance R where Ai = Ci for all i ∈ N . Since M can allocate length at 
most � of the cake, it must return an allocation for which some agent receives utility 
at most �∕n . Assume without loss of generality that M returns an allocation W with 
u1(W1) ≤ �∕n . See Fig. 4 for an illustration.

GNEWn,�(M) ≤ �

n − (n − 1)�
.

𝜀 < min

{
1 − 𝛼

n
,

𝛿(n − (n − 1)𝛼)2

n(n − 1)(𝛼 + 𝛿(n − (n − 1)𝛼))

}
.

9 Bei et  al. (2017) considered a slightly stronger version of position obliviousness, which the leximin 
solution also satisfies.
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Next, consider an instance R′ where A�
i
= Ci for all i ∈ N⧵{1} and 

A�
1
= [0, 1]⧵

⋃
i∈N⧵{1} Ci . (We use the notation A′

i
 for instance R′ to distinguish 

from Ai for instance R.) For this instance, we have 𝓁(A�
1
) = 1 − (n − 1) ⋅ (�∕n + �) . 

Let W� = M(R�) , and let Y = W �
1
∩ A�

1
 . By the definition of GNEW, we have 

u1(W
�
1
)∕u1([0, 1]) ≥ GNEWn,�(M) , where u1 here is defined according to R′ . 

Equivalently,

which is strictly larger than �∕n by our choice of �.
Finally, consider an instance R′′ where A��

i
= Ci for all i ∈ N⧵{1} , while A′′

1
 is a 

subset of [0, 1]⧵
⋃

i∈N⧵{1} Ci of length �(A��
1
) = �∕n + � such that �(A��

1
∩ Y) > 𝛼∕n . 

Since M is position oblivious, by comparing instances R′′ with R, agent  1 must 
also get a utility of at most �∕n in instance R′′ . However, if the agent reports 
[0, 1]⧵

⋃
i∈N⧵{1} Ci as in R′ , she gets a utility of �(A��

1
∩ Y) > 𝛼∕n . This means that 

M is not excludably truthful and yields the desired contradiction.   ◻

Comparing this ratio with the highest possible ratio of � without the excludable 
truthfulness condition (Proposition  4.2),10 one can see that adding the excludable 
truthfulness requirement incurs a (multiplicative) “price” of n − (n − 1)� on the best 
GNEW. This price can be as large as n when � is close to 0, and decreases to 1 as � 
approaches 1.

An interesting question is whether Theorem  4.6 holds even without position 
obliviousness.

5  Maximum Nash welfare

In this section, we address the MNW solution. We start by showing that like the 
leximin solution (Proposition 3.1), the utility that each agent receives is the same in 
all MNW allocations—this renders the tie-breaking issue insignificant.

Proposition 5.1 Given any instance, for each agent i, the utility that i receives is the 
same in all MNW allocations.

Proof We proceed in a similar manner as in the proof of Proposition 3.1. Assume for 
contradiction that two MNW allocations, W and W ′ , give some agent different utili-
ties. Since the utility of every agent in an MNW allocation is strictly positive, we 
have ui(W), ui(W

�) > 0 for all i ∈ N . Let W ′′ be an allocation such that for each pair 
of consecutive breakpoints, the amount of cake between those breakpoints included 

𝓁(Y) ≥ GNEWn,�(M) ⋅ 𝓁(A�
1
) =

(
�

n − (n − 1)�
+ �

)
⋅

(
1 − (n − 1) ⋅

(
�

n
+ �

))
,

10 Note that the mechanism that achieves GNEW � in Proposition 4.2 satisfies position obliviousness.
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in W ′′ is the average of the corresponding amounts for W and W ′ . By linearity, W ′′ is 
a feasible allocation, and ui(W ��) =

1

2
(ui(W) + ui(W

�)) for every i ∈ N.
Recall that by the arithmetic–geometric mean inequality, it holds that x+y

2
≥ √

xy 
for all positive real numbers x, y, with equality if and only if x = y . We therefore 
have

where the inequality is strict because ui(W) ≠ ui(W
�) for at least one i. Since ∏

i∈N ui(W) =
∏

i∈N ui(W
�) , this implies that W ′′ has a higher Nash welfare than 

both W and W ′ , yielding the desired contradiction.   ◻

In the case of two agents, we show that MNW and leximin are in fact equivalent. 
The high-level idea is that both solutions can be obtained via the following process: 
First, select portions of the cake desired by both agents. If the quota � has not been 
reached, let the agents ‘eat’ their desired piece using the same speed, until either (i) 
one of the agents has no more desired cake, in which case we let the other agent con-
tinue eating, or (ii) we run out of quota.

Theorem  5.2 Consider an instance with two agents. Any leximin allocation is an 
MNW allocation, and vice versa.

Proof Fix an instance with two agents, and let X = A1 ∩ A2 and x = �(X) . If x ≥ � , 
then an allocation W is leximin if and only if W ⊆ X , and the same holds for MNW. 
Similarly, if �(A1 ∪ A2) ≤ � , the relevant condition for both leximin and MNW is 
A1 ∪ A2 ⊆ W.

