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Abstract
For cost allocation problems with an existing set of indivisible public resources with 
heterogeneous individual needs and non-rivalry access, an axiomatization is pro-
vided for the allocation rule that proportionally charges agents for a given resource 
with respect to their counting liability indices. The main result we obtain holds in 
the class of cost allocation rules that are additive in cost and simply combines a new 
independence property together with the well-known axioms of consistency and 
independence of supplementary items.

1 Introduction

A cost allocation problem refers to any situation in which some agents have to share 
the cost of some facilities they jointly benefit from. We consider here the class of 
allocation problems introduced by Hougaard and Moulin (2014) on how to share 
the cost of an existing set of indivisible public resources with non-rivalry access 
and heterogeneous individual needs. For other classes of cost allocation problems, 
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the reader is referred to Bergantiños and Martínez (2014) on the problem of allo-
cating the total cost of transport on a given tree among several users; or Thomson 
(2007) on cost allocation problems that arise in airport games. More examples are 
presented by Hougaard (2018), Thomson (2001) and Sharkey (1995).

Individual needs or liabilities to resources may differ from one agent to another. 
Thus designing an allocation rule that takes into account the possibility of heteroge-
neous individual needs becomes an important issue. In general, there are two nor-
mative approaches pursued by theorists to find what rules are reasonable for a given 
family of problems.

In some contributions, authors focus on a class of solutions described by a 
given list of compelling properties met only by the rules within that class. This is 
the case in the paper by Hougaard and Moulin (2014) who axiomatize a family of 
one-parameter cost ratios for sharing the cost of several indivisible public resources 
when agents access resources without rivalry; see also Hougaard (2018) for cost 
allocation problems when resources have limited reliability (each resource may ran-
domly fail or not); and Moulin (2000) or Young (1988) for some families of meth-
ods for rationing problems.

In some other contributions, the attention is paid to a given set of desirable 
requirements that pins down a unique rule. This is for example the case in the papers 
by Béal et  al. (2018); Bergantiños et  al. (2014) and Moulin and Laigret (2011). 
Another famous illustration of the one-problem-one-solution approach is the Shap-
ley value (Shapley , 1953) on cooperative games with transferable utilities. In this 
paper, we provide a similar investigation for the counting rule introduced by Hou-
gaard and Moulin (2014). The counting rule proportionally charges an agent on a 
given resource with respect to his/her counting liability, that is the probability that 
he/she is served by a minimal set of resources that contains the resource under 
consideration.

To characterize the counting rule among cost allocation rules that are additive in 
cost, we simply focus on the counting cost ratio associated with the counting rule 
and introduce an independence axiom: the axiom of Independence of Regular Con-
catenation (IRC) which is the counterpart, within the current framework, of inde-
pendence axioms formulated around mergeability for rationing problems, bank-
ruptcy problems or allocation problems in networks; see de Frutos (1999), Moulin 
(2002, 2013) or Hougaard (2009). It appears that (IRC) together with Consistency, 
Independence of Supplementary Items, Replication, Neutrality, Anonymity and the 
four dispositions provided by Hougaard and Moulin (2014, Definition 2) uniquely 
identify the counting cost ratio. We show that (IRC) also allows a characterization of 
the counting cost ratio with fewer axioms in our main result.

The remainder of this paper is organized as follows. Section 2 is devoted to nota-
tions and definitions. Some key concepts on cost allocation problems under con-
sideration are presented in Sect. 2.1. The counting rule and its cost ratio index are 
defined in Sect. 2.2; and axioms for cost allocation problems we use are stated and 
commented in Sect. 2.3: all those axioms are from Hougaard and Moulin (2014); 
except the Independence of Regular Concatenation and Identity. Results are stated 
and proved in Sect. 3. We first give in Sect. 3.1 some preliminary results that help 
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us in easing the proof of the main result we present in Sect. 3.2. Finally, Sect. 4 con-
cludes the paper.

2  Cost allocation problems with possibly redundant items

2.1  The model

We consider the model of cost allocation problems presented by Hougaard and 
Moulin (2014): R and N  are, respectively, an infinite set of potential resources 
and an infinite set of potential agents. Agents share access to resources without 
rivalry. A cost allocation problem is a quadruplet (N,R,DN , c) that consists in: 

(i)  A non empty and finite set N of agents with N ⊂ N .
(ii)  A non empty and finite set R of resources with R ⊂ R.
(iii)  A profile DN that specifies for each agent i ∈ N a non empty set Di of non 

empty subsets of R such that agent i’s needs are met only when at least one 
serving set from Di is provided. The set Di is the service constraint of agent i 
and each element of Di is called a serving set for i.

(iv)  A vector of cost c =
(
cr
)
r∈R

 that gives the cost cr ≥ 0 of each resource r ∈ R . 
The total cost c(R) =

∑
r∈R cr should be shared among agents in N.

Individual service constraints are assumed to be inclusion monotonic: for each 
agent i, B ∈ D

i whenever B is a superset of a serving set A ∈ D
i . The service 

needs Di of agent i is then completely described by the list D
i of all i’s minimal 

serving sets: A ∈ D
i
 if and only if agent i is served by A but no longer by any 

proper subset of A. A resource r is relevant for agent i if r ∈ A for some i’s mini-
mal serving set A; and irrelevant for agent i otherwise. The set of all resources 
that are relevant for agent i is denoted by Hi ; that is Hi = ∪

A∈D
iA . All resources in 

profile DN that are not in ∪i∈NH
i are irrelevant for all agents in N. Each such 

resource is called redundant. The set of all agent i’s minimal serving sets that 
contain resource r is denoted by D

i
(r) ; that is A ∈ D

i
(r) if, and only, if A ∈ D

i
 and 

r ∈ A . Also note that r is relevant for agent i if, and only if, D
i
(r) ≠ �.

In this paper, we say that the service constraint Di of agent i is of type p if ||||D
i|||| = p . Moreover, we write Di ∼r (q, p) if |||Di(r)

||| = q and 
||||D

i|||| = p . When there is 

no ambiguity to assuming that the information on N and R is embedded in the 
description of DN , the cost allocation problem 

(
N,R,DN

ℑ
(
D

i
)
i∈N

, c
)
 will simply be 

represented by 
(
D

N , c
)
 and the corresponding set of resources by R

(
D

N
)
 . Given a 

resource r, the set of all agents in profile 
(
D

N , c
)
 for whom r is relevant is denoted by 

N(r). The set of all allocation problems on N  and R is denoted by P(N,R).

Example 2.1 Consider an airport with three runways r1 , r2 and r3 of distinct lengths 
deserved by three airlines 1, 2 and 3. The service needs of the three airlines are 
as follows: 1 is served by any of the two runways r2 or r3 ; 2 is served by any two 
consecutive runways; and 3 is served by the combination of all the three only. 
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The profile DN of airlines’ needs is completely described by D
1
=
{{

r2
}
,
{
r3
}}

 , 
D

2
=
{{

r1, r2
}
,
{
r2, r3

}}
 and D

3
=
{{

r1, r2, r3
}}

 . The corresponding set of 
resources is R

(
D

N
)
= {r1, r2, r3}.

A cost allocation rule F is a mapping that assigns to each cost allocation problem (
D

N , c
)
 in P(N,R) , a vector of payments F

(
D

N , c
)
=
(
Fi

(
D

N , c
))

i∈N
 such that

where

Hereafter, (1) is called the budget-equation of problem 
(
D

N , c
)
.

Example 2.2 Define the egalitarian ruleE on P(N,R) for all allocation problems (
D

N , c
)
 and for all i ∈ N by

This cost allocation rule equally splits the cost of each resource r between all agents 
for whom r is relevant if r is not redundant; and between all agents otherwise. For 
illustration, if ct is the cost expenditure for runways of type rt in Example 2.1,

2.2  The counting rule and the counting cost ratio index

By using the axioms of Additivity, Anonymity, Neutrality, Consistency, Replication, 
and Irrelevance of Supplementary Items, Hougaard and Moulin (2014) have charac-
terized the one-parameter family (𝜓𝜋)𝜋>0 of cost allocation rules defined for all cost 
allocation problems 

(
D

N , c
)
 by

where

(1)
∑
i∈N

Fi

(
D

N , c
)
= c

(
R
(
D

N
))

c
(
R
(
D

N
))

=
∑

r∈R(DN)

cr.

(2)Ei

(
D

N , c
)
=

∑
r∈Hi

cr

|N(r)| +
∑

r∈R(DN)�(∪j∈NH
j)

cr

|N| .

E1

(
D

N
, c
)
=

1

3
c2 +

1

3
c3 , E2

(
D

N
, c
)
=

1

2
c1 +

1

3
c2 +

1

3
c3

and E3

(
D

N
, c
)
=

1

2
c1 +

1

3
c2 +

1

3
c3.

��

i

�
D

N , c
�
=

�
r∈R(DN)

��
i

�
D

N , r
�

∑
j∈N ��

j

�
D

N , r
�cr
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 if r is relevant for some agents; and ��
i

(
D

N , r
)
= 1 otherwise.1

The ratio of the cost of resource r supported by agent i in DN is denoted by 
��
i
(DN , r) and is, with respect to the cost allocation rule �� , given by

The term ��
(
D

i, r
)
 is interpreted as a measure of the liability of agent i to resource 

r in Di.
In particular, for � = 1 , �1

(
D

i, r
)
 and �1

i
(DN , r) are respectively named, after 

Hougaard and Moulin (2014), the counting liability and the counting cost ratio of 
agent i for r. The cost allocation rule �1 associated with �1 , is called the counting 
rule. Moreover, the interpretation of the counting liability is straightforward. In fact, 
the counting liability �1

i

(
D

N , r
)
=
||||D

i
(r)

||||∕
||||D

i|||| of agent i to a non redundant resource 

r is simply the ratio of the total number of agent i’s minimal serving sets containing 
r by the total number of agent i’s minimal serving sets. Moreover, when the infor-
mation on the final cost vector and the knowledge of each agent on the service needs 
of other agents are such that no agent can discriminate, in terms of cost, between 
his/her minimum service sets, each agent, to be served, uniformly selects one of his/
her minimal serving sets. In this case, agent i’s counting liability for r corresponds 
to the expected rate of use of r by agent i; and the sum

which accounts for the use of resource r by all the agents in the network, can be seen 
as the overall service demand on resource r given profile DN.

Example 2.3 In Example 2.1, the counting liability of each agent for each runway 
zone is as follows:

��
i

�
D

N , r
�
=

⎛
⎜⎜⎜⎝

����D
i
(r)

����
����D

i����

⎞
⎟⎟⎟⎠

�

(3)��

i
(DN , r) =

��
i

�
D

N , r
�

∑
j∈N ��

�
D

j, r
� .

Θ
(
D

N , r
)
=
∑
i∈N

�1
i

(
D

N , r
)
,

1 To let ��
i

(
D

N
, r
)
 be defined everywhere, we have extended its definition to redundant resources by 

assuming that all agents in a profile are equally liable for redundant resources. This does not alter the 
counting rule since Hougaard and Moulin (2014) also assume that the cost of each redundant resource is 
equally split among agents.
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When agents are randomly served by their respective minimal serving sets, the 
expected rates of use of r1 are 0, 1

2
 and 1 for agents 1, 2 and 3 respectively. The 

counting rule then charges each agent proportionally to his/her expected rate of use 
of r1 in such a way that agents 1, 2 and 3 respectively pay 0, one-third and two-third 
of the cost c1 of r1 . Applying the same analysis to the costs of r2 and r3 leads to the 
following individual shares by the counting rule:

For a non redundant resource, values of � ∈ [0, 1] have, as � tends to 0, a flat-
tening effect that emerges at � = 0 to equal shares for all agents i for whom r is 
relevant; that is

Similarly, values of � ∈ (1,+∞) have, as � tends to +∞ , an outward effect to let 
only agents with the maximum counting liability for r to be equally charged for the 
cost of r at � = +∞ ; by a little abuse of notation, that is

where N∗(r) is the set of all agents with the largest liability index for r.
When there is no clear motivation for distorting the counting liability, the choice 

of � = 1 is natural. Hereafter, we characterize the counting rule Φ = �1 trough the 
mapping �1 associated with Φ and called the counting cost ratio index by Hougaard 
and Moulin (2014). For simplicity, �1 will simply be denoted by � . Thus, for all 
allocation problems (DN , c) and for all agents i ∈ N by

In general, a cost ratio index is any function f that maps each profile DN of service 
needs and each resource r ∈ R

(
D

N
)
 to a collection 

(
fi
(
D

N , r
))

i∈N
 of non negative 

numbers that sum to 1; that is

(4)

�1
1

(
D

N
, r

1

)
= 0 �1

1

(
D

N
, r

2

)
=

1

2

�1
1

(
D

N
, r

3

)
=

1

2

�1
2

(
D

N
, r

1

)
=

1

2

�1
2

(
D

N
, r

2

)
= 1 �1

2

(
D

N
, r

3

)
=

1

2

�1
3

(
D

N
, r

1

)
= 1 �1

3

(
D

N
, r

2

)
= 1 �1

3

(
D

N
, r

3

)
= 1

Θ
(
D

N
, r

1

)
=

3

2

Θ
(
D

N
, r

2

)
=

5

2

Θ
(
D

N
, r

3

)
= 2

�1
1

(
D

N , c
)
=

1

5
c2 +

1

4
c3, �1

2

(
D

N , c
)
=

1

3
c1 +

2

5
c2 +

1

4
c3

and �1
3

(
D

N , c
)
=

2

3
c1 +

2

5
c2 +

1

2
c3.

�0
i

(
D

N , r
)
=

1

|N(r)| if r ∈ H
i; and �0

i

(
D

N , r
)
= 0 otherwise.

�+∞
i

(
D

N , r
)
=

1

|N∗(r)| if Di = argmax{�1
j

(
D

N , r
)
∶ j ∈ N}; and �+∞

i1

(
D

N , r
)
= 0 otherwise

(5)Φi

(
D

N , c
)
=

∑
r∈R(DN)

�i

(
D

N , r
)
cr.
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Condition (6) will be referred to as the budget-balance condition (on resource r). A 
cost allocation rule F is associated to the cost ratio index f if for all allocation prob-
lems 

(
D

N , c
)
 and for all agents i ∈ N,

2.3  Axioms for cost allocation problems

The first four axioms we consider are from Hougaard and Moulin (2014).
Additivity (ADD): A cost allocation rule F is additive (in costs) if for all cost allo-

cation problems 
(
D

N , c
)
 and for all cost vectors c� =

(
c�
r

)
r∈R(DN)

 and 
c
�� =

(
c
��
r

)
r∈R(DN)

,

The cost share of each agent in a profile is the sum of his/her cost shares when the 
cost vector is additively decomposed into two new cost vectors to obtain two alloca-
tion problems without any change in the service needs of the agents.

Interestingly, it can be shown that a cost allocation rule F is additive if, and only 
if, it is associated to some cost ratio index f; that is, F is in the form (7)2. An addi-
tive cost rule F is therefore completely determined by its cost ratio index f. The other 
axioms that follow are stated for a cost ratio index f (and thus for the cost allocation 
rules F associated with f).

Consistency (CON): For all profiles DN , for all resources r in DN and for all 
agents i ∈ N,

Suppose that an agent, say i, pays for his/her contribution fi(D
N , r)cr for each 

resource r as prescribed by the cost ratio index f. Then the cost vector is updated 
from c to c′ with c�

r
=
(
1 − fi(D

N , r)
)
cr for each resource r in DN . The cost alloca-

tion problem is now (DN�{i}, c�) . Being consistent requires that the cost ratio of each 
agent j ∈ N�{i} for each resource should not change from (DN , c) to (DN�{i}, c�).

Given two profiles DN and EN of service constraints, an agent i ∈ N , a resource b 
in EN is supplementary to agent i’s needs from DN to EN if b is not a resource in DN 
and for all A ∈ E

i
 , A�{b} ∈ D

i
 or A ∈ D

i
 . It can be checked that, this is equivalent 

to saying that E
i
 is obtained from D

i by only embedding b to some minimal serving 
sets in D

i . Now, the set of resources in EN consists in all resources in DN together 
with b.

(6)
∑
i∈N

fi(D
N , r) = 1.

(7)Fi

(
D

N , c
)
=

∑
r∈R(DN)

fi
(
D

N , r
)
cr.

(8)F
(
D

N , c
)
= F

(
D

N , c�
)
+ F

(
D

N , c��
)
whenever c = c� + c��.

fj(D
N , r) =

(
1 − fi(D

N , r)
)
fj
(
D

N�{i}, r
)

for all j ∈ N�{i}.

2 Interested readers are referred to the supplementary material joined to this paper.
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Irrelevance of Supplementary Items (ISI): For all profiles DN and EN , if a resource 
b in EN is supplementary to the needs of the agents from DN to EN , then

When from one profile to another, service constraints differ only on a single supple-
mentary resource, then the cost ratio of each agent for all other resources coincides 
in both profiles.

Relatedness (REL): For all profiles DN , for all non redundant resources 
r ∈ R

(
D

N
)
 , and for all agents i ∈ N,

An agent i contributes nothing for the cost of a non redundant resource r if, and 
only if, r is irrelevant to i. This condition combines two previous requirements from 
(Hougaard and Moulin 2014, items (ii) and (iii) in Definition 2).

Now, we introduce two new axioms. The first one is a very basic requirement that 
each cost ratio index should meet.

Identity (IDE): For all profiles DN , if Di = D
j for all agents i and j, then

When all agents have the same needs, they are equally charged for all resources.
Hereafter, any cost ratio index that satisfies (IDE) and (REL) is called reasonable. 

To continue, we need a few more notation and definitions. Let S be a finite subset of 
at least two agents and denote by DS =

(
D

i
)
i∈S

 the profile of service constraints of 
agents in S. We say that the needs of agents in S are mergeable if all pairs of agents 
in S have non overlapping sets of minimal serving sets; that is for all {i, j} ⊆ S , 
D

i
∩D

j
= � . In this case, the concatenation of the service constraints in DS is the 

f (DN , r) = f (EN , r) for all resources r in D
N .

fi(D
N , r) = 0 if, and only, if r ∉ H

i.

fi(D
N , r) = fj(D

N , r) for all agents i, j ∈ N and for all resources r ∈ R
(
D

N
)
.

O A′

7
ω4

Aω1

B

B′ω2

ω3
1,2

3,4

6 5

Fig. 1  Facility locations on a graph
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service constraint C = D
[S] such that C = ∪i∈SD

i
 . Any concatenation of service con-

straints of the same type is called regular. Given a profile DN , the profile DN[S] is 
obtained from DN by only replacing the service constraint of each agent i ∈ S by 
C = D

[S] provided that agents in S have mergeable service constraints3; more pre-
cisely, for EN = D

N[S] , Ei = D
[S] for all i ∈ S , and Ei = D

i for all i ∈ N�S.

Example 2.4 Consider the graph in Fig. 1 where the costly items are the edges of the 
graph. Agents live on nodes other than �j, j = 1, 2, 3, 4 which are some facility loca-
tions that provide four separate types of services. First assume that agent 1 is served 
only by �1 or �2 ; while agent 2 is interested only by �3 or �4 . We simply denote 
by XY the edge delimited by X and Y. The service needs of 1 and 2 are completely 
described by

and

respectively. Note that agents 1 and 2 are separately served by two disjoint sets of 
minimal serving sets.

Suppose that at each facility location, the four types of services are now available. 
Agents 1 and 2 are now served by any of the four facilities �j . The service needs of 1 
and 2 are thus updated to

Clearly, E
1
 and E

2
 are obtained from D

1 and D
2 by a regular concatenation. It can be 

easily checked that such a change in the service constraints of the two players alters 
the overall service demand on no resource in the network.

The next axiom requires that a regular concatenation of the service constraints of 
agents in S should not affect the cost ratio of agents out of S.
Independence of regular concatenation (IRC):For all profiles DN , for all non empty 
subsets S of N, if agents in S have mergeable service constraints of the same type, 
then for all resources r ∈ R

(
D

N
)
,

Suppose that some agents are somehow constrained to use only a subset of the 
resources, any two of these agents using separate parts of the resources. Then (IRC) 
requires that whenever all parts have the same size, whether we consider the unre-
stricted or the restricted case should not matter for the other agents. Intuitively, a 

D
1
=
{{

B�1

}
,
{
BO,OA,A�1

}
,
{
BO,OA,A�2

}}

D
2
=
{{

BO,OA�,A��3

}
,
{
BO,OA�,A��4

}
,
{
BO,OB�,B��4

}}

E
1
= E

2
=
{{

B�1

}
,
{
BO,OA,A�1

}
,
{
BO,OA,A�2

}
,
{
BO,OA�,A��3

}
,
{
BO,OA�,A��4

}
,{

BO,OB�,B��4

}}
.

fk(D
N[S], r) = fk

(
D

N , r
)

for all k ∈ N�S.

3 In contrast with the usual statement of mergeability, all agents in S remain in the profile.



576 G. S. Fopa et al.

1 3

regular concatenation can be seen as a kind of an update in the service needs of 
some agents that does not affect the overall service demand on each resource of the 
network.

Remark 2.1 It can be easily checked that � = �1 is the unique cost allocation index 
of the form �� that satisfies (IRC). Therefore the counting ratio index is completely 
characterized among all cost ratio indices by Consistency, Independence of Sup-
plementary Items, Replication, Neutrality, Anonymity and the four dispositions 
provided by Hougaard and Moulin (2014) in their Definition 2. We provide below 
another characterization of the counting ratio index with fewer axioms.

We will sometimes consider situations in which some new resources become 
complementary to some agents’ needs. We say that a non empty finite X of resources 
is complementary to agent i’s needs from Di to Ei , denoted by Ei = D

i[X], if for all 
subsets A of resources: A ∈ E

i if, and only if, A�X ∈ D
i and A ∩ X ≠ � . To be satis-

fied, agent i needs one of his/her serving set in Di and at least one new resource from 
X. This is illustrated in the following example:

Example 2.5 Before the COVID-19 pandemic, three faculties 1, 2 and 3 had to pay 
for the costs of three security gate controls a, b and c. Gates a and b gave access to 
Campus 1 for students from faculty 1 and for some students from faculty 2. Gate c 
gave access to Campus 2 for students from faculty 3 and for some students from fac-
ulty 2. The profile DN of service needs was as follows

After the first peak of the COVID-19 pandemic, faculties who resumed activities 
were called to install at least one facility for COVID-19 prevention (stations com-
bining hand-washing points, hydroalcoholic gels, ...). Ten identical such facilities 
(denoted by x1, x2,… , x10 ) were first installed on Campus 1. The updated profile EN 
of service constraints was described by:

where X = {x1, x2,… , x10} . It appears that the introduction of x1, x2,… , x10 sim-
ply resulted in adding one of the ten new resources to a minimal serving sets of 
agents 1 and 2 without altering the role of each of the previous resources: the set X 
was clearly complementary to agent 1’s needs from D1 to E1 . The same observation 
occurred for agent 2. Finally, a total of eleven other identical facilities y1, y2,… , y11 
were installed on Campus 2 and the final profile TN of service needs described by:

D
1
= {{a}, {b}}, D

2
= {{a, c}, {b, c}} and D

3
= {{c}}.

E
1
={{a, xj}, {b, xj} ∶ 1 ≤ j ≤ 10} = D

1[X]

E
2
={{a, c, xj}, {b, c, xj} ∶ 1 ≤ j ≤ 10} = D

2[X]

E
3
=D

1
= {{c}}
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where Y = {y1, y2,… , y11}.

As illustrated in the precedent example, when a set X of p resources is comple-
mentary to agent i’s needs from Di to Ei , each minimal serving set A of agent i in Di 
corresponds to p isomorphic minimal serving sets in Ei , each obtained by simply 
embedding to A one of the p new resources.

Remark 2.2 The reader can easily checked that all cost ratio indices of the form 
�� defined by (3) satisfy ��

(
E
N , r

)
= ��

(
D

N , r
)
 whenever for all agents i ∈ N , 

E
i = D

i[Xi] for some set Xi of resources.

3  Results

3.1  Preliminary results

We first present some preliminary results on cost ratio indices that satisfy (CON).

Proposition 3.1 If a reasonable cost ratio index f satisfies (CON) , then for all pro-
files DN of service constraints, for all agents i and for all resources r that are rel-
evant to agent i,

Proof Consider a reasonable cost ratio index f that meets (CON) , a profile 
D

N of service constraints, an agent i and a resource r that is relevant to agent i. 
Let j ∈ N�{i} . Note that f is reasonable by assumption. It follows by (REL) 
that fi

(
D

N , r
)
> 0 . If r is irrelevant to j in DN , then r remains irrelevant to j in 

D
{i,j} . Thus, by (REL), fj

(
D

N , r
)
= fj

(
D

{i,j}, r
)
= 0 and ( 9) holds. Now sup-

pose that r is relevant to j in DN . Let M be the set of all agents to whom r is rel-
evant in D

N . Pose M�{i, j} =
{
i1, i2, ..., it

}
 and Mk =

{
i, j, i1, i2, ..., ik

}
 for 

1 ≤ k ≤ t . Since fj
(
D

N , r
)
= 0 for all j ∈ N�M , then (CON) implies that (

fk
(
D

N , r
))

k∈M
=
(
fk
(
D

M , r
))

k∈M
 when agents in N∖M leave, one at a time. Note 

that r remains relevant to both i and j in all sub-profiles DMk for 1 ≤ k ≤ t . Therefore, 
by (REL), fi

(
D

Mk , r
)
> 0 , fj

(
D

Mk , r
)
> 0 and 1 − fi

(
D

Mk , r
)
> 0 . It then follows by 

(CON) that:

T
1
={{a, xj}, {b, xj} ∶1 ≤ j ≤ 10}

T
2
={{a, c, xj, yk}, {b, c, xj, yk} ∶ 1 ≤ j ≤ 10, 1 ≤ k ≤ 11} = E

2[Y]

T
3
={{c, yk} ∶ 1 ≤ k ≤ 11} = E

3[Y]

(9)
fj
(
D

N , r
)

fi
(
D

N , r
) =

fj
(
D

{i,j}, r
)

fi
(
D

{i,j}, r
) for all j ∈ N�{i}.
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when agents in M�{i, j} leave, one at a time. Therefore ( 9) holds by recalling that 
fj
(
D

N , r
)
= fj

(
D

M , r
)
 for all j ∈ M.

  ◻

It appears from Proposition 3.1 that the relative size of the cost ratio of two 
agents for the cost of a resource does not depend on other agents’ needs when the 
cost ratio index under consideration is (CON).

Corollary 3.1 If two reasonable cost ratio indices f and g both satisfy (CON) and 
coincide over all profiles with two agents on the cost ratio of all resources that are 
not redundant, then f and g coincide over all profiles (with two or more agents) on 
the cost ratio of all resources that are not redundant.

Proof Let f and g be two reasonable cost ratio indices that both satisfy (CON) and 
coincide over all profiles with two agents on the cost ratio of all resources that are 
not redundant. Consider a profile DN with two or more agents, an agent i ∈ N and 
a resource r in DN that is not redundant (r is relevant to some agents in the profile).

First suppose that r is relevant to i. Since f is reasonable and satisfies (CON) , then 
it follows from Proposition 3.1 that

Therefore by the budget-balance condition,

Now suppose that r is irrelevant to agent i. By assumption, r is relevant to some 
other agents. Then by (REL), fi

(
D

N , r
)
= gi

(
D

N , r
)
= 0 .   ◻

Corollary 3.2 Consider a reasonable cost ratio index f that satisfies (CON) ; a non 
empty set S of agents; and two profiles EN and DN that differ only on the service con-
straints of agents in S. Then for all resources r in DN that are not redundant,

fj
(
D

M , r
)

fi
(
D

M , r
) =

fj
(
D

Mk−1 , r
)

fi
(
D

Mk−1 , r
) = ... =

fj
(
D

{i,j}, r
)

fi
(
D

{i,j}, r
) ,

fj
(
D

N , r
)
= fi

(
D

N , r
) fj

(
D

{i,j}, r
)

fi
(
D

{i,j}, r
) for all j ∈ N.

fi
�
D

N , r
�
=

1
∑

j∈N

fj(D{i,j},r)
fi(D{i,j},r)

=
1

∑
j∈N

gj(D{i,j},r)
gi(D{i,j},r)

=gi
�
D

N , r
�
since g also satisfies (CON)

∑
i∈S

fi
(
D

N , r
)
=
∑
i∈S

fi
(
E
N , r

)
⟹ fk

(
D

N , r
)
= fk

(
E
N , r

)
for all k ∈ N�S.
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Proof Let f be a reasonable cost ratio that satisfies (CON) . Consider two profiles EN 
and DN that differ only on the service constraints of agents in a nonempty subset S 
of agents; that is Dk = E

k for all k ∈ N�S . Let r be a resource that is not redundant in 
D

N . Suppose that 
∑

i∈S fi
�
D

N , r
�
=
∑

i∈S fi
�
E
N , r

�
 . Given an agent k ∈ N�S , there are 

two possible cases.
If r is irrelevant to agent k in DN , then r is also irrelevant to k in EN and 

fk(D
N , r) = fk

(
E
N , r

)
= 0 since f satisfies (REL).

Now, suppose that r is relevant to k in DN . Then r is also relevant to k in EN . By 
(CON) and Proposition 3.1, it follows that

and

Since 
∑

i∈S fi
�
D

N , r
�
=
∑

i∈S fi
�
E
N , r

�
 , then by the budget-balance condition together 

with (10) and (11), fk(D
N , r) = fk(E

N , r) for all k ∈ N�S .   ◻

3.2  Main result

We now provide our main result on an alternative characterization of the counting 
cost ratio index �.

Theorem 3.1 A cost ratio index f is reasonable and satisfies (CON) , (ISI) and (IRC) 
if, and only if, f is the counting cost ratio index; that is f = �.

The proof of Theorem 3.1 is based on four lemmas. Since it is straightforward 
to verify that � is a cost ratio index that is reasonable and satisfies (CON) , (ISI) and 
(IRC) , we will only prove the converse. It is worth mentioning that all the results 
we present from now on hold assuming that there is an infinite number of potential 
resources and at least three agents.

Lemma 3.1 A cost ratio index f satisfies (ISI) if, and only if, for all profiles DN , for 
all resources r in DN , for all agents i ∈ N and for all service constraints Ei such that ||||D

i|||| =
||||E

i|||| and 
||||D

i
(r)

|||| =
||||E

i
(r)

|||| , f
(
D

N , r
)
= f

((
E
i,DN�{i}

)
, r
)
.

Proof Let f be a cost ratio index.
Suppose that f satisfies (ISI) . Consider a profile DN , a resource r in DN , an agent 

i ∈ N and a service constraint E
i such that 

||||D
i|||| =

||||E
i|||| = q ≥ 1 and 

||||D
i
(r)

|||| =
||||E

i
(r)

|||| = p ≥ 0 . Consider q new resources r1, ..., rq not in DN , nor in Ei . 

(10)
∑
l∈N�S

fl(D
N , r) = fk(D

N , r)

(
1 +

∑
l∈N�(S∪{k})

fl(D
{k,l}, r)

fk(D
{k,l}, r)

)

(11)
∑
l∈N�S

fl(E
N , r) = fk(E

N , r)

(
1 +

∑
l∈N�(S∪{k})

fl(D
{k,l}, r)

fk(D
{k,l}, r)

)
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Pose D
i
(r) =

{
A1, ...,Ap

}
 and D

i
=
{
A1, ...,Ap,Ap+1, ...,Aq

}
 such that r ∈ At for 

1 ≤ t ≤ p and r ∉ At for p < t ≤ q . Moving from Di
0
= D

i and by only adding r1 to 
A1 , one obtains a new service constraint Di

1
 such that D

i

1
=
{
A1 ∪

{
r1
}
,A2, ...,Aq

}
 . 

By (ISI) , f
(
D

N , r
)
= f

((
D

i
1
,DN�{i}

)
, r
)
 . Repeating this operation q times while 

moving from Di
t
 to Di

t+1
 by only adding rt+1 to At+1 , it follows by (ISI) that 

f
(
D

N , r
)
= f

((
D

i
q
,DN�{i}

)
, r
)
 . Starting from Di

q
 and by only removing out of agent 

i’s service constraint, one at a time, all resources in A1 ∪ A2 ∪ ... ∪ Aq , it follows by 
(ISI) that individual shares of the cost of r do not change. That is 
f
((

D
i
q
,DN�{i}

)
, r
)
= f

((
C
i,DN�{i}

)
, r
)
 where Ci is the service constraint such that 

C
i
=
{{

r, r1
}
, ...,

{
r, rp

}
,
{
rp+1

}
, ...,

{
rq
}}

 . Hence f
(
D

N , r
)
= f

((
C
i,DN�{i}

)
, r
)
 . 

The same reasoning, when applied on Ei yields f
((
E
i,DN�{i}

)
, r
)
= f

((
C
i,DN�{i}

)
, r
)
 . 

Therefore f
(
D

N , r
)
= f

((
E
i,DN�{i}

)
, r
)
.

Conversely, suppose that for all profiles DN , for all resources r in DN , for all 
agents i ∈ N and for all service constraints E

i such that 
||||D

i|||| =
||||E

i|||| and 
||||D

i
(r)

|||| =
||||E

i
(r)

|||| , f
(
D

N , r
)
= f

((
E
i,DN�{i}

)
, r
)
 . Consider two profiles DN and EN , a 

resource b in EN such that for all agents i ∈ N , b is supplementary to agent i’s needs 
from Di to Ei whenever Di

≠ E
i . Let r be a resource in DN such that r ≠ b . By defini-

tion of a supplementary resource, it follows that 
||||D

i|||| =
||||E

i|||| and 
||||D

i
(r)

|||| =
||||E

i
(r)

|||| for 

all agents i ∈ N . Then from DN and by only substituting, one at a time, all agents 
service constraints from EN to their corresponding service constraints in DN , it fol-
lows by the assumption that individual shares of the cost of r do not change. That is 
f (DN , r) = f (EN , r) .   ◻

Remark 3.1 Lemma 3.1 is a characterization of all cost ratio indices that are (ISI) . 
The proof we present is mainly due to Hougaard and Moulin (2014,  page 18); 
although the authors stated only an implication and used neutrality.

Lemma 3.2 If a reasonable cost ratio index f satisfies (CON) , (ISI) and (IRC) , then 
for all pairs {i, j} of agents, for all profiles D{i,j} , for all resources r that are not 
redundant in D{i,j} and for all finite non empty set X of resources not in profile D{i,j} , 
f
(
D

{i,j}, r
)
= f

((
D

i[X],Dj
)
, r
)
.

Proof Assume that f is a reasonable cost ratio index that satisfies (CON) , (ISI) and 
(IRC) . Consider a profile D{i,j} , a resource r ∈ R

(
D

{i,j}
)
 that is not redundant in D{i,j} 

and a finite non empty set X = {r1, r2,… , rt} of resources not in profile D{i,j} , that is 
X ∩R

(
D

{i,j}
)
= �. By the definition of Di[X] , r is also not redundant in profile 

E
{i,j} =

(
D

i[X],Dj
)
 . If r is irrelevant to agent i in D{i,j} , then r is also irrelevant to 

agent i in E
{i,j} . In this case, fi

(
D

{i,j}, r
)
= fi

(
E
{i,j}, r

)
= 0 by (REL); and 

fj
(
D

{i,j}, r
)
= fj

(
E
{i,j}, r

)
= 1 by the budget-balance condition. Hence 
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f
(
D

{i,j}, r
)
= f

(
E
{i,j}, r

)
 . Now assume that r is relevant to agent i; that is 

||||D
i
(r)

|||| ≥ 1 . 

Let 
||||D

i|||| = q and 
||||D

i
(r)

|||| = p for some integers p and q such that q ≥ p ≥ 1.

Note that for t = 1 , Di ∼r (p, q) and Di[X] ∼r (p, q) . In this case, Lemma 3.1 
implies that f

(
D

{i,j}, r
)
= f

(
E
{i,j}, r

)
 . In the case t ≥ 2 , we consider a set 

S = {i1, i2,… , it−1} of t − 1 new agents, a set Y = {r�
1
, r�

2
,… , r�

(t−1)q
} of (t − 1) × q 

new resources and pose for all s ∈ {1, 2, ..., t − 1},

Each service constraint D
is satisfies D

is ∼r (p, q) . Moreover, the needs of 
D

{i,i1,i2,…,it−1} of agents in S� = {i, i1, i2,… , it−1} are mergeable and have the same 
types. Thus the concatenation C = D

[{i,i1,i2,…,it−1}] of the needs of agents in S′ is regu-
lar. It follows that

By the budget-balance condition applied to f
(
D

{i,j}, r
)
 and f

((
D

i[X],Dj
)
, r
)
 , we get 

f
(
D

{i,j}, r
)
= f

((
D

i[X],Dj
)
, r
)
.

  ◻

Lemma 3.3 If f is a reasonable cost ratio index that satisfies (CON) , (ISI) and (IRC) , 
then f

(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
 for all pairs {i, j} of agents, for all profiles D{i,j} and 

for all resources r such that 
||||D

i|||| =
||||D

j|||| ≥ 1 and 
||||D

i
(r)

|||| = 1.

Proof Assume that f is a reasonable cost ratio index that meets (CON) , (ISI) and 
(IRC) . Consider a profile D{i,j} and a resource r such that 

||||D
i|||| =

||||D
j|||| = q , 

||||D
i
(r)

|||| = 1 

and 
||||D

j
(r)

|||| = p ≥ 0 . If r is irrelevant to agent j, then f
(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
 by 

(REL) and the budget-balance condition. Now assume that r is relevant to agent j; 
that is p ≥ 1 . To show that f

(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
 , we proceed by induction on ||||D

j
(r)

|||| = p ∈ {1, 2, ..., q} .

D
is = {{r, r�

(s−1)q+1
}, {r, r�

(s−1)q+2
},… , {r, r�

(s−1)q+p
}, {r�

(s−1)q+p+1
},… , {r�

sq
}}

fj
(
D

{i,j}, r
)

fi
(
D

{i,j}, r
) =

fj
((
D

{i,j},Di1 ,Di2 ,… ,Dit−1
)
, r
)

fi
((
D

{i,j}, ,Di1 ,Di2 ,… ,Dit−1
)
, r
) by Proposition 3.1

=
fj
((
C,Dj, C, C,… , C

)
, r
)

fi
((
C,Dj, C, C,… , C

)
, r
) by (IRC) since C is a regular concatenation

=
fj
((
C,Dj

)
, r
)

fi
((
C,Dj

)
, r
) by Proposition 3.1

=
fj
((
D

i[X],Dj
)
, r
)

fi
((
D

i[X],Dj
)
, r
)

by Lemma 3.1 since Di[X] ∼r (tp, tq) and C ∼r (tp, tq)
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First suppose that p = 1 . Then by Lemma 3.1, f
(
D

{i,j}, r
)
= f

(
E
{i,j}, r

)
 where 

E
i = E

j = D
i . Since f is reasonable, then fi

(
E
{i,j}, r

)
= fj

(
E
{i,j}, r

)
 by (IDE). Thus 

f
(
E
{i,j}, r

)
=
(

1

2
,
1

2

)
= �

(
E
{i,j}, r

)
 . Hence f

(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
=
(

1

2
,
1

2

)
.

Now consider p ∈ {2, ..., q} and suppose that f
(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
 whenever |||D

j(r)
||| < p . Suppose that |||D

j(r)
||| = p . There are two possible cases depending on 

whether p is odd or even. In both cases, p = 2p� + � where � = 0 or � = 1 . Consider 
a third agent k, and three service constraints Ek , Fj and Fk such that D

j
∩ E

k
= � , ||||E

k|||| = q , 
||||E

k
(r)

|||| = � , while F
j
∩ F

k
= � , 

||||F
j|||| =

||||F
k|||| = q and 

||||F
j
(r)

|||| =
||||F

k
(r)

|||| = p� + � . Furthermore, let X = {r1, r2} be a set of two new identi-

cal resources. Pose Tj = F
j[X] and Tk = F

k[X]. By definition, Tj ∼r
(
2p� + 2�, 2q

)
 

and Tk ∼r
(
2p� + 2�, 2q

)
. It follows that

Noting that 
�i

((
D

i,Fj
)
, r
)

�j

((
D

i,Fj
)
, r
) =

�i

(
D

{i,j}, r
)

�j

(
D

{i,j}, r
) =

1

p� + �
 , we deduce by the budget-bal-

ance condition that f
(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
 . This completes the proof.   ◻

Lemma 3.4 If f is a reasonable cost ratio index that meets (CON) , (ISI) and (IRC) , 
then f

(
D

{i,j}, r
)
= �

(
D

{i,j}, r
)
 for all pairs {i, j} of agents, for all profiles D{i,j} and 

for all resource r in D{i,j} that are not redundant.

fi
(
D

{i,j}, r
)

fj
(
D

{i,j}, r
) =

fi
((
D

{i,j}, Ek
)
, r
)

fj
((
D

{i,j}, Ek
)
, r
) by Proposition 3.1

=
fi
((
D

i,
[
D

j
E
k
]
,
[
D

j
E
k
])
, r
)

fj
((
D

i,
[
D

j
E
k
]
,
[
D

j
E
k
])
, r
)

by (IRC) via a concatenation of Dj and E
k

=
fi
((
D

i, Tj, Tk
)
, r
)

fj
((
D

i, Tj, Tk
)
, r
)

by Lemma 3.1 since
[
D

j
E
k
]
∼r

(
2
(
p� + �

)
, 2q

)

=
fi
((
D

i,Fj,Fk
)
, r
)

fj
((
D

i,Fj,Fk
)
, r
)

by Lemma 3.1 since Tj = F
j[X]andTk = F

k[X]

=
fi
((
D

i,Fj
)
, r
)

fj
((
D

i,Fj
)
, r
) by Proposition 3.1

=
�i

((
D

i,Fj
)
, r
)

�j

((
D

i,Fj
)
, r
)by induction assumption
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Proof Assume that f is a reasonable cost ratio index that satisfies (CON) , (ISI) and 
(IRC) . Consider a profile D{i,j} and a resource r in D{i,j} . Let 

||||D
i|||| = qi , 

||||D
j|||| = qj , 

||||D
i
(r)

|||| = pi ≥ 0 and 
||||D

j
(r)

|||| = pj ≥ 0 . Let X = {x1, x2,… , xqj} and 

Y = {y1, y2,… , yqi} be two disjoint sets of identical resources.
Since r is not redundant, pi ≥ 1 or pj ≥ 1 . Without lost of generality, assume that 

pi ≥ 1 . Pose Ei = D
i[X] and Ej = D

j[Y] . By the definition of Di[X] and Dj[Y] , ||||E
i|||| =

||||E
j|||| = qiqj , 

||||D
i
(r)

|||| = qjpi and 
||||D

j
(r)

|||| = qipj . Consider an agent k ∉ {i, j} and a 

service constraint Ek such that 
||||E

k|||| = qiqj and 
||||E

k
(r)

|||| = 1 . By Proposition 3.1, 
fl(E{i,j,k},r)
fk(E{i,j,k},r)

=
fl(E{l,k},r)
fk(E{l,k},r)

 for all l ∈ {i, j} . Recalling that Ei = D
i[X] and Ej = D

j[Y] , 
Lemma 3.2 implies that f

(
E
{i,j}, r

)
= f

((
E
i,Dj

)
, r
)
= f

(
D

{i,j}, r
)
 . By Lemma 3.3, 

fi(E{i,k},r)
fk(E{i,k},r)

=
�i(E{i,k},r)
�k(E{i,k},r)

= qjpi and fj(E{j,k},r)
fk(E{j,k},r)

=
�j(E{j,k},r)
�k(E{j,k},r)

= qipj . Summing individual 
shares of the cost of resource r in profile E{i,j,k} leads by the budget-balance condi-
tion to fk

(
E
{i,j,k}, r

)
=

1

qjpi+qipj+1
 , fi

(
E
{i,j,k}, r

)
=

qjpi

qjpi+qipj+1
 and 

fj
(
E
{i,j,k}, r

)
=

qipj

qjpi+qipj+1
 . We deduce that fj(D{i,j},r)

fi(D{i,j},r)
=

fj(E{i,j,k},r)
fi(E{i,j,k},r)

=
qipj

qjpi
=

�j(D{i,j},r)
�i(D{i,j},r)

 . 
Therefore, f

(
D

{i,j}, r
)
= �

(
E
{i,j}, r

)
 by the budget-balance condition.   ◻

Taking advantage of the previous lemmas, a proof of Theorem  3.1 is the 
following:

Proof (Proof of Theorem 3.1) Assume that f is reasonable, (CON) , (ISI) and (IRC) . 
Consider a profile DN with two or more agents, an agent i ∈ N and a resource r in 
D

N.
First suppose that r is not redundant in DN . Then by Lemma 3.4, f coincides with 

� over all profiles with two agents on the cost ratio of all resources that are not 
redundant. Since f and � both satisfy (CON) , then f (DN , r) = �(DN , r) by Corollary 
3.1.

Now, suppose that r is redundant in DN . Pose 
||||D

i|||| = qi , for i ∈ N . Consider a new 

resource r′ and for all i ∈ N , let Xi = {x1, x2,… , xqi} be a set of qi new identical 
resources other than r′ . Let EN , FN and TN be three profiles such that for all i ∈ N , 
E
i
= {{r�}} , F

i
= {{xt} ∶ 1 ≤ t ≤ qi} and T

i
= {{r�, xt} ∶ 1 ≤ t ≤ qi} . Note that for 

Y = {r�} , Ti = E
i[Xi] and Ti = F

i[Y] . Since f is reasonable, f
(
T
{i,j}, r

)
=
(

1

2
,
1

2

)
 . It 

follows that

f
(
D

N , r
)
= f

((
F

i,DN�{i}
)
, r
)
by Lemma 3.1 since Di ∼r

(
0, qi

)
and Fi ∼r

(
0, qi

)

= f
((
T
i,DN�{i}

)
, r
)
by Lemma 3.2 since Ti = F

i[Y]

= f
((
E
i,DN�{i}

)
, r
)
by Lemma 3.2 since Ti = E

i[Xi]
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This proves that replacing the service constraints Di of agent i by Ei does not affect 
the cost ratio for resource r for any agent. Therefore, by performing n times this 
operation, we obtain f

(
D

N , r
)
= f

(
E
N , r

)
 . Moreover, all agents in EN have the same 

needs. Therefore f
(
E
N , r

)
=
(

1

n
,
1

n
,… ,

1

n

)
 . Hence 

f
(
D

N , r
)
=
(

1

n
,
1

n
,… ,

1

n

)
= �

(
D

N , r
)
.

In both cases, f (DN , r) = �(DN , r) .   ◻

Independence among axioms: We prove that one cannot drop any of the five axi-
oms in Theorem 3.1 without altering its validity. 

1. Consider the cost ratio index �∗ defined by 

 where 

 if r is relevant to agent i; 𝜆i
(
D

N , r
)
> 0 if r is redundant; and �i

(
D

N , r
)
= 0 oth-

erwise. Then �∗ is a reasonable cost ratio index that satisfies (CON) and (IRC) ; 
but not (ISI) . One cannot drop (ISI).

2. Define the cost ratio index g by gi
(
D

N , r
)
=

1

|N(r)| if r is relevant to agent i; 
gi
(
D

N , r
)
=

1

|N| if r is redundant; and gi
(
D

N , r
)
= 0 otherwise. Then g is a reason-

able cost ratio index that satisfies (ISI) and (CON) ; but not (IRC) . One can not 
drop (IRC).

3. Let h be the cost ratio index defined by h
(
D

N , r
)
=

1

|N| if |N| ≤ 2 ; and 
h
(
D

N , r
)
= �

(
D

N , r
)
 otherwise. Then h is a reasonable cost ratio index that satis-

fies (ISI) and (IRC) ; but not (CON) . One can not drop (CON).
4. Consider a collection 

(
wi

)
i∈N

 of positive weights such that wk ≠ wl for some pairs 
{k, l} of agents. Define the cost ratio index w∗ by 

 where Wi

(
D

N , r
)
= wi�

1
i

(
D

N , r
)
 if r is relevant to agent i; Wi

(
D

N , r
)
= 1 if r 

is redundant; and Wi

(
D

N , r
)
= 0 otherwise. Then w∗ is (REL) , (ISI) , (CON) and 

(IRC) ; but not (IDE) . One can not drop (IDE).
5. The cost ratio index E defined by E

(
D

N , r
)
=

1

|N| is (IDE) , (ISI) , (CON) and (IRC) ; 
but not (REL) . One can not drop (REL).

�∗
i

�
D

N , r
�
=

�i
�
D

N , r
�

∑
j∈N �j

�
D

N , r
�

�i
�
D

N , r
�
=

∑
A∈D

i
(r)
�A�

����D
i����

w∗
i

�
D

N , r
�
=

Wi

�
D

N , r
�

∑
j∈N Wj

�
D

N , r
�
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Noting that � is the cost ratio index associated with the counting rule, the follow-
ing holds:

Corollary 3.3 Among cost allocation rules that are additive in cost, the counting rule 
Φ is the unique rule associated to a reasonable cost ratio index that satisfies (CON) , 
(ISI) and (IRC).

It is worth noticing that, for cost allocation rules that are additive in cost, axi-
oms in Corollary 3.3 are independent. Furthermore, all the five other axioms are 
stated under additivity. Thus, additivity itself can not be dropped in Corollary 3.3.

Concatenating or splitting some service constraints by agents may be seen as 
a manipulation attempt. In this case, it is desirable for a cost ratio index not to 
allow such attempts to be profitable. We assume that only regular concatenations 
are feasible. This may be dictated by some compatibility requirements in the net-
work. For example, it may happen that only agents using similar technologies, 
that correspond to service constraints of the same type, can exchange.

No Advantageous Regular Concatenation (NARC):  For all profiles DN , for all 
non empty subsets S of agents having mergeable service constraints of the same 
type, 

for all resources r ∈ R
(
D

N
)
.

Any regular concatenation of the service constraints of some agents leaves 
their total shares unchanged over each possible resource.

Proposition 3.2 Let f be a reasonable cost ratio index. 

1. If f satisfies (IRC) , then f satisfies (NARC).
2. If f satisfies (CON) and (NARC) , then f satisfies (IRC).

Proof Let f be a reasonable cost ratio index.
Suppose that f satisfies (IRC) . Consider a profile DN , a resource r in DN and a 

non empty set S of agents having mergeable service constraints of the same type. By 
(IRC) , fk(D

N[S], r) = fk
(
D

N , r
)
 for all k ∈ N�S . Recalling that individual cost ratios 

for r sum to 1, (12) holds. Thus f satisfies (NARC).
Conversely, suppose that f meets (CON) and (NARC) . Consider a profile DN , a 

resource r in DN and a non empty set S of agents having mergeable service con-
straints of the same type. Since (12) holds by (NARC ), then by Corollary 3.2, it fol-
lows that fk(D

N , r) = fk(D
N[S], r) . Therefore, f satisfies (IRC).

  ◻

By combining Theorem 3.1 and Proposition 3.2,

(12)
∑
i∈S

fi
(
D

N[S], r
)
=
∑
i∈S

fi
(
D

N , r
)
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Proposition 3.3 A reasonable cost ratio index f satisfies (CON) , (ISI) and (NARC) if, 
and only if, f = �.

Proof If f is a reasonