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Abstract
Given a claims problem, the average-of-awards rule ( AA ) selects the expected value 
of the uniform distribution over the set of awards vectors. The AA rule is the center 
of gravity of the core of the coalitional game associated with a claims problem, so 
it corresponds to the core-center. We show that this rule satisfies a good number of 
properties so as to be included in the inventory of division rules. We also provide 
several representations of the AA rule and a procedure to compute it in terms of the 
parameters that define the problem.

1 Introduction

A claims problem arises when a scarce resource has to be shared among a set of 
claimants and the endowment falls short of the sum of individual claims. The ques-
tion is, how to select a division among the claimants of the amount available. The 
definition of division rules and the study of different approaches to evaluate and 
compare them started with O’Neill (1982) and has generated a vast literature. The 
model has many applications that include bankruptcy problems, taxation systems, 
rationing problems, or the distribution of the carbon budget.

A division rule must satisfy three natural requirements: no claimant is asked to 
pay; no claimant receives more than her claim; and the entire endowment is allo-
cated. The set of all the allocations that meet these basic properties is the set of 
awards vectors for the problem. Therefore, formally, a rule is a function that associ-
ates with each problem an awards vector. For an inventory of the principal rules, 
their properties, and a comprehensive survey on claims problems refer to Thomson 
(2019).
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An intuitive and simple way of selecting an allocation from the set of awards 
vectors for a problem is to assume that all the awards vectors are equally likely 
and therefore choosing their “average”. For each problem, the division recom-
mended by the average-of-awards rule ( AA ) is the expected value of the uniform 
distribution over the set of awards vectors.

Following O’Neill (1982), to each problem one can associate a coalitional 
game. Curiel et al. (1987) note that the coalitional game associated with a prob-
lem is a convex game so its core is nonempty. In fact, the set of awards vectors for 
a problem coincides with the core of its associated coalitional game. A division 
rule corresponds to a solution to coalitional games if the choice made by the rule 
for each problem coincides with the choice made by the solution to coalitional 
games when applied to the associated coalitional game.

The core-center was defined and characterized for the general class of games 
with nonempty core by González-Díaz and Sánchez-Rodríguez (2007, 2009) and 
was studied on the domain of airport games by González-Díaz et al. (2015, 2016) 
and Mirás Calvo et al. (2016). Since, geometrically, the AA rule is the center of 
gravity (centroid) of the set of awards vectors, it corresponds to the core-center. 
There are other rules that select central points of the set of awards vectors. The 
random arrival rule ( RA ), which corresponds to the Shapley value, is the Steiner 
point of the set of awards vectors (Pechersky 2015). The adjusted proportional 
rule ( APRO ), which corresponds to the �-value, is a weighted average of the 
extreme points of the set of awards vectors (González-Díaz et al. 2005). The Tal-
mud rule ( T ), which corresponds to the nucleolus, is the lexicographic center of 
the set of awards vectors (Schmeidler 1969).

Analyzing the AA rule demands a detailed examination of the structure of the 
set of awards vectors. This structure is particularly simple: it is a nonempty com-
pact and convex polytope, the intersection of a rectangle with a hyperplane. Many 
of the geometric features of the set of awards vectors are established in the com-
panion paper Mirás Calvo et al. (2022b). Making use of these characteristics, and 
providing some decompositions of the set of awards vectors, we prove that the 
AA rule satisfies a good number of the standard properties for division rules. In 
this sense, we can say that the rule is well-behaved. Mirás Calvo et  al. (2022a) 
incorporate the average of awards rule to the ranking of the standard rules with 
the Lorenz order.

There are two particular qualities of this rule that are worth noting. Certainly, the 
AA rule is a continuous rule: small changes in the parameters of the problem do not 
lead to large changes in the recommendation made by the rule. In particular, a vari-
ation in the endowment, no matter how small, produces a change in the correspond-
ing set of awards vectors. The AA rule is highly sensitive to such changes. In fact, 
we prove that the recommendation made by the AA rule, for problems with at least 
three claimants, not only varies continuously with respect to the endowment but also 
that the rate at which the recommendation changes varies also with continuity, that 
is, the AA rule is endowment differentiable. Secondly, the AA rule coincides with 
the concede-and-divide rule ( CD ) for two claimants but, for larger populations, it 
differs from the standard rules. Therefore, the AA rule is an endowment differenti-
able extension of the CD rule.
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There are simple mechanisms to compute some of the basic rules. But, in general, 
computing the allocation selected by a rule for a given problem can be computation-
ally hard when the population is large. For example, Aziz (2013) shows that the allo-
cation returned by the RA rule is #P-complete to compute. There are general algo-
rithms to obtain the centroid of higher dimensional polyhedra that can be applied to 
calculate the AA rule. Here we present a procedure to exactly compute this rule in 
terms of the parameters of the problem, and provide an analytic expression for three-
claimant problems.

The paper is organized as follows. Section 2 introduces the AA rule. In Sect. 3 
we define some properties of division rules and we summarize which of them are 
satisfied or violated by the AA rule. The specific results are presented in Sect. 4. The 
computation of the AA rule is addressed in Sect. 5. The purely technical results are 
left to the Appendix.

2  The average‑of‑awards rule

Let N  be the set of all finite nonempty subsets of the natural numbers ℕ . 
Given N ∈ N  , z ∈ ℝ

N , and S ∈ 2N let |N| be the number of elements of N and 
z(S) =

∑
i∈S zi . Given N� ⊂ N ∈ N  , let zN� =

(
zi
)
i∈N� ∈ ℝ

N� be the projection of z 
onto ℝN′ . In particular denote z−i = zN�{i} ∈ ℝ

N�{i} the vector obtained by neglecting 
the ith-coordinate of z. For simplicity, we will write z = (z−i, zi) . Given z,w ∈ ℝ

N , 
the notation z ≤ w means that zi ≤ wi for all i ∈ N.

A claims problem (O’Neill 1982) with set of claimants N ∈ N  is a pair (E, d) 
where E ≥ 0 is the endowment and d ∈ ℝ

N is the vector of claims satisfying d ≥ 0 
and E ≤ d(N) . We denote the class of claims problems with set of claimants N by 
CN . Let us assume throughout the paper that N = {1,… , n}.

The minimal right of claimant i ∈ N in (E, d) ∈ CN is the quantity 
mi(E, d) = max

{
0,E − d(N�{i})

}
 . It is what is left after every one else has been 

fully compensated, or 0 if that is not possible. The truncated claim of claimant 
i ∈ N in (E, d) ∈ CN is ti(E, d) = min{E, di} . It is the claim truncated by the amount 
to divide. To simplify, sometimes we write mi = mi(E, d) and ti = ti(E, d) . Let 
m(E, d) =

(
mi(E, d)

)
i∈N

 and t(E, d) =
(
ti(E, d)

)
i∈N

.
A vector x ∈ ℝ

N is an awards vector for (E, d) ∈ CN if 0 ≤ x ≤ d and 
x(N) = E . Let X(E,  d) be the set of awards vectors for (E, d) ∈ CN . Clearly, 
X(E,  d) is the intersection of the rectangle 

∏
i∈N[0, di] with the hyperplane 

H(E, d) = {x ∈ ℝ
N ∶ x(N) = E} . Then, the set of awards vectors for (E, d) is a non-

empty compact convex polytope that has, at most, dimension n − 1.
A division rule is a function R ∶ CN

→ ℝ
N assigning to each problem 

(E, d) ∈ CN an awards vector R(E, d) ∈ X(E, d) , that is, a way of associating with 
each problem a division of the amount available among the claimants. In our defini-
tion of a division rule we include three requirements: nonnegativity (no claimant 
is asked to pay); claims boundedness (no claimant receives more than her claim); 
and balance (the entire endowment is allocated). Certainly, there are applications in 
which one (or more) of these requirements could be dropped but they are very natu-
ral in most situations.
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An intuitive and simple way of selecting an allocation from the set of awards 
vectors for a problem is to assume that all the awards vectors are equally likely and 
therefore choosing their “average”.

Definition 2.1 The average-of-awards rule is the rule AA ∶ CN
→ ℝ

N that assigns to 
each (E, d) ∈ CN the value AA(E, d) given by the expected value of the (continuous) 
uniform distribution over the set of awards vectors X(E, d).

In geometrical terms, AA(E, d) is the centroid of the set of awards vectors for 
(E, d) ∈ CN . Since X(E, d) is convex, AA(E, d) ∈ X(E, d) so, in fact, AA is a divi-
sion rule.

Suppose that N = {1, 2} . Let (E, d) ∈ CN with d = (d1, d2) ∈ ℝ
N such that 

0 ≤ d1 ≤ d2 . Then, X(E,  d) is the line segment with endpoints (m1,E − m1) and 
(E − m2,m2) , where m1 = max{0,E − d2} and m2 = max{0,E − d1} (see Fig.  1). 
The AA rule selects the middle point of the segment:

Then, the AA rule satisfies the concede-and-divide principle, or contested garment 
principle (Aumann and Maschler 1985).1

Example 2.2 Let N = {1, 2, 3} and consider the problem (E, d) ∈ CN 
with E = 3 and d = (1, 2, 2) . Then the set of awards vectors 
X(E, d) =

{
(x1, x2, x3) ∈ ℝ

3 ∶ 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 2, x1 + x2 + x3 = 3
}
 

is the quadrilateral, depicted in Fig. 2, with vertices (1, 0, 2), (0, 1, 2), (0, 2, 1), and 

(1)AA(E, d) =

⎧
⎪⎨⎪⎩

�
E

2
,
E

2

�
if 0 ≤ E ≤ d1� d1

2
,E −

d1

2

�
if d1 ≤ E ≤ d2�E+d1−d2

2
,
E−d1+d2

2

�
if d2 ≤ E ≤ d1 + d2

.

Fig. 1  The set of awards vectors 
and the AA rule for a two-claim-
ant problem

m1

m2

E −m2

E −m1

X(E, d)

AA1(E, d)

AA2(E, d)

1 Therefore, the AA , T , APRO , RA , and minimal overlap ( MO ) rules coincide for problems with two 
claimants.
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(1, 2, 0). The centroid of X(E, d) can be easily computed using elementary geom-
etry,2 in fact, AA(E, d) = (

5

9
,
11

9
,
11

9
).

Let ℝn≤ be the set of nonnegative n-dimensional vectors x = (x1,… , xn) such that 
0 ≤ x1 ≤ … ≤ xn . In what follows we assume that given a problem (E, d) ∈ CN , 
the claims d = (d1,… , dn) ∈ ℝ

n are arranged from small to large, i.e., d ∈ ℝ
n≤ . 

As a consequence we have that di ≤ d(N�{i}) , d(N�{i}) ≥ d(N�{i + 1}) , 
and mi(E, d) ≤ mi+1(E, d) for all i ∈ N�{n} . Then, either dn ≤ d(N�{n}) or 
d(N�{n}) ≤ dn , but in both situations 1

2
d(N) is the middle point of the line segment 

with endpoints dn and d(N�{n}) . The two cases are illustrated in Fig.  3. In fact, 
1

2
d(N) is also the middle point of the intervals [di, d(N�{i})] for all i ∈ N�{n}.

Observe that if E = 0 or d = (0,… , 0) then X(E, d) = {(0,… , 0)} so 
AA(E, d) = (0,… , 0) . If E = d(N) then X(E, d) = {d} and AA(E, d) = d . 
Now, if some claims (but not all) are null and N� = {j ∈ N ∶ dj = 0} then 
X(E, d) = 0N� × X(E, dN�N� ) so AAN� (E, d) = 0N� . Therefore, X(E,  d) is not full 
dimensional if and only if either E = 0 , or E = d(N) , or there is j ∈ N with dj = 0 . 
So, in order to compute the AA rule we can remove the claimants in N′ and apply 
the rule to the problem (E, dN�N� ) ∈ CN�N� whose set of awards vectors is full 
dimensional.

Let � be the (n − 1)-dimensional Lebesgue measure. Fix a vector of claims 
d ∈ ℝ

n≤ . Then (E, d) ∈ CN for each E ∈ [0, d(N)] . We define the volume func-
tion V(⋅, d) ∶ [0, d(N)] → ℝ as V(E, d) = �(X(E, d)) , the (n − 1)-measure of the 
set of awards vectors X(E, d). Naturally, X(E, d) is full dimensional if and only if 

Fig. 2  The set of awards vectors 
X(3, (1, 2, 2)) and its centroid

3, 0, 0
)

0, 3, 0
)

0, 0, 3
)

1, 2, 0
)

0, 2, 1
)

0, 1, 2
)

1, 0, 2
)

AA

0 d(N)1
2 d(N)

d1 d(N\{1}). . . . . .

d(N\{n}) dn

d(N\{n − 1})dn−1

0 d(N)1
2 d(N)

d1 d(N\{1}). . . . . .

dn d(N\{n})

d(N\{n − 1})dn−1

Fig. 3  Claims arranged in ascending order on the interval [0, d(N)]

2 Alternatively, compute AA(E, d) using the explicit formulae given in Lemma 5.2.
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V(E, d) > 0 . Then, according to Definition 2.1, for each (E, d) ∈ CN such that 
V(E, d) > 0 and each i ∈ N , we have that:

There are situations where the AA rule is easy to compute. For instance, if all claims 
are bigger than the endowment, that is E ≤ d1 , then X(E, d) is the regular simplex 
spanned by the points ai = (ai

1
,… , ai

n
) , i ∈ N , where ai

j
= E if i = j and 0 otherwise. 

Therefore AA(E, d) , the arithmetic mean of these points, coincides with the egalitar-
ian division, that is, AAi(E, d) =

E

n
 for all i ∈ N . Another interesting case occurs 

when the largest claim exceeds the aggregate claim of the other claimants and the 
endowment lies between these two quantities, that is, if E ∈ [d(N�{n}), dn] . Then 
the set of awards vectors has a very simple structure:

Consequently, the AA rule gives to all the claimants, except for the one with the 
largest claim, the geometric center of the (n − 1)-rectangle 

∏n−1

i=1
[0, di] , and to the 

other claimant what is left:3

Observe that if N = {1, 2} and d = (d1, d2) ∈ ℝ
2≤ then always d(N�{2}) = d1 ≤ d2 , 

so AA(E, d) =
( d1

2
,E −

d1

2

)
 if d1 ≤ E ≤ d2.

A coalitional game is an ordered pair (N, v) where N ∈ N  is a finite set of play-
ers and v ∶ 2N → ℝ , the characteristic function, satisfies v(�) = 0 . Let GN be the 
set of all coalitional games with player set N. Given a game v ∈ GN , a vector x ∈ ℝ

N 
is said to be an efficient allocation if x(N) = v(N) . A (single-valued) solution is a 
mapping that associates with each game v in some admissible class of games an effi-
cient allocation. The core of a game v ∈ GN is the set

Following O’Neill (1982), the coalitional game associated with the claims prob-
lem (E, d) ∈ CN is the game v ∈ GN defined by v(S) = max

{
0, E − d(N�S)

}
 for 

S ∈ 2N . If for each problem, the recommendation made by a given division rule 
coincides with the recommendation made by a given solution to coalitional games 
when applied to the associated coalitional game, we say that the rule corresponds 
to the solution. The set of awards vectors for a problem coincides with the core of 
the associated coalitional game [see, for instance, Thomson (2019)], that is, X(E, d) 

AAi(E, d) =
1

V(E, d) ∫
X(E,d)

xi d�.

X(E, d) =
{
x ∈ ℝ

n ∶ x−n ∈

n−1∏
i=1

[0, di], xn = E − x(N�{n})
}
.

(2)AA(E, d) =
( d1

2
,… ,

dn−1

2
,E −

1

2
d(N�{n})

)
.

C(v) =
{
x ∈ ℝ

N ∶ x(N) = v(N), x(S) ≥ v(S) for all S ⊂ N
}
.

3 If (E, d) ∈ CN with E ∈ [d(N�{n}), dn] , then AA(E, d) = T(E, d) = RA(E, d) = APRO(E, d).
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consists of all allocations satisfying the balance condition that are bounded from 
below by the minimal rights and bounded from above by the truncated claims:

Therefore, the AA rule corresponds to the core-center introduced by González-Díaz 
and Sánchez-Rodríguez (2007).

3  Summary of properties

The axiomatic approach has dominated the study of rules. Rules are examined, 
classified, and characterized according to the properties that they satisfy (or vio-
late). We present some standard properties. We say that a rule R satisfies:

• minimal rights first, if for each (E, d) ∈ CN we have 
R(E, d) = m(E, d) +R

�
E −

∑
i∈N mi(E, d), d − m(E, d)

�
.

• claims truncation invariance, if for each (E, d) ∈ CN we have that 
R(E, d) = R(E, t(E, d)).

• 1

|N|-truncated-claims lower bounds on awards, if for each (E, d) ∈ CN we 
have R(E, d) ≥ 1

|N| t(E, d).
• 1

|N|-min-of-claim-and-deficit lower bounds on losses, if for each (E, d) ∈ CN 
we have d −R(E, d) ≥ 1

|N| t
(
d(N) − E, d

)
.

• min-of-claim-and-equal-division lower bounds on awards, if for each 
(E, d) ∈ CN we have R(E, d) ≥ t

(
E

|N| , d
)
.

• equal treatment of equals, if for each (E, d) ∈ CN and each {i, j} ⊂ N , if 
di = dj we have Ri(E, d) = Rj(E, d).

• anonymity, if for each (E, d) ∈ CN , each bijection f from N into itself, and 
each i ∈ N , we have that Ri(E, d) = Rf (i)

(
E, (df (i))i∈N

)
.

• order preservation, if for each (E, d) ∈ CN and each {i, j} ⊂ N , if di ≤ dj we 
have Ri(E, d) ≤ Rj(E, d) and di −Ri(E, d) ≤ dj −Rj(E, d).

• claim monotonicity, if for each (E, d) ∈ CN , each i ∈ N , and each d′
i
≥ di , we 

have Ri(E, (d−i, d
�
i
)) ≥ Ri(E, d).

• linked claim-endowment monotonicity, if for each (E, d) ∈ CN , each i ∈ N , 
and each 𝛿 > 0 , we have Ri

(
E + �, (d−i, di + �)

)
−Ri(E, d) ≤ �.

• other-regarding claim monotonicity, if for each (E, d) ∈ CN , each i ∈ N , and 
each d′

i
≥ di , we have Rj(E, (d−i, d

�
i
)) ≤ Rj(E, d) for all j ∈ N , j ≠ i.

• endowment monotonicity, if for each (E, d) ∈ CN and each E′ ≥ 0 , if 
d(N) ≥ E� ≥ E we have R(E�, d) ≥ R(E, d).

• homogeneity, if for each (E, d) ∈ CN and each 𝜌 > 0 , we have 
R(�E, �d) = �R(E, d).

• composition down, if for each (E, d) ∈ CN and each E′ < E , we have 
R(E�, d) = R(E�,R(E, d)).

X(E, d) =
{
x ∈ ℝ

N ∶ m(E, d) ≤ x ≤ t(E, d), x(N) = E
}
.
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• composition up, if for each (E, d) ∈ CN and each E′ ≥ 0 , if d(N) ≥ E� > E 
then R(E�, d) = R(E, d) +R(E� − E, d −R(E, d)).

• continuity, if for each sequence {(E� , d�)} of elements of CN and each 
(E, d) ∈ CN , if {(E� , d�)} converges to (E, d) we have {R(E� , d�)} converges to 
R(E, d).

• self-duality, if for each (E, d) ∈ CN we have R(E, d) = d −R
(
d(N) − E, d

)
.

Some of these properties are stronger requirements than others. For instance, min-
of-claim-and-equal-division lower bounds on awards implies 1

|N|-truncated-claims 
lower bounds on awards, and other-regarding claim monotonicity implies claim 
monotonicity. Anonymity implies equal treatment of equals. Order preservation also 
implies equal treatment of equals. Moreover, composition down (composition up) 
implies endowment monotonicity.

With each rule R we can associate a unique dual rule R∗ , the one defined by the 
right-hand side of the expression in the statement of the self-duality property: 
R

∗(E, d) = d −R
(
d(N) − E, d

)
 . A rule R is self-dual if R = R

∗ . Two properties 
are dual if whenever a rule satisfies one of them then its dual satisfies the other. The 
following are pairs of dual properties: claims truncation invariance and minimal 
rights first; 1

|N|-truncated-claims lower bounds on awards and 1

|N|-min-of-claim-and-
deficit lower bounds on losses; composition down and composition up; and claim 
monotonicity and linked claim-endowment monotonicity. Note that order preserva-
tion is, in fact, the conjunction of two dual properties: order preservation in 
awards and order preservation in losses.

We also consider situations in which the population of claimants involved may 
vary. In this case, a problem is defined by first specifying N ∈ N  , then a pair 
(E, d) ∈ CN . We still denote the class of all problems with claimant set N by CN . So, 
a rule is a function defined on 

⋃
N∈N CN that associates with each N ∈ N  and each 

(E, d) ∈ CN an awards vector for (E, d). We say that a rule R satisfies:

• population monotonicity, if for each pair {N,N�} ⊂ N  such that N′ ⊂ N , and 
each (E, d) ∈ CN we have RN� (E, d) ≤ R(E, dN� ).

• null claims consistency, if for each N ⊂ N  , each (E, d) ∈ CN , and each N′ ⊂ N , 
if d(N�N�) = 0 we have RN� (E, d) = R(E, dN� ).

• consistency, if for each pair {N,N�} ⊂ N  such that N′ ⊂ N , and each 
(E, d) ∈ CN if x = R(E, d) we have xN� = R

(
x(N�), dN�

)
 . Bilateral consistency 

is the weaker property obtained by considering only subgroups of two remaining 
agents, that is, when |N�| = 2.

• converse consistency, if for each N ∈ N  , each (E, d) ∈ CN , and each 
x ∈ X(E, d) , if for each N′ ⊂ N with |N�| = 2 we have xN� = R

(
x(N�), dN�

)
 then 

x = R(E, d).
• replication invariance,4 if for each N ∈ N  , each (E, d) ∈ CN , each N′ ⊃ N , 

and each (E�, d�) ∈ CN� , if (E�, d�) ∈ CN� is a k-replica of (E,  d) with asso-

4 Given (E, d) ∈ CN and k ∈ ℕ , we say that (E�
, d�) ∈ CN� is a k -replica of (E, d) if E� = kE , N′ ⊃ N , 

|N�| = k|N| , and there is a partition (Ni)i∈N of N′ such that for each i ∈ N and each j ∈ Ni , |Ni| = k and 
d�
j
= di.
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ciated partition (Ni)i∈N , then for each i ∈ N and each j ∈ Ni we have 
Rj(E

�, d�) = Ri(E, d).

Table  1 summarizes which of the properties listed above are satisfied or violated 
by the AA rule. A check mark, ̌mark , in a cell means that the property is satisfied 
by the rule and a minus sing, −, means the opposite. The last column indicates the 
specific result in the next section where the corresponding mark is established. As 
Table 1 shows, the AA rule satisfies a good number of properties so as to be part of 
the inventory of rules.

In the next section, we use the following general property of the centroid. Let 
(E, d) ∈ CN and K be a convex polytope contained in the hyperplane H(E, d). Denote 
its centroid by c̄(K).5 Then c̄(a + 𝛼K) = a + 𝛼c̄(K) for all a ∈ ℝ

N and � ∈ ℝ . One of 
the methods used in obtaining the centroid of a compound shape consists in dividing 

Table 1  Properties satisfied or violated by the AA rule

Property AA Propositions

Minimal rights first ✓ 4.1
Claims truncation invariance ✓ 4.1
1

|N|-truncated-claims lower bounds on awards ✓ 4.9
1

|N|-min-of-claim-and-deficit lower bounds on losses ✓ 4.9

Min-of-claim-and-equal-division lower bounds on awards − 4.3
Equal treatment of equals ✓ 4.2
Anonymity ✓ 4.1
Order preservation ✓ 4.4
Claim monotonicity ✓ 4.8
Linked claim-endowment monotonicity ✓ 4.8
Other-regarding claim monotonicity ✓ 4.8
Endowment monotonicity ✓ 4.6
Continuity ✓ 4.2
Homogeneity ✓ 4.2
Composition down − 4.3
Composition up − 4.3
Self-duality ✓ 4.1
Population monotonicity ✓ 4.7
Null claims consistency ✓ 4.1
Consistency − 4.3
Converse consistency − 4.3
Replication invariance − 4.3

5 Of course, AA(E, d) = c̄
(
X(E, d)

)
.
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the shape into a number of parts, that share no common volume, and then finding 
the overall centroid as the average of the centroid of each part weighted by its rela-
tive measure. Formally, if 𝜆(K) > 0 , K = K1 ∪ K2 , �(K1 ∩ K2

)
= 0 , and � =

�(K1)

�(K)
 , 

then

4  Results

We begin by establishing some properties that are a direct consequence of simple 
geometrical features of the set of awards vectors.

Proposition 4.1 The AA rule satisfies anonymity, null claims consistency, self-dual-
ity, claims truncation invariance, and minimal rights first.

Proof Let N = {1,… , n} and (E, d) ∈ CN . It is obvious that the AA rule, being the 
centroid of the set of awards vectors X(E, d), satisfies anonymity. We have seen that 
if N� = {j ∈ N ∶ dj = 0} then AAN� (E, d) = 0N� and AAN�N� (E, d) = AA(E, dN�N� ) , 
so the AA rule satisfies null claims consistency. Self-duality follows from the equal-
ity X(E, d) = d − X(d(N) − E, d) . Since X(E, d) = X(E, t(E, d)) we conclude that AA 
satisfies claims truncation invariance. The AA rule also satisfies minimal rights first 
because it is self-dual and claims truncation invariance and minimal rights first are 
dual properties.   ◻

Self-duality implies that the AA rule satisfies the midpoint property, that is, 
AA

(
1

2
d(N), d

)
=

1

2
d.

Now, some general properties of the core-center for coalitional games are easy to 
translate to properties of the AA rule.

Proposition 4.2 The AA rule satisfies equal treatment of equals, homogeneity, and 
continuity.

Proof The AA rule corresponds to the core-center for coalitional games with non-
empty core. González-Díaz and Sánchez-Rodríguez (2007) show that the core-
center treats symmetric players symmetrically and that it is a homogeneous and 
continuous function of the values of the characteristic function. The AA rule sat-
isfies equal treatment of equals because claimants with the same claims are sym-
metric players in the associated coalitional game. Since, given 𝛼 > 0 and S ∈ 2N we 
have that v�(S) = �v(S) , where v� is the coalitional game associated with the prob-
lem (�E, �d) ∈ CN , the AA rule satisfies homogeneity. The values, v(S), S ∈ 2N , of 
the characteristic function are continuous with respect to the endowment E and the 

(3)c̄(K) = 𝜌c̄(K1) + (1 − 𝜌)c̄(K2).
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claims d. Then, the AA rule satisfies continuity because it is a composition of con-
tinuous functions.   ◻

Next, we consider the properties listed in Table 1 that the AA rule fails.

Proposition 4.3 The AA rule violates composition down, composition up, consist-
ency, min-of-claim-and-equal-division lower bounds on awards, replication invari-
ance, and converse consistency.

Proof Dagan (1996) shows that the constrained equal awards rule ( CEA ) is the only 
rule satisfying equal treatment of equals, claims truncation invariance and composi-
tion up. Then, the AA rule does not satisfy composition up. Since composition down 
and composition up are dual properties and the AA rule is self-dual, it violates com-
position down. Aumann and Maschler (1985) prove that the T rule is the only rule 
to agree with concede-and-divide for two claimants and to be bilateral consistent. 
Then the AA rule fails bilateral consistency and therefore consistency,6

Recall from Example 2.2, that if N = {1, 2, 3} and (E, d) ∈ CN , with E = 3 and 
d = (1, 2, 2) , then AA(E, d) = (

5

9
,
11

9
,
11

9
) . Observe that the truncated claims vector is 

t
(
E

3
, d
)
= (1, 1, 1) and that AA1(E, d) < 1 , so the AA rule violates min-of-claim-and-

equal-division lower bounds on awards.
Let N = {1, 2} and 

(
2, (2, 4)

)
∈ CN . Then AA

(
2, (2, 4)

)
= (1, 1) . Now let 

N� = {1, 2, 3, 4} and 
(
4, (2, 4, 2, 4)

)
∈ CN� . Then AA

(
4, (2, 4, 2, 4)

)
=
(
5

6
,
7

6
,
5

6
,
7

6

)
.7 

Claimants 1 and 2 are not getting the same amounts in AA
(
2, (2, 4)

)
 and in its 2-rep-

lica 
(
4, (2, 4, 2, 4)

)
 . We conclude that the AA rule violates replication invariance. 

In fact, we have proved that it is not invariant under replication of two claimant 
problems. Anonymity and converse consistency imply invariance under replication 
of two claimant problems. Therefore, the AA rule violates converse consistency.8  
 ◻

Let us turn our attention to order preservation. We show that the awards, and 
losses, recommended by the AA rule are ordered as claims are.

Proposition 4.4 The AA rule satisfies order preservation.

Proof We start by proving that the AA rule satisfies order preservation in awards. Let 
(E, d) ∈ CN , d ∈ ℝ

n≤ , and i ∈ N�{n} . We have to prove that AAi(E, d) ≤ AAi+1(E, d) . 
Since the AA rule satisfies minimal rights first and mi(E, d) ≤ mi+1(E, d) for all 
i ∈ N�{n} , it suffices to prove the result when m(E, d) = 0 . Assume that V(E, d) > 0 . If 
di = di+1 then, by equal treatment of equals, AAi(E, d) = AAi+1(E, d) . Suppose that 
di < di+1 . If E ≤ di then, by claims truncation invariance, AAi(E, d) = AAi+1(E, d) . So, 

6 A direct proof that the AA rule violates composition down composition up, and consistency can easily 
be obtained.
7 To compute AA

(
4, (2, 4, 2, 4)

)
 one can use the algorithm of Sect. 5.

8 The AA rule is not a Young’s parametric rule because all of them are converse consistent.



874 M. Á. Mirás Calvo et al.

1 3

assume that E > di . Take a = (d−(i+1), di) , b = (0−(i+1), di) , and h = d − b . Then 
(E, a) ∈ CN , (E − di, h) ∈ CN , and X(E, d) = X(E, a) ∪

(
b + X(E − di, h)

)
 . Moreover, 

�
(
X(E, a) ∩ (b + X(E − di, h))

)
= 0 , because X(E, a) and b + X(E − di, h) are separated 

by the hyperplane xi+1 = di . Take � =
V(E,a)

V(E,d)
 . By equal treatment of equals, 

AAi+1(E, a) = AAi(E, a) . Moreover, c̄
i+1

(
b + X(E − d

i
, h)

)
= d

i
+ AA

i+1(E − d
i
, h)

≥ d
i
≥ AA

i
(E − d

i
, h) = c̄

i

(
b + X(E − d

i
, h)

)
 where c̄

(
b + X(E − di, h)

)
 is the centroid 

of the set b + X(E − di, h) . Then, applying (3),

The result also holds if V(E, d) = 0 . Therefore, the AA rule satisfies order preserva-
tion in awards. Since order preservation in awards and order preservation in losses 
are dual properties and the AA rule is self-dual, we conclude that the AA rule satis-
fies order preservation.   ◻

So far, we have relied on simple features or decompositions of the set of awards 
vectors to establish some properties of the AA rule. Our approach is quite differ-
ent to deal with endowment monotonicity. We want to prove that if the amount to 
divide increases, each claimant should receive at least as much as she did initially. 
Then, we have to understand how the set of awards changes when the endowment 
increases. Given a rule R and a vector of claims d ∈ ℝ

N , the path followed by the 
awards vector chosen by R as the endowment increases from 0 to d(N), that is, the 
function R(⋅, d) ∶ [0, d(N)] → ℝ

N , is called the path of awards of the rule for the 
claims vector. The plots of the functions Ri(⋅, d) , i ∈ N , are called the schedules of 
awards of the rule for the claims vector. A rule R satisfies endowment continuity 
if the path of awards of the rule is continuous for all claims vector. Naturally, conti-
nuity implies endowment continuity. Endowment differentiability requires the path 
of awards R(⋅, d) of the rule to be differentiable on [0, d(N)] for all claims vector 
d ∈ ℝ

N . Some of Young’s parametric rules (Young 1987), for instance the PRO rule 
and Cassel’s rule, are endowment differentiable.

AAi+1(E, d) = 𝜌AAi+1(E, a) + (1 − 𝜌)c̄i+1
(
b + X(E − di, h)

)

≥ 𝜌AAi(E, a) + (1 − 𝜌)AAi(E − di, h) = AAi(E, d).

AA1

Ed1 d2 d1 + d2
0

d1
2

d1

AA2

Ed1 d2 d1 + d2
0

d1
2

d2 − d1
2

d2

Fig. 4  The schedules of awards of the AA rule for two-claimant problems
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As Fig.  4 illustrates, for problems with two claimants, the CD rule (and there-
fore the AA rule) violates endowment differentiability. Nevertheless, as we argue 
next, the AA rule is an endowment differentiable extension of the CD rule to larger 
populations.

Let |N| ≥ 3 and fix d ∈ ℝ
n≤ with 0 < d1 . Now, assume that claimant i ∈ N 

receives an award s ∈ [mi(E, d), ti(E, d)] and leaves. The remaining claim-
ants, the members of N�{i} , face the reduced problem (E − s, d−i) ∈ CN�{i} . 
If claimant i ∈ N gets her minimal right mi(E, d) then the remainder 
Ri(E, d) = E − mi(E, d) = min{E, d(N�{i})} is the maximal aggregate award to the 
other agents. Analogously, if claimant i ∈ N gets her truncated claim ti(E, d) then 
the remainder ri(E, d) = E − ti(E, d) = max{0,E − di} is the minimal award for the 
other claimants. Obviously, if s ∈ [mi(E, d), ti(E, d)] then E − s ∈ [ri(E, d),Ri(E, d)] . 
For each i ∈ N consider the weight function gi ∶ (0, d(N)) × [0, d(N�{i})] ⟶ ℝ 
defined as:

Clearly, gi(E, u) ≥ 0 for all (E, u) ∈ (0, d(N)) × [0, d(N�{i})] so indeed g(E, ⋅) is 
a weight function for all E ∈ (0, d(N)) . Furthermore, in the Appendix (see Theo-
rem  A.1), we show that gi(E, ⋅) is a probability density function on the interval 
[ri(E, d),Ri(E, d)] and that, for all j ∈ N�{i} , the following integral representations 
hold:

In words, for problems with at least three claimants, the awards chosen by the AA 
rule for a problem are a weighted average of the choices made by the rule in each 
of the reduced problems that result when a claimant receives an award, between her 
minimal right and her truncated claim, and leaves. We prove in the Appendix (see 
Theorem A.2) the following result:

Proposition 4.5 If |N| ≥ 3 then the AA rule is endowment differentiable.

The integral representation of the AA rule given by equality (4) allows us to 
“lift” some properties satisfied by the CD rule to larger populations. For instance, 
the CD rule is endowment monotonic (see Fig. 4). We illustrate how the integral 
representation given by (4) allows us to prove that the AA rule is endowment 
monotonic. An endowment continuous rule R satisfies endowment monotonic-
ity if and only if for each i ∈ N the function Ri(⋅, d) is monotonically increasing 

gi(E, u) =

√
n√

n − 1

V(u, d−i)

V(E, d)
, for all (E, u) ∈ (0, d(N)) × [0, d(N�{i})].

(4)

AAj(E, d) =

ti(E,d)

∫
mi(E,d)

AAj(E − s, d−i)gi(E,E − s)ds

=

Ri(E,d)

∫
ri(E,d)

AAj(u, d−i)gi(E, u)du.
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on [0, d(N)] for all claims vector d ∈ ℝ
N . If a rule is endowment differentiable 

then endowment monotonicity can be expressed in terms of the derivatives of the 
rule with respect to the endowment. Indeed, if R(⋅, d) is a differentiable function 
then R satisfies endowment monotonicity if, for each d ∈ ℝ

N , the derivatives of 
its coordinate functions with respect to E are positive, that is, �Ri

�E
(E, d) ≥ 0 for all 

E ∈ [0, d(N)] and for all i ∈ N.

Proposition 4.6 The AA rule satisfies endowment monotonicity. Moreover, if 
|N| ≥ 3 , for each (E, d) ∈ CN with d ∈ ℝ

n≤ , and each i ∈ N:

Proof The proof is divided into three cases. 

 (i) |N| = 2

   The AA rule, whose awards for each claimant are the continuous piecewise 
linear functions depicted in Fig. 4, satisfies endowment monotonicity.

 (ii) |N| = 3

   Let d ∈ ℝ
3≤ with 0 < d1 and i ∈ N  . Then d−i ∈ ℝ

2 and the func-
tion AAj(⋅, d−i) is monotonically increasing for all j ∈ N�{i} . 
S o ,  AAj(ri(E, d), d−i) ≤ AAj(u, d−i) ≤ AAj(Ri(E, d), d−i)  f o r  a l l 
u ∈ [ri(E, d],Ri(E, d)] . Integrating with respect to u on the interval 
[ri(E, d),Ri(E, d)] , using equality (4) and taking into account the fact that gi(E, ⋅) 
is a density function, AA(ri(E, d), d−i) ≤ AAN�{i}(E, d) ≤ AA(Ri(E, d), d−i) . 
Now, according to Theorem A.2, in order to see that AAj(⋅, d) is monotoni-
cally increasing on [0, d(N)] it suffices to prove that AAj(⋅, d) is monotonically 
increasing on the interval J =

[
0,min

{
1

2
d(N), d(N�{n})

}]
 or, equivalently, 

that �AAj

�E
(E, d) ≥ 0 for all E ∈ J . If E < d1 the result is trivial. But, using the 

expression for the derivatives of the AA rule given in Theorem A.2 it follows 
that, for all E ∈

[
d1, min

{
1

2
d(N), d(N�{n})

}]
 , and all j ∈ N�{n} , 

 Therefore, AAj(⋅, d) is monotonically increasing for all j ∈ N.
 (iii) |N| > 3

   Let d ∈ ℝ
n≤ with 0 < d1 , and i ∈ N . We proceed by induction on the number of 

claimants, so assume that AAj(ri(E, d), d−i) ≤ AAj(u, d−i) ≤ AAj(Ri(E, d), d−i) 
for all u ∈ [ri(E, d),Ri(E, d)] and all j ∈ N�{i} . Therefore, 

AA(ri(E, d), d−i) ≤ AAN�{i}(E, d) ≤ AA(Ri(E, d), d−i).

�AAj

�E
(E, d) = gn(E,E)

(
AAj(E, d−n) − AAj(E, d)

)

+ �n(E, d)gn(E,E − dn)
(
AAj(E, d) − AAj(E − dn, d−n)

) ≥ 0

�AAn

�E
(E, d) = g1(E,E)

(
AAn(E, d−1) − AAn(E, d)

)

+ g1(E,E − d1)
(
AAn(E, d) − AAn(E − d1, d−1)

) ≥ 0.
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 or, equivalently, by (4), AAj(ri(E, d), d−i) ≤ AAj(E, d) ≤ AAj(Ri(E, d), d−i) . 
From these inequalities and the derivatives obtained in Theorem  A.2, we 
conclude that AAj(⋅, d) is monotonically increasing.

   ◻

Population monotonicity states that if the population of claimants enlarges but 
the amount to divide stays the same, each of the claimants initially present should 
receive at most as much as she did initially.

Proposition 4.7 The AA rule satisfies population monotonicity.

Proof Let {N,N�} ⊂ N  such that N′ ⊂ N . We have to prove that 
AAN� (E, d) ≤ AA(E, dN� ) . First, let N� = N�{i} for some i ∈ N . Then, 
by the inequalities in Proposition 4.6 and endowment monotonicity, 
AAN� (E, d) ≤ AA(Ri(E, d), d−i) ≤ AA(E, d−i) . The general case follows applying 
repeatedly this result.   ◻

Recall that, by the balance condition, if a rule satisfies other-regarding claim 
monotonicity then it also satisfies claim monotonicity.

Proposition 4.8 The AA rule satisfies other-regarding claim monotonicity, claim 
monotonicity, and linked claim-endowment monotonicity.

Proof We prove other-regarding claim monotonicity. Let (E, d) ∈ CN with d ∈ ℝ
n≤ , 

i ∈ N , and di+1 ≥ d�
i
≥ di . Denote d� = (d−i, d

�
i
) ∈ ℝ

N . If E ≤ di then 
X(E, d) = X(E, d�) and AA(E, d) = AA(E, d�) . Assume that E > di . Let b = (0−i, di) , 
h = d� − b , � =

V(E,d)

V(E,d�)
 , and j ∈ N�{i} . Then (E, d�) ∈ CN , (E − di, h) ∈ CN , and 

X(E, d�) = X(E, d) ∪
(
b + X(E − di, h)

)
 . Moreover, 

�
(
X(E, d) ∩ (b + X(E − di, h))

)
= 0 , because X(E, d) and b + X(E − di, h) are sepa-

rated by the hyperplane xi = di . Then, applying (3), 
AAj(E, d

�) = �AAj(E, d) + (1 − �)AAj(E − di, h) . But the AA rule satisfies popula-
tion monotonicity, then applying Proposition 4.6, we have 
AAj(E − di, h) ≤ AAj(E − di, d−i) ≤ AAj(E, d) . Therefore, AAj(E, d

�) = �AAj(E, d)

+(1 − �)AAj(E − di, h) ≤ �AAj(E, d) + (1 − �)AAj(E, d) = AAj(E, d).

Ri(E,d)

�
ri(E,d)

AAj(ri(E, d), d−i)gi(E, u)du ≤
Ri(E,d)

�
ri(E,d)

AAj(u, d−i)gi(E, u)du

≤
Ri(E,d)

�
ri(E,d)

AAj(Ri(E, d), d−i)gi(E, u)du,
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Other-regarding claim monotonicity is a stronger requirement than claim mono-
tonicity. So the AA rule satisfies claim monotonicity. Since claim monotonicity and 
linked claim-endowment monotonicity are dual properties and the AA rule is self-
dual, the AA rule satisfies linked claim-endowment monotonicity.   ◻

Finally, let us show that the AA rule guarantees a minimal share to every agent 
equal to one nth her claim truncated at the amount to be divided.

Proposition 4.9 The AA rule satisfies 1

|N|-truncated-claims lower bounds on awards 
and 1

|N|-min-of-claim-and-deficit lower bounds on losses.

Proof Let (E, d) ∈ CN be a problem with d ∈ ℝ
n≤ . If E ∈ [0, d1] then we know that 

AAj(E, d) =
E

n
=

1

n
min{E, dj} for all j ∈ N . If E ∈ [d1, d2] then by Lemma A.3, 

AAj(E, d) ≥ 1

n
min{E, dj} for all j ∈ N . Now, by repeatedly applying Lemma A.4 it 

is easy to see that AAj(E, d) ≥ 1

n
min{E, dj} for all j ∈ N whenever E ∈ [d2, dn] . But 

if E ≥ dn and j ∈ N�{n} then, by other-regarding claim monotonicity, 
AAj(E, d) ≥ AAj(E, (d1,… , dn−1,E)) , and we have already shown that 
AAj(E, (d1,… , dn−1,E)) ≥ 1

n
min{E, dj} . Lastly, it is clear that 

AAn(E, d) ≥ E

n
≥ dn

n
=

1

n
min{E, dn} . Therefore, the AA rule satisfies 1

|N|-truncated-
claims lower bounds on awards. Naturally, the AA rule, being self-dual, also satis-
fies the corresponding dual property, namely, 1

|N|-min-of-claim-and-deficit lower 
bounds on losses.   ◻

5  Computation of the AA rule

The definition of the AA rule, though natural, does not provide a mechanism to com-
pute it in terms of the n + 1 parameters that define a problem: the endowment E and 
the vector of claims d ∈ ℝ

N . Here we describe a particular procedure to compute the 
centroid of the set of awards vectors for a problem.

We can assume, by anonymity, that given (E, d) ∈ CN , the claims are sorted 
in ascending order, that is, d ∈ ℝ

n≤ . By null claims consistency, the agents whose 
claims are 0 can be removed so we just have to consider problems whose set of 
awards vectors is full dimensional, that is, 0 < d1 and 0 < E < d(N) . Moreover, 
the AA rule is self-dual so we can restrict the algorithm to problems for which the 
endowment does not exceed the half-sum of claims, E ≤ 1

2
d(N) . In addition, we 

can also assume that E ≤ d(N�{n}) because if d(N�{n}) ≤ E ≤ dn then AA(E, d) is 
given by expression (2). Taking all these considerations into account, and exploiting 
the special structure of the set of awards vectors, Mirás Calvo et al. (2022b) obtain 
a formula for the AA rule. The following procedure is a direct application of their 
results.
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Procedure to compute the AA rule:  Let (E, d) ∈ CN such that d ∈ ℝ
n≤ , 0 < d1 , 

and 0 < E ≤ min{
1

2
d(N), d(N�{n})} . In order to compute AA(E, d) follow these 

steps: 

1. Determine the set I = {i ∈ N ∶ di < E}.
2. Compute p = V(E, d).
3. For each i ∈ I  , compute pi = V

(
E − di, (d−i,E − di)

)
.9

4. Compute E∗ =
1

n

�
E +

∑
i∈I

pi

p
dk

�
.

5. Finally, AAi(E, d) =

{
E∗ −

pi

p
di if di < E

E∗ otherwise
.

The key step in the above algorithm is the determination of the ratios pi
p
 for each 

i ∈ I  . Therefore, we need a method to compute the volume of the set of awards vec-
tors for a problem. Of course, one can rely on any general algorithm for the volume 
of a convex polyhedron [such as Lasserre (1983)]. Nevertheless, we use the simple 
expression for the volume of the set of awards vectors in terms of the endowment 
and the claims provided by Mirás Calvo et al. (2022b):

where F = {S ∈ 2N ∶ d(S) < E} . Let us illustrate how to combine the algorithm and 
the volume formula to compute the AA rule.10

Example 5.1 Let N = {1, 2, 3, 4} and consider the problem (E, d) ∈ CN with E = 7 
and d = (2, 4, 6, 8) ∈ ℝ

4≤ . Now, I = {i ∈ N ∶ di < 7} = {1, 2, 3} . Therefore, we 
consider the problems:

We compute the volumes p = V(E, d) and pi = V
(
E − di, (d−i,E − di)

)
 for 

i ∈ {1, 2, 3} using formula (5). Then,11 

• For the problem 
(
7, (2, 4, 6, 8)

)
 we have that 

F = {S ∈ 2N ∶ d(S) < 7} =
{
{1}, {2}, {3}, {1, 2}

}
 . Then: 

(5)V(E, d) =

√
n

(n − 1)!

�
En−1 +

�
S∈F

(−1)�S�(E − d(S))n−1
�

(
E − d1, (d−1,E − d1)

) (
E − d2, (d−2,E − d2)

) (
E − d3, (d−3,E − d3)

)
(
5, (5, 4, 6, 8)

) (
3, (2, 3, 6, 8)

) (
1, (2, 4, 1, 8)

)

9 If i ∈ N is a claimant such that di < E then 
(
E − di, (d−i,E − di)

)
∈ CN represents the problem where 

claimant i gets her claim di and remains in the problem claiming all that is left, E − di.
10 This is the procedure implemented in the ClaimsProblems R package (Núñez Lugilde et al. 2021) to 
compute the AA rule.
11 Since we need to compute the ratios pi

p
 , the factor 

√
n

(n−1)!
 can be ignored. Nevertheless, for clarity, we 

carry this factor in the example.
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• p1 =
1

3

(
53 − (5 − 4)3

)
=

124

3
 , because for this problem F =

{
{2}

}
.

• p2 =
1

3

(
33 − (3 − 2)3

)
=

26

3
 , because for this problem F =

{
{1}

}
.

• p3 =
1

3

(
13
)
=

1

3
 , because for this problem F =

{
�
}
.

Now, we compute E∗:

Finally,

In summary, AA(E, d) = (0.9202, 1.6741, 2.1872, 2.2186).

Naturally, when |N| = 2 , the algorithm produces formula (1), the expression for 
the CD rule. For three-claimant problems, the procedure leads to an analytic expres-
sion for the AA rule.12

p = V(E, d) =
1

3

(
73 + (7 − 6)3 − (7 − 6)3 − (7 − 4)3 − (7 − 2)3

)
=

191

3
.

E∗ =
1

n

(
E +

∑
i∈I

pi

p
dk

)
=

1

4

(
7 +

124

191
2 +

26

191
4 +

1

191
6

)
=

1695

764
.

AA1(E, d) =
1695

764
−

124

191
2 =

703

764
, AA2(E, d) =

1695

764
−

26

191
4 =

1279

764
,

AA3(E, d) =
1695

764
−

1

191
6 =

1671

764
, AA4(E, d) =

1695

764
.

AAj

E2 4 5 6 7 9 1111
2

2

4

5
AA3

AA2

AA1

0

Fig. 5  The schedules of awards of the AA rule for d = (2, 4, 5)

12 Lemma 5.2 is a particular case of the general formula given in Mirás Calvo et al. (2021) to compute 
the core-center for three-player convex games.
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Lemma 5.2 Let N = {1, 2, 3} and (E, d) ∈ CN such that d ∈ ℝ
3≤ and E ∈ [0,

1

2
d(N)] . 

Then,

Though the scope of Lemma 5.2 is restricted to three-claimant problems, it helps 
to illustrate the schedules of awards of the AA rule as the next example shows.

Example 5.3 Let N = {1, 2, 3} . Consider the claims vector d = (2, 4, 5) ∈ ℝ
N so that 

d(N) = 11 and d3 = 5 ≤ 1

2
d(N) = 5.5 ≤ d(N�{3}) = 6 . The schedules of awards 

AAj(⋅, d) , j ∈ N , are depicted in Fig.  5. We can see that they are monotonically 
increasing and that AA1(E, d) ≤ AA2(E, d) ≤ AA3(E, d) for all E ∈ [0, 11] . The 
self-duality property corresponds with the special symmetry of the graphs with 
respect to E = 5.5 . Also, by claims truncation invariance, the three curves coincide 
on the interval [0, 2] and AA2(⋅, d) = AA3(⋅, d) on [2, 4]. By endowment differenti-
ability, the three curves are smooth.

Appendix

Analyzing the centroid of the set of awards vectors for a problem requires a thor-
ough study of the volume function. That examination was carry out in the compan-
ion paper Mirás Calvo et al. (2022b). Let us state the results that are needed in our 
analysis.

Let d ∈ ℝ
n≤ such that 0 < d1 . The volume function V(⋅, d) ∶ [0, d(N)] → ℝ is 

a continuous function that is symmetric with respect to E =
1

2
d(N) . In fact, if 

d(N�{n}) > dn then V(⋅, d) is strictly increasing on [0, 1
2
d(N)] and V(⋅, d) is strictly 

AA1(E, d) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

3
E if E ∈ [0, d1]

E3−(E−d1)
3−3d1(E−d1)

2

3(E2−(E−d1)
2)

if E ∈ [d1, d2]

E3−(E−d1)
3−(E−d2)

3−3d1(E−d1)
2

3(E2−(E−d1)
2−(E−d2)

2)
if E ∈ [d2, min{d1 + d2, d3}]

1

2
d1 if E ∈

�
d1 + d2,

1

2

�
d(1) + d(2) + d(3)

��
E3−(E−d1)

3−(E−d2)
3−(E−d3)

3−3d1(E−d1)
2

3(E2−(E−d1)
2−(E−d2)

2−(E−d3)
2)

if E ∈
�
d3,

1

2

�
d(1) + d(2) + d(3)

��

AA2(E, d) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

3
E if E ∈ [0, d1]
E3−(E−d1)

3

3(E2−(E−d1)
2)

if E ∈ [d1, d2]

E3−(E−d1)
3−(E−d2)

3−3d2(E−d2)
2

3(E2−(E−d1)
2−(E−d2)

2)
if E ∈ [d2, min{d1 + d2, d3}]

1

2
d2 if E ∈

�
d1 + d2,

1

2

�
d(1) + d(2) + d(3)

��
E3−(E−d1)

3−(E−d2)
3−(E−d3)

3−3d2(E−d2)
2

3(E2−(E−d1)
2−(E−d2)

2−(E−d3)
2)

if E ∈
�
d3,

1

2

�
d(1) + d(2) + d(3)

��

AA3(E, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

3
E if E ∈ [0, d1]
E3−(E−d1)

3

3(E2−(E−d1)
2)

if E ∈ [d1, d2]

E3−(E−d1)
3−(E−d2)

3

3(E2−(E−d1)
2−(E−d2)

2)
if E ∈ [d2, min{d1 + d2, d3}]

E −
1

2
(d1 + d2) if E ∈

�
d1 + d2,

1

2

�
d(1) + d(2) + d(3)

��
E3−(E−d1)

3−(E−d2)
3−(E−d3)

3−3d3(E−d3)
2

3(E2−(E−d1)
2−(E−d2)

2−(E−d3)
2)

if E ∈
�
d3,

1

2

�
d(1) + d(2) + d(3)

��
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decreasing on [ 1
2
d(N), d(N)] , so V(⋅, d) attains its maximum at E =

1

2
d(N) . On the 

other hand, if d(N�{n}) ≤ dn then V(⋅, d) is strictly increasing on [0, d(N�{n})] , it 
is strictly decreasing on [dn, d(N)] and it is constant on [d(N�{n}), dn] . Moreover, 
if |N| ≥ 3 then V(⋅, d) is a continuously differentiable function. For each i ∈ N let 
�i(E, d) = 0 if E ≤ di and �i(E, d) = 1 otherwise. Then, if E ∈ [0,

1

2
d(N)] and i ∈ N,

For each claimant i ∈ N denote Ii = [mi(E, d), ti(E, d)] . 
Recall that Ri(E, d) = E − mi(E, d) = min{E, d(N�{i})} and 
ri(E, d) = E − ti(E, d) = max{0,E − di} . It is easy to see that

For each i ∈ N consider the weight function gi ∶ (0, d(N)) × [0, d(N�{i})] ⟶ ℝ 
defined, for all (E, u) ∈ (0, d(N)) × [0, d(N�{i})] as:

Theorem A.1 Let |N| ≥ 3 . If (E, d) ∈ CN with d ∈ ℝ
n≤ and i ∈ N , then 

∫
Ri(E,d)

ri(E,d)

gi(E, u)du = 1 and, for all j ∈ N�{i},

Proof Let us simplify the notation by writing Ii = [mi, ti] , X = X(E, d) , and 
Xxi

= X(E − xi, d−i) . The transformation 
�n(x1,… , xn−1) = (x1,… , xn−1,E − x1 −⋯ − xn−1) defines a parametrization of the 
hyperplane x1 +⋯ + xn = E . The vector (1, 1,… , 1) ∈ ℝ

n is normal to the hyper-
plane and it has length 

√
n . For each xi ∈ Ii the transformation 

hxi(x1,… , xi−1, xi+1,… , xn−1, (E − xi) − x1 −⋯ − xi−1 − xi+1 −⋯ − xn−1) defines a 
parametrization13 of the hyperplane x1 +⋯ + xi−1 + xi+1 +⋯ + xn−1 = E − xi . The 
vector (1, 1,… , 1) ∈ ℝ

n−1 is normal to the hyperplane and it has length 
√
n − 1 . 

From (7), we have that �−1
n
(X) =

⋃
xi∈Ii

{xi} × h−1
xi
(Xxi

) . If �n−1 and �n−2 denote the 

(n − 1)-dimensional and (n − 2)-dimensional Lebesgue measures respectively, then:

(6)
�V

�E
(E, d) =

√
n√

n − 1

�
V(E, d−i) − �i(E, d)V(E − di, d−i)

�
.

(7)X(E, d) =
⋃
xi∈Ii

{xi} × X
(
E − xi, d−i

)
.

gi(E, u) =

√
n√

n − 1

V(u, d−i)

V(E, d)
.

AAj(E, d) =

Ri(E,d)

∫
ri(E,d)

AAj(u, d−i)gi(E, u)du.

13 If i = n take hxn (x2,… , xn) = (E − x
2
−⋯ − xn, x2,… , xn).
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Combining these two expressions we obtain that �n−1(X) =
√
n√

n−1 ∫
ti

mi

�n−2(Xxi
)dxi , 

that is ∫
ti

mi

gi(E,E − xi)dxi = 1 . Now, if j ≠ i , then

Therefore,

because, by definition, AAj(E − xi, d−i) = c̄j(Xxi
) =

1

𝜆n−2(Xxi
) ∫Xxi

xjd𝜆n−2 . Finally, 

applying the change of variable u = E − xi , the result follows immediately.   ◻

A first consequence of Theorem  A.1 is that, for problems with at least three 
claimants, the AA rule is endowment differentiable.

Theorem A.2 Let d ∈ ℝ
n≤ with 0 < d1 . If |N| ≥ 3 then AA(⋅, d) is a continuously dif-

ferentiable function on [0, d(N)]. Moreover: 

1. If E ∈ [0, d1] then �AAj

�E
(E, d) =

1

n
 for all j ∈ N.

2. If E ∈ [d(N�{n}), dn] then �AAj

�E
(E, d) = 0 for j ∈ N�{n} and �AAn

�E
(E, d) = 1.

3. If E ∈
[
d1, min

{
1

2
d(N), d(N�{n})

}]
 then, for all j ∈ N�{n} , 

�n−1(X) = ∫X

d�n−1 =
√
n ∫
�−1
n
(X)

d�n−1 =
√
n

ti

∫
mi

�
∫

h−1
xi
(Xxi

)

d�n−2

�
dxi

�n−2(Xxi
) = ∫

Xxi

d�n−2 =
√
n − 1 ∫

h−1
xi
(Xxi

)

d�n−2.

∫
X

xjd�n−1 =
√
n√

n−1

ti

∫
mi

�
∫
Xxi

xjd�n−2

�
dxi.

AAj(E, d) = c̄j(X) =
1

𝜆n−1(X) ∫
X

xjd𝜆n−1 =
1

𝜆n−1(X)

√
n√

n−1

ti

∫
mi

�
∫
Xxi

xjd𝜆n−2

�
dxi

=
1

𝜆n−1(X)

√
n√

n−1

ti

∫
mi

c̄j(Xxi
)𝜆n−2(Xxi

)dxi

=

ti

∫
mi

AAj(E − xi, d−i)gi(E,E − xi)dxi,



884 M. Á. Mirás Calvo et al.

1 3

4. If E ∈ [
1

2
d(N), d(N)] then �AAj

�E
(E, d) =

�AAj

�E
(d(N) − E, d) for all j ∈ N.

Proof If E ∈ [0, d1] then AA(E, d) =
E

n
 so �AAj

�E
(E, d) =

1

n
 for all j ∈ N . If 

E ∈ [d(N�{n}), dn] then AA(E, d) =
( d1

2
,… ,

dn−1

2
,E −

1

2
d(N�{n})

)
 so �AAj

�E
(E, d) = 0 

for all j ∈ N�{n} and �AAn

�E
(E, d) = 1 . Next, let us prove that AA(⋅, d) is differentiable 

on the interval 
[
d1, min

{
1

2
d(N), d(N�{n})

}]
 . We distinguish two cases.

Case 1: d(N�{n}) < 1

2
d(N).

Take E ∈ [d1, d(N�{n})] . Then rn(E, d) = max{0,E − dn} = 0 and 
Rn(E, d) = min{E, d(N�{n})} = E . By Theorem  A.1, we have, for all j ∈ N�{n} , 

AAj(E, d) = ∫
E

0

AAj(u, d−n)gn(E, u)du . Now, applying Leibniz’s rule for differenti-

ation under the integral sign and using expression (6) we obtain that AAj(⋅, d) is dif-
ferentiable at E for all j ∈ N�{n} and

Since r1(E, d) = E − d1 and R1(E, d) = E , from Theorem A.1,

Applying Leibniz’s rule and the chain rule we have that AAn(⋅, d) is differentiable at 
E and

�AAj

�E
(E, d) = gn(E,E)

(
AAj(E, d−n) − AAj(E, d)

)

+ �n(E, d)gn(E,E − dn)
(
AAj(E, d) − AAj(E − dn, d−n)

)
�AAn

�E
(E, d) = g1(E,E)

(
AAn(E, d−1) − AAn(E, d)

)

+ g1(E,E − d1)
(
AAn(E, d) − AAn(E − d1, d−1)

)
.

�AAj

�E
(E, d) =

E

∫
0

AAj(u, d−n)
�gn

�E
(E, u)du + AAj(E, d−n)gn(E,E)

= −
n

n − 1

E

∫
0

AAj(u, d−n)
V(u, d−n)V(E, d−n)�

V(E, d)
�2 du + AAj(E, d−n)

V(E, d−n)

V(E, d)

√
n√

n − 1

=

√
n√

n − 1

V(E, d−n)

V(E, d)

�
−

E

∫
0

AAj(u, d−n)
V(u, d−n)

V(E, d)

√
n√

n − 1

du + AAj(E, d−n

�

= gn(E,E)
�
AAj(E, d−n) − AAj(E, d)

�
.

AAn(E, d) =

E

∫
E−d1

AAn(u, d−1)g1(E, u)du.
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From expression (6) we have

Case 2: d(N�{n}) > 1

2
d(N).

If E ∈ [d1, dn] then rn(E, d) = 0 , Rn(E, d) = E , r1(E, d) = E − d1 and 

R1(E, d) = E . Applying Theorem  A.1, AAj(E, d) = ∫
E

0

AAj(u, d−n)gn(E, u)du for 

all j ∈ N�{n} and AAn(E, d) = ∫
E

E−d1

AAn(u, d−1)g1(E, u)du . By Leibniz’s rule, as 

in the previous case, we conclude that AA(⋅, d) is differentiable at E and we obtain 
the same expressions for the derivatives �AAj

�E
(E, d) for all j ∈ N . Finally, If 

E ∈ [dn,
1

2
d(N)] then rn(E, d) = E − dn , Rn(E, d) = E , r1(E, d) = E − d1 and 

R1(E, d) = E . Thus, AAj(E, d) = ∫
E

E−dn

AAj(u, d−n)gn(E, u)du for all j ∈ N�{n} and 

AAn(E, d) = ∫
E

E−d1

AAn(u, d−1)g1(E, u)du.

By continuity, we know that AA(⋅, d) is a continuous function on [0,  d(N)]. 
We have just seen that AA(⋅, d) is also a differentiable function on [0, 1

2
d(N)] 

except perhaps at the points d1 , dn and d(N�{n}) . It is easy to check that, in fact, 
AA(⋅, d) is also differentiable at those points. Therefore AA(⋅, d) is differentiable on 
[0,

1

2
d(N)] . But, since the AA rule satisfies self-duality, if E ∈ [

1

2
d(N), d(N)] then 

d(N) − E ∈ [0,
1

2
d(N)] and AA(E, d) = d − AA(d(N) − E, d) , so AA(⋅, d) is differen-

tiable at E and �AAj

�E
(E, d) =

�AAj

�E
(d(N) − E, d) for all j ∈ N .   ◻

Finally we establish two lemmas that are needed in the proof of Proposition 
4.9.

Lemma A.3 Let (E, d) ∈ CN with d ∈ ℝ
n≤ . If d1 < E ≤ d2 then AA1(E, d) ≥ d1

n
 and 

AAj(E, d) ≥ E

n
 for all j ∈ N�{1}.

Proof Clearly, the result holds when |N| = 2 . By Theorem A.1, since 0 ≤ d1 < E,

�AAn

�E
(E, d) =

E

∫
E−d1

AAn(u, d−1)
�g1

�E
(E, u)du + AAn(E, d−1)g1(E,E)

− AAn(E − d1, d−1)g1(E,E − d1).

�AAn

�E
(E, d) = −AAn(E, d)(g1(E,E) − g1(E,E − d1)) + AAn(E, d−1)g1(E,E)

− AAn(E − d1, d−1)g1(E,E − d1)

= g1(E,E)
(
AAn(E, d−1) − AAn(E, d)

)

+ g1(E,E − d1)
(
AAn(E, d) − AAn(E − d1, d−1)

)
.
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But, by the definition of the weight function gn,

Let u ∈ (d1,E] . By endowment monotonicity, AA1(u, d−n) ≥ AA1(d1, d−n) =
d1

n−1
 

and, from Eq. (6), �V
�u
(u, d) =

√
n√

n−1
V(u, d−n) . Therefore,

Combining (8), (9), and (10), and since V(d1, d) ≤ V(E, d) , we have that

Finally, AAn(E, d) ≥ E

n
 by order preservation of awards. But then, by claims trunca-

tion invariance, AAj(E, d) = AAn(E, d) ≥ E

n
 for all j ∈ N�{1} .   ◻

Lemma A.4 Let i ∈ N�{1} and let d, c ∈ ℝ
n≤ . If AAj(E

�, c) ≥ 1

n
min{E�, cj} for 

all j ∈ N and E� ∈ [ci−1, ci] then AAj(E, d) ≥ 1

n
min{E, dj} for all j ∈ N and 

E ∈ [di, di+1].

Proof Let j ∈ N�{i} and E ∈ [di, di+1] . Then, because the AA rule satisfies other-
regarding claim monotonicity and the assumption,

On the other hand,

where we have applied other-regarding claim monotonicity, anonymity, and the 
hypothesis.   ◻

(8)AA1(E, d) =

d1

∫
0

AA1(u, d−n)gn(E, u)du +

E

∫
d1

AA1(u, d−n)gn(E, u)du.

(9)

d1

∫
0

AA1(u, d−n)gn(E, u)du =
V(d1, d)

V(E, d)

d1

∫
0

AA1(u, d−n)gn(d1, u)du

=
V(d1, d)

V(E, d)
AA1(d1, d) =

V(d1, d)

V(E, d)

d1

n
.

(10)

E

�
d1

AA1(u, d−n)gn(E, u)du ≥ d1

n − 1

E

�
d1

gn(E, u)du =
d1

n − 1

(
1 −

V(d1, d)

V(E, d)

)
.

AA1(E, d) ≥ d1

n

V(d1, d)

V(E, d)
+

d1

n − 1

(
1 −

V(d1, d)

V(E, d)

) ≥ d1

n
.

AAj(E, d) = AAj

(
E, (d1,… , di,E,… ,E)

) ≥ AAj

(
E, (d1,… , di−1,E,… ,E)

)

≥ 1

n
min{E, dj}.

AAi(E, d) = AAi

(
E, (d1,… , di,E,… ,E)

) ≥ AAi

(
E, (d1,… , di−2,E, di,E,… ,E)

)

= AAi−1

(
E, (d1,… , di−2, di,E,… ,E)

) ≥ 1

n
min{E, di},
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