�
i∈N

ui(W
��) =

�
i∈N

�
1

2
(ui(W) + ui(W

�))
�

>
�
i∈N

√
ui(W) ⋅ ui(W

�) =
��

i∈N

ui(W) ⋅
��

i∈N

ui(W
�),

Fig. 4  Illustration for the proof of Theorem 4.6 with n = 3
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Assume now that x < 𝛼 < �(A1 ∪ A2) . Since both the leximin and MNW solu-
tions satisfy Pareto optimality, we must have �(W) = � and X ⊆ W in any lexi-
min or MNW allocation W. In other words, the entire intersection of length x must 
be allocated, along with a further length � − x of the cake. Let Δ1 = A1⧵A2 and 
Δ2 = A2⧵A1 , and consider two cases.

Case 1: min{�(Δ1),�(Δ2)} ≥ (� − x)∕2 . In this case, for both leximin and MNW, 
the length � − x must be split equally between Δ1 and Δ2—otherwise the allocation 
can be improved with respect to both the leximin ordering and the Nash welfare by 
splitting the length equally. Conversely, any allocation that splits the length � − x 
equally between Δ1 and Δ2 is both leximin and MNW.

Case 2: min{�(Δ1),�(Δ2)} < (𝛼 − x)∕2 . Assume without loss of generality that 
�(Δ1) < (𝛼 − x)∕2 . Since

we have �(Δ2) > (𝛼 − x)∕2 . In this case, the entire Δ1 must be allocated—otherwise 
the allocation W can be improved with respect to both the leximin ordering and the 
Nash welfare by allocating � more of Δ1 and � less of Δ2 , for any 0 < 𝜀 < �(Δ1⧵W) . 
Conversely, any allocation that allocates the entire Δ1 and length � − x − �(Δ1) of Δ2 
is both leximin and MNW.

The desired conclusion follows from the two cases.   ◻

Theorems 3.3 and 5.2 together imply the following corollary. Since tie-break-
ing is unimportant due to Proposition 5.1, we assume that ties are broken in any 
consistent manner.

Corollary 5.3 For two agents, the MNW solution is excludably truthful.

When n ≥ 3 , the two mechanisms are no longer equivalent. This can be seen 
from the instance with A1 = [0, 1∕2] and Ai = [1∕2, 1] for all 2 ≤ i ≤ n , and 
� = 1∕2 . The leximin solution selects length 1/4 from each half of the cake, while 
MNW selects length 1

2n
 from the first half and n−1

2n
 from the second half. For our 

main result of this section, we demonstrate that the MNW solution is not exclud-
ably truthful even when an agent is only allowed to report a subset of her true 
desired piece—as discussed in Sect. 1.1, this strengthens the corresponding result 
of Aziz et al. (2020) where the manipulation is not of this simple nature. In par-
ticular, we construct an instance with six agents such that one of the agents can 
obtain a higher utility by reporting a subset of her actual desired piece.

Theorem 5.4 The MNW solution is not excludably truthful under subset reporting.

Proof Assume for convenience that the cake is represented by the interval [0,  8]; 
this can be trivially scaled back down to [0, 1]. In our original instance, there are six 
agents whose utility functions are given as follows:

�(Δ1) + �(Δ2) = �(A1 ∪ A2) − x > 𝛼 − x,
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and let � = 2 . See Fig. 5.
First, observe that in this instance, every (non-integer) point is valued by 

exactly three agents. Hence, for any subset W of the cake with �(W) ≤ 2 , we have ∑6

i=1
ui(W) ≤ 6  . By the inequality of arithmetic and geometric means (AM-GM), it 

holds that 
∏6

i=1
ui(W) ≤ 1 . By choosing W = [0, 2] , we obtain ui(W) = 1 for each i, 

so this choice of W maximizes the Nash welfare as �(W) = 2 and 
∏6

i=1
ui(Wi) = 1  , 

and gives agent 1 a utility of 1. By Proposition 5.1, agent 1 receives utility 1 in every 
MNW allocation.

Next, consider a modified instance where agent 1 reports A1 = [2, 8] , which is a 
strict subset of the true A1 . Consider an MNW allocation W for this instance, and 
let x ∶= �(W ∩ [2, 8]) , y ∶= �(W ∩ [1, 2]) , and z ∶= �(W ∩ [0, 1]) , so x + y + z ≤ 2 . 
Let W ′ be an allocation such that �(W � ∩ [0, 1]) = 2 − x − y ≥ z , �(W � ∩ [1, 2]) = y , 
and |W � ∩ [j, j + 1]| = x∕6 for j ∈ {2, 3,… , 7} . Notice that �(W �) = 2 , so W ′ is 
a feasible allocation. We claim that 

∏6

i=1
ui(W

�) ≥ ∏6

i=1
ui(W) . Indeed, letting 

� ∶= �(W ∩ [2, 5]) , we have

where the first inequality follows from the AM-GM inequality. Similarly, letting 
� ∶= �(W ∩ ([2, 3] ∪ [5, 6])) and � ∶= �(W ∩ ([3, 4] ∪ [6, 7])) , it holds that

Moreover, since u1(W) = u1(W
�) = x , it follows that 

∏6

i=1
ui(W

�) ≥ ∏6

i=1
ui(W) , as 

claimed. This means that W ′ is also an MNW allocation. The Nash welfare of W ′ is

In order to show that MNW is not excludably truthful regardless of tie-breaking, 
by Proposition 5.1, it suffices to show that the maximum of this expression in the 
domain x, y ≥ 0, x + y ∈ [0, 2] is attained when x > 1 , since this would imply that 
agent 1 has a profitable deviation.

Let g(x, y) ∶= x
(
2 −

x

2
− y

)2(
y +

x

3

)3

 , where x, y ≥ 0 and x + y ≤ 2 . We have 
g(1.5, 0.5) = 0.84375 . Now, from the AM-GM inequality,

A1 = [0, 1] ∪ [2, 8], A2 = [0, 1] ∪ [2, 5],

A3 = [0, 1] ∪ [5, 8], A4 = [1, 3] ∪ [5, 6],

A5 = [1, 2] ∪ [3, 4] ∪ [6, 7], A6 = [1, 2] ∪ [4, 5] ∪ [7, 8],

u2(W) ⋅ u3(W) = (z + �)(z + (x − �)) ≤ (
z +

x

2

)2 ≤ u2(W
�) ⋅ u3(W

�),

u4(W) ⋅ u5(W) ⋅ u6(W) = (y + �)(y + �)(y + (x − � − �))

≤ (
y +

x

3

)3

= u4(W
�) ⋅ u5(W

�) ⋅ u6(W
�).

6∏
i=1

ui(W
�) = x

(
2 −

x

2
− y

)2(
y +

x

3

)3

.
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The derivative of the last expression is 
(

6−3x

5

)(
6−x∕2

5

)4

 , which is nonnegative for 
0 ≤ x ≤ 2 . This means that for x ≤ 1 , we have

so g(x, y) ≤ 4

9
⋅ (1.1)5 < 0.72 < g(1.5, 0.5) . It follows that the maximum of g(x, y) is 

attained when x > 1 , as desired.   ◻

We remark here that even if we allow the MNW solution to choose any Wi such 
that W ∩ Ai ⊆ Wi ⊆ W instead of always choosing Wi = W ∩ Ai (that is, the mecha-
nism may give agent i some parts of W that she does not value, along with all parts 
of W that she values), our example in Theorem  5.4 still shows that any resulting 
mechanism is not excludably truthful under subset reporting.

From the fairness perspective, we show later in Theorem 7.6 that the MNW solu-
tion achieves the same GNEW as the leximin solution (and the two solutions also 
share a common worst-case instance). However, the fact that the MNW solution is 
prone to a particularly simple form of manipulation makes it an unsuitable choice 
when truthfulness is essential.

9

4
⋅ g(x, y) = x

(
3 −

3x

4
−

3y

2

)2(
y +

x

3

)3

≤ x

(
2(3 − 3x∕4 − 3y∕2) + 3(y + x∕3)

5

)5

= x

(
6 − x∕2

5

)5

.

9

4
⋅ g(x, y) ≤ 1 ⋅

(
6 − 1∕2

5

)5

=
(
11

10

)5

,

Fig. 5  The original instance in the proof of Theorem 5.4
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6  Impossibility result without blocking

As we have so far assumed that mechanisms can block agents from accessing certain 
parts of the resource, an interesting question is what guarantees the mechanisms can 
achieve without the ability to block. Indeed, while blocking can be easily imple-
mented in most of our introductory applications by restricting access to the sports 
facility or files in a cache memory, it may be harder or more costly in other situa-
tions. In this section, we consider mechanisms without the blocking ability. When no 
blocking is allowed, given an input instance, a mechanism M simply chooses a piece 
of cake W with �(W) ≤ � , and each agent i receives a utility of ui(W) = �(W ∩ Ai).

First, we observe that while the leximin solution is excludably truthful (Theo-
rem 3.3), it is not truthful in the absence of blocking.

Example 6.1 (Leximin is not truthful without blocking) Let � = 1∕2 . First, consider 
an instance R with two agents whose utility functions are given as follows:

Assume without loss of generality that the tie-breaking rule chooses W = [1∕4, 3∕4] . 
Next, consider an instance R′ with the following utility functions:

Agent  1 receives a utility of 3/8 in every leximin allocation for R′ . However, if 
agent  1 misreports that A1 = [0, 1∕2] , the instance becomes the same as R, and 
agent 1 receives a utility of 1/2 from the allocation W.

Our main result of this section shows that Example 6.1 is in fact not a coincidence.

Theorem 6.2 Without blocking, for every � ∈ (0, 1) , no truthful, Pareto optimal, and 
position oblivious mechanism can achieve a positive GNEW even in the case of two 
agents.

Proof We assume for contradiction that there exists some � ∈ (0, 1) and a truth-
ful, Pareto optimal, and position oblivious mechanism M with GNEW2,𝛼(M) > 0 . 
We consider a sequence of instances with two agents, which we illustrate in Fig. 6. 
In the following, the superscripts denote the indices of the instances. In all of the 
instances that we consider, every part of the cake is desired by at least one agent, so 
Pareto optimality implies that M must allocate length exactly � of the cake.

• Instance R1 : A1

1
= [0, 0.5],A1

2
= [0.5, 1] . Let M(R1) = W1 . Because 𝛼 < 1 , at 

least one of the agents will not obtain her maximum utility of 0.5. Assume with-
out loss of generality that �(A1

1
∩W1) = x < 0.5 ; in other words, A1

1
⧵W1 is non-

empty. Since M has a positive GNEW, it must hold that 0 < x < 𝛼.
• Instance R2 : A2

1
= [0, 0.5],A2

2
= W1 ∪ [0.5, 1] . Let M(R2) = W2 . We must have 

W2 ⊆ A2

2
 ; in other words, agent 2 will receive utility � . This is because otherwise, 

agent 2 can benefit by reporting A2

2

�
= [0.5, 1] and the instance becomes R1 , in 

A1 = [0, 1∕2], A2 = [1∕2, 1].

A1 = [0, 3∕4], A2 = [1∕2, 1].
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which case agent 2 will receive utility � from the output allocation W1 . Note that 
because W2 is contained entirely in A2

2
 , we still have �(A2

1
∩W2) ≤ x.

• Instance R3 : A3

1
= [0, 0.5] ⧵W1,A3

2
= W1 ∪ [0.5, 1] . Let M(R3) = W3 . By the 

positive GNEW, we have �(A3

1
∩W3) = y > 0.

• Instance R4 : A4

1
=
(
[0, 0.5] ⧵W1

)
∪ B,A4

2
= W1 ∪ [0.5, 1] , where B is an interval 

of length x contained in A3

2
 with the largest intersection with W3 . That is,

– if �(A4

2
∩W3) ≥ x , let B be any subset of A4

2
∩W3 of length x;

– if �(A4

2
∩W3) < x , let B be any interval of length x that contains A4

2
∩W3.

   Let M(R4) = W4 . In this instance, we must have u1(W4) > x . This is 
because otherwise, agent  1 can benefit by reporting A4

1

�
= [0, 0.5] ⧵W1 and the 

instance becomes R3 , in which case agent  1 will obtain a utility of x + y (when 
�(A4

2
∩W3) ≥ x ) or a utility of � (when �(A4

2
∩W3) < x ). In both cases this value is 

strictly larger than x.

Finally, observe that instances R2 and R4 have the same Lf vector. In particular, we have 
�(A2

1
) = �(A4

1
) = 1∕2 , �(A2

2
) = �(A4

2
) = 1∕2 + x , and �(A2

1
∩ A2

2
) = �(A4

1
∩ A4

2
) = x . 

This means that each agent should receive the same utility in these two instances from 
our position oblivious mechanism M . However, agent 1 receives utility at most x in R2 
and utility strictly larger than x in R4 . We have reached a contradiction.   ◻

Interestingly, a recent result by Brandl et al. (2021) in the fair mixing setting implies 
that position obliviousness can be dropped from Theorem 6.2 if there are n ≥ 6 agents. 
More specifically, Brandl et al. showed that no rule satisfies Pareto optimality, truthful-
ness, and “positive share”—the last condition is essentially the same as the GNEW 
being positive. By using the connection between fair mixing and cake sharing outlined 
in Sect. 1.2, we obtain the following corollary.

Fig. 6  Example instances in the proof of Theorem 6.2
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Corollary 6.3 (Brandl et al. 2021) Without blocking, no truthful and Pareto optimal 
mechanism can achieve a positive GNEW if there are n ≥ 6 agents.

Nevertheless, our Theorem 6.2 maintains two key advantages over Corollary 6.3:

• Theorem 6.2 already holds for the most basic case of n = 2 agents, while Corollary 
6.3 requires n ≥ 6 . Moreover, Brandl et al. noted that the bound n ≥ 6 is tight for 
their result; in other words, their impossibility turns into a possibility if n ≤ 5 . This 
means that our result for n = 2 (as well as any result for n ≤ 5 ) cannot be implied by 
a corresponding result from fair mixing.

• Brandl et  al.’s proof is extremely long and requires inspecting 386 instances. By 
contrast, our proof of Theorem 6.2 is much shorter and involves only 4 instances, 
thereby making it considerably easier to understand and verify by hand.

While position obliviousness can be dropped from Theorem 6.2 (if we assume n ≥ 6 ), 
truthfulness cannot: leximin is Pareto optimal, position oblivious, and has a positive 
GNEW. We do not know whether Pareto optimality is necessary for the theorem to hold.

7  Justified representation notions

In multiwinner voting, where the goal is to choose a certain number of candi-
dates from the available candidates (Faliszewski et al. 2017; Lackner and Skow-
ron 2023), a desideratum that has received significant attention in recent years is 
justified representation (JR) (Aziz et al. 2017). If there are n agents with approval 
preferences over the candidates and k candidates are to be chosen, JR demands 
that whenever at least n/k agents approve a common candidate, at least one of 
these agents is represented in the selected set of candidates (usually referred to as 
a committee). Two important strengthenings of JR have been proposed:

• A committee is said to provide proportional justified representation (PJR) 
(Sánchez-Fernández et al. 2017) if for every positive integer r and every set 
of agents N∗ ⊆ N such that |N∗| ≥ r ⋅ n∕k and the agents in N∗ commonly 
approve r candidates, at least r candidates in the committee are approved by at 
least one of these agents.

• A committee is said to provide extended justified representation (EJR) (Aziz 
et al. 2017) if for every positive integer r and every set of agents N∗ ⊆ N such 
that |N∗| ≥ r ⋅ n∕k and the agents in N∗ commonly approve r candidates, some 
agent in N∗ has at least r approved candidates in the committee.

It follows directly from the definitions that EJR implies PJR, which in turn 
implies JR. Aziz et al. (2017) showed that a committee providing EJR (and there-
fore PJR and JR) always exists.

In this section, we discuss how these notions can be adapted to our cake 
sharing setting, and how leximin and MNW perform with respect to the result-
ing notions. First, observe that since there is no discrete unit of candidate in our 
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setting, JR does not have a clear analog in cake sharing. By contrast, both PJR 
and EJR admit natural adaptations. Since we do not address truthfulness in this 
section, we ignore the issue of blocking and assume that an allocation is simply a 
piece of cake W with �(W) ≤ �.

Definition 7.1 (PJR) Given an instance, an allocation W with �(W) ≤ � is said to 
provide proportional justified representation (PJR) if for every positive real number 
t and every set of agents N∗ ⊆ N such that |N∗| ≥ t ⋅ n∕� and �

�⋂
i∈N∗ Ai

� ≥ t , it 
holds that �

�
W ∩

�⋃
i∈N∗ Ai

�� ≥ t.

Definition 7.2 (EJR) Given an instance, an allocation W with �(W) ≤ � is said to 
provide extended justified representation (EJR) if for every positive real number 
t and every set of agents N∗ ⊆ N such that |N∗| ≥ t ⋅ n∕� and �

�⋂
i∈N∗ Ai

� ≥ t , it 
holds that �(W ∩ Aj) ≥ t for some  j ∈ N∗.

As in the discrete setting, it is clear that EJR implies PJR. A mechanism is 
said to satisfy PJR (resp., EJR) if it outputs an allocation that provides PJR (resp., 
EJR) for every instance.

Since leximin ignores the size of the support of any particular preference, it 
can be easily shown to violate both axioms.

Proposition 7.3 The leximin solution satisfies neither PJR nor EJR.

Proof Since PJR is implied by EJR, it suffices to prove the statement for PJR. 
Let n ≥ 3 , and consider an instance with A1 = [0, 1∕2] and Ai = [1∕2, 1] for all 
2 ≤ i ≤ n . The leximin solution selects length �∕2 from each half of the cake. 
Choose t such that

this choice is always possible as � ∈ (0, 1) . Since n − 1 ≥ t ⋅ n∕� and agents 2,… , n 
commonly approve a piece of cake of length 1∕2 ≥ t , PJR dictates that a piece of 
length at least  t must be selected from  [1/2,  1]. However, leximin selects length 
𝛼∕2 < t from this interval.   ◻

Next, we show that MNW satisfies both of the representation notions. This 
result can be seen as a continuous analog of Aziz et  al. (2017)’s result that the 
Proportional Approval Voting (PAV) rule satisfies EJR in the discrete setting. 
Indeed, PAV assigns a utility of 1 + 1

2
+⋯ +

1

j
≈ ln j to an agent whenever the 

agent approves j candidates in the committee, and chooses a committee that max-
imizes the sum of the agents’ utilities. Since maximizing a product is equivalent 
to maximizing the sum of the logarithms of its terms, PAV in multiwinner voting 
is closely related to MNW in cake sharing.

To aid the presentation of our proof, we introduce some definitions.

𝛼

2
< t < min

{
𝛼 ⋅

n − 1

n
,
1

2

}
;
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Definition 7.4 Given an instance and an allocation W, for every point x that is not 
included in W and is not a breakpoint, we define its Nash addition marginal as

where Wadd is obtained by adding to W a piece of cake of length � adjacent to the 
point x. Analogously, for every point x that is included in W and is not a breakpoint, 
we define its Nash removal marginal as

where Wremove is obtained by removing from W a piece of cake of length � adjacent 
to the point x.

Intuitively, the Nash addition marginal is the rate of change of (the logarithm 
of) the Nash welfare when we add cake adjacent to a certain point. We do not 
define the Nash addition marginal for breakpoints because adding cake to the left 
and to the right of a breakpoint may yield different marginals. Similar statements 
hold for the Nash removal marginal.

Theorem 7.5 The MNW solution satisfies EJR and PJR.

Proof Since EJR implies PJR, it suffices to establish the statement for EJR. Suppose 
for contradiction that MNW violates EJR for some instance with parameter � , and 
consider a value t and a set of agents N∗ with |N∗| ≥ t ⋅ n∕� who commonly approve 
a piece of cake S with �(S) ≥ t such that Definition 7.2 is not satisfied. Let W be 
the piece of cake chosen by MNW, and assume without loss of generality11 that 
�(W) = � . Since Definition 7.2 is violated, we have ui(W) < t for all i ∈ N∗.

Suppose that W is a disjoint union of the intervals I1,… , Im , where each inter-
val Ij is valued either entirely or not at all by each agent. We have that �(S) ≥ t , 
ui(W) < t for every i ∈ N∗ , and all agents in N∗ approve the entire piece of cake S. In 
particular, not all of S is contained in W. Let z be a point in S ⧵W that is not a break-
point. The contribution of each agent i ∈ N∗ to the Nash addition marginal at point z 
is (ln ui(W))� = 1∕ui(W) . Thus,

On the other hand, we have

NAMW (x) = lim
�→0

∑
i∈N ln ui(Wadd) −

∑
i∈N ln ui(W)

�
,

NRMW (x) = lim
�→0

∑
i∈N ln ui(W) −

∑
i∈N ln ui(Wremove)

�
,

NAMW (z) ≥ |N∗| ⋅ 1

maxi∈N∗ ui(W)
≥ t ⋅

n

𝛼
⋅

1

maxi∈N∗ ui(W)
> t ⋅

n

𝛼
⋅
1

t
=

n

𝛼
.

11 If �(W) < 𝛼 , this means that �
�⋃

i∈N A
i

�
< 𝛼 , and any allocation returned by the MNW solution trivi-

ally provides EJR.
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note that when we take integrals, we can safely ignore breakpoints because they 
form a set of measure zero. Since �(W) = � , there exists a point y ∈ W whose Nash 
removal marginal is at most n∕� . In particular, the Nash addition marginal at z is 
strictly greater than the Nash removal marginal at y. Hence, by adding a piece of 
cake of sufficiently small length 𝜀 > 0 adjacent to z and removing a piece of cake 
of the same length adjacent to y, we obtain an allocation with a larger Nash welfare 
than W. This yields the desired contradiction.   ◻

Theorem  7.5 allows us to determine the GNEW of the MNW solution, which 
turns out to be the same as that of the leximin solution (Theorem 4.3).

Theorem 7.6 For all n ≥ 1 and � ∈ (0, 1),

Proof For the upper bound, consider the same instance R as in Theorem  4.3: 
Ai = [(i − 1)�∕n, i�∕n] for i = 1,… , n − 1 , and An = [(n − 1)�∕n, 1] . By the ine-
quality of arithmetic and geometric means, every MNW allocation W gives a desired 
cake of length �∕n to every agent, so

For the lower bound, as in the proof of Theorem 4.3, it suffices to show that MNW 
guarantees each agent i ∈ N a utility of at least min{�∕n,�(Ai)} . To this end, we fix 
an agent i and let t = min{�∕n,�(Ai)} . We have |{i}| = �

n
⋅
n

�
≥ t ⋅

n

�
 and �(Ai) ≥ t . 

Since the MNW solution satisfies EJR by Theorem 7.5, agent i must receive utility 
at least t = min{�∕n,�(Ai)} , as desired.   ◻

Next, we show that the MNW solution is the unique rule within a family of wel-
fare-maximizer rules that satisfies either PJR or EJR.12

∫W

NRMW (x) dx =

m�
j=1

∫Ij

NRMW (x) dx

=

m�
j=1

∫Ij

⎛
⎜⎜⎝

�
i∈N∶Ij⊆Ai

1

ui(W)

⎞
⎟⎟⎠
dx

=
�
i∈N

�
∫W∩Ai

1

ui(W)
dx

�
=
�
i∈N

�(W ∩ Ai)

ui(W)
=
�
i∈N

ui(W)

ui(W)
= n;

GNEWn,�(MNW) =
�

n − (n − 1)�
.

NEWR(W) ≤ un(A)

un([0, 1])
=

�∕n

1 −
(n−1)�

n

=
�

n − (n − 1)�
.

12 A similar result was obtained by Bogomolnaia et al. (2002) in the context of fair mixing.
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Definition 7.7 Let f ∶ [0, 1] → [−∞,∞) be a strictly increasing function which is 
differentiable in (0,  1). Given an instance, the f-welfare-maximizer rule chooses a 
piece of cake W with �(W) ≤ � whose f-welfare, defined as the sum 

∑
i∈N f (ui(W)) , 

is maximized.

Note that the f-welfare-maximizer rule with f (x) = ln x is equivalent to the MNW 
solution; the same is true for f (x) = c ln x + d for any real constants c > 0 and d. For 
all of these functions f, it holds that f �(x) = c∕x for some constant c.

Theorem  7.8 Let f ∶ [0, 1] → [−∞,∞) be a strictly increasing function which is 
differentiable in (0, 1). If the f-welfare-maximizer rule satisfies PJR, then there exists 
a constant c such that f �(x) = c∕x for all x ∈ (0, 1) . The same statement holds for 
EJR.

Proof Since PJR is implied by EJR, it suffices to prove the theorem for PJR. Let f be 
such that the f-welfare-maximizer rule satisfies PJR.

First, we show that for all x, y > 0 with x + y < 1 , it holds that

Suppose for contradiction that f
�(x)

f �(y)
≠ y

x
 for some such x, y. Assume without loss of 

generality that f
�(x)

f �(y)
>

y

x
 ; otherwise, we can switch the roles of x and y. Let nx and ny 

be positive integers such that

We construct an instance as follows. Let 𝛼 = x + y < 1 . The cake is a union of two 
disjoint intervals: Sx with length �(Sx) = 1 − y > x , and Sy with length �(Sy) = y . 
The set of agents N is composed of two disjoint sets Nx and Ny with |Nx| = nx and 
|Ny| = ny (so n = nx + ny ) such that the agents in Nx (resp., Ny ) only approve the 
piece of cake Sx (resp., Sy ). Since

and all agents in Ny approve a common piece of cake of length y, by the PJR condi-
tion, an allocation W chosen by the f-welfare-maximizer rule must include the entire 
piece Sy . In addition, as �(Sx) > x , W cannot include the entire piece Sx . However, 
since nx ⋅ f �(x) > ny ⋅ f

�(y) , the f-welfare of W can be improved by including an �
-length more of Sx and an �-length less of Sy , for some sufficiently small 𝜀 > 0 . This 
contradicts the assumption that W maximizes the f-welfare among all allocations of 
length at most � , and therefore establishes (1).

(1)
f �(x)

f �(y)
=

y

x
.

f �(x)

f �(y)
>

ny

nx
>

y

x
.

|Ny| = ny > y ⋅
nx + ny

x + y
= y ⋅

n

𝛼
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Next, we extend (1) by showing that f
�(x)

f �(y)
=

y

x
 for all x, y ∈ (0, 1) . Fix x, y ∈ (0, 1) , 

and let 𝜀 > 0 be such that x + 𝜀 < 1 and y + 𝜀 < 1 . From (1), we have f
�(x)

f �(�)
=

�

x
 and 

f �(y)

f �(�)
=

�

y
 . Dividing the first relation by the second yields f

�(x)

f �(y)
=

y

x
.

Finally, we show that there exists a constant c such that f �(x) = c∕x for all 
x ∈ (0, 1) . Fix b ∈ (0, 1) . For any x ∈ (0, 1) , we have f

�(x)

f �(b)
=

b

x
 , and so

Thus, we can take c = b ⋅ f �(b) . This completes the proof of the theorem.   ◻

To end this section, we strengthen Theorem 7.5 by adapting a fairness notion due 
to Aziz et al. (2020).

Definition 7.9 (AFS) Given an instance, an allocation  W with �(W) ≤ � is said 
to provide average fair share (AFS) if for every positive real number t and every 
set of agents N∗ ⊆ N such that |N∗| ≥ t ⋅ n∕� and �

�⋂
i∈N∗ Ai

� ≥ t , it holds that ∑
i∈N∗ ui(W) ≥ �N∗� ⋅ t.

Since 
∑

i∈N∗ ui(W) ≥ �N∗� ⋅ t implies that uj(W) ≥ t for at least one j ∈ N∗ , AFS 
is a strengthening of EJR. As with EJR and PJR, we say that a mechanism satisfies 
AFS if it outputs an allocation that provides AFS for every instance.

Theorem 7.10 The MNW solution satisfies AFS.

Proof The proof is very similar to that of Theorem 7.5. Suppose for contradiction 
that MNW violates AFS for some instance with parameter � , and consider a value t 
and a set of agents N∗ with |N∗| ≥ t ⋅ n∕� who commonly approve a piece of cake S 
with �(S) ≥ t such that Definition 7.9 is not satisfied. Let W be the piece of cake 
chosen by MNW, and assume without loss of generality that �(W) = � . Since Defi-
nition 7.9 is violated, we have 

∑
i∈N∗ ui(W) < �N∗� ⋅ t.

Suppose that W is a disjoint union of the intervals I1,… , Im , where each inter-
val Ij is valued either entirely or not at all by each agent. We have that �(S) ≥ t , ∑

i∈N∗ ui(W) < �N∗� ⋅ t , and all agents in N∗ approve the entire piece of cake S. In 
particular, not all of S is contained in W. Let z be a point in S ⧵W that is not a break-
point. The contribution of each agent i ∈ N∗ to the Nash addition marginal at point z 
is (ln ui(W))� = 1∕ui(W) . Thus,

where for the second inequality we apply the inequality of arithmetic and harmonic 
means. On the other hand, as in the proof of Theorem 7.5, there exists a point y ∈ W 
whose Nash removal marginal is at most n∕� . In particular, the Nash addition mar-
ginal at z is strictly greater than the Nash removal marginal at y. Hence, by adding 

f �(x) =
b ⋅ f �(b)

x
.

NAMW (z) ≥
�
i∈N∗

1

ui(W)
≥ �N∗�2∑

i∈N∗ ui(W)
>

�N∗�2
�N∗� ⋅ t =

�N∗�
t

≥ n

𝛼
,
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a piece of cake of sufficiently small length 𝜀 > 0 adjacent to z and removing a piece 
of cake of the same length adjacent to y, we obtain an allocation with a larger Nash 
welfare than W. This yields the desired contradiction.   ◻

8  Conclusion and future work

In this paper, we have studied truthful and fair mechanisms in the cake sharing set-
ting where all agents share the same subset of a heterogeneous divisible resource. 
Our results establish the leximin solution as an attractive mechanism due to its 
excludable truthfulness and its optimal guaranteed normalized egalitarian welfare 
(GNEW) among all excludably truthful and position oblivious mechanisms. On the 
other hand, we constructed an intricate example showing that the maximum Nash 
welfare (MNW) solution, which often exhibits desirable properties in other set-
tings, fails to yield excludable truthfulness in cake sharing even when the agents are 
restricted to subset reporting. Moreover, we showed that in the absence of blocking, 
no truthful, Pareto optimal, and position oblivious mechanism can achieve a positive 
GNEW even in the case of two agents—in particular, this implies that the leximin 
solution is not truthful without blocking. Besides the properties that we have investi-
gated, one could consider other desirable properties, e.g., from the multiwinner vot-
ing literature (Lackner and Skowron 2023).

In future research, it would be interesting to extend our cake sharing model to 
capture other practical scenarios.13 One natural direction is to allow agents to have 
more complex preferences beyond piecewise uniform utilities. The first step in this 
direction would be to consider piecewise constant utilities, where an agent’s den-
sity function is constant over subintervals of the cake. Another extension is to allow 
non-uniform costs over the cake—this models, for example, the fact that reserving 
a sports facility or a conference room can be more expensive during peak periods. 
In Appendix A, we show that a natural generalization of the leximin solution is still 
excludably truthful and achieves the optimal GNEW for piecewise constant cost 
functions. Furthermore, as in cake cutting, it may be fruitful to consider scenarios 
in which there are constraints on the shared cake (Suksompong 2021).14 Other ques-
tions addressed in cake cutting, such as the price of truthfulness and the price of 
fairness—that is, the loss of social welfare due to truthfulness and fairness, respec-
tively (Caragiannis et al. 2012; Maya and Nisan 2012; Aumann and Dombb 2015; 

13 After the conference version of our work was published, Lu et al. (2023) extended our model to an 
“(approval-based) voting with mixed goods” model, where the resource to be shared may consist of both 
cake and discrete goods.
14 A desirable property in certain applications is contiguity—for example, a contiguous time slot is often 
more useful than a union of disconnected slots. However, note that if contiguity is imposed, we may not 
be able to avoid leaving some agents empty-handed. A trivial example is when one agent only values 
a small piece of cake at the left end while another agent only values one at the right end. In this case, 
unless � is very close to 1, one of the agents will necessarily receive utility 0.
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Bei et al. 2021)—are equally relevant and worthy of exploration in cake sharing as 
well.

A Non‑uniform costs

In this section, we consider an extension of our model where the cost of select-
ing the cake may be non-uniform. Specifically, there is a (public) cost func-
tion c ∶ [0, 1] → ℝ≥0 , which captures the cost for different parts of the cake. We 
assume that the cost function is piecewise constant, and without loss of generality 
that ∫ 1

0
c dx = 1 (if the whole cake has cost 0, the mechanism can simply always 

choose the whole cake). Note that the main model of our paper corresponds to the 
cost function being the constant 1 over the entire cake. We still consider piecewise 
uniform utility functions of the agents, and allow the mechanism to choose a piece 
of cake with cost at most a given parameter � ∈ (0, 1).

First, we observe that in this more general setting, the leximin solution has a 
GNEW of 0.

Example A.1 Let � ∈ (0, 1∕2) . Consider an instance R with � = 1∕2 , two agents such 
that A1 = [0, �] and A2 = [�, 1] , and the cost function c as follows:

In particular, the total cost of the interval [0, �] is 1/2; the same is true for [�, 1].
In this instance, the leximin solution must choose an allocation W that includes 

the same length from each of A1 and A2—this length y satisfies y ⋅ 1

2�
+ y ⋅

1

2(1−�)
=

1

2
 , 

i.e., y = �(1 − �) . Hence, the GNEW of leximin (for n = 2 and � = 1∕2 ) is at most 
u2(W)

u2([0,1])
=

�(1−�)

1−�
= � . Since � can be arbitrarily small, the GNEW is necessarily 0.

In spite of this negative example, we can adapt the leximin solution while 
maintaining both excludable truthfulness and the GNEW as follows. First, con-
sider all breakpoints of the cost function, where the breakpoints are defined in 
the same way as for the utility functions. Then, for each piece of cake between 
two consecutive breakpoints, we choose a fraction of at most � of this cake by 
implementing the canonical leximin solution with the same � . The adapted lexi-
min solution then returns the union of the chosen cake. By linearity, the chosen 
cake has cost at most �.

Theorem A.2 For all n ≥ 1 and � ∈ (0, 1) , when the cost function is piecewise con-
stant, the adapted leximin solution is excludably truthful and has a GNEW of �

n−(n−1)�
.

Proof We first establish excludable truthfulness. The cost function is public and its 
breakpoints cannot be controlled by the agents, so we can consider the piece of cake 
between each pair of consecutive breakpoints separately. By Theorem 3.3, for each 

c(x) =

{
1

2�
for x ∈ [0, �];

1

2(1−�)
for x ∈ [�, 1].
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piece, reporting the utility function truthfully yields the highest utility to each agent. 
Since the utility for the whole cake is simply the sum of the utilities for different 
pieces, the mechanism is truthful.

The upper bound of the GNEW follows from Theorem 4.3 since the cost function 
in the current theorem is more general. For the lower bound, observe that by Theo-
rem 4.3, for the piece of cake between each pair of consecutive breakpoints, each 
agent receives a utility of at least a fraction �

n−(n−1)�
 of her utility for this entire piece 

of cake. The desired bound then follows by linearity.   ◻

We remark that since we consider more general cost functions in this section, 
the GNEW of �

n−(n−1)�
 is still optimal by Theorem 4.6. However, unlike the canon-

ical leximin solution, the adapted version is no longer Pareto optimal, since it 
may be possible to improve the utility of all agents by choosing more than an � 
fraction in certain parts of the cake and less in other parts. An interesting ques-
tion is therefore whether we can obtain Pareto optimality while preserving 
excludable truthfulness and the GNEW.
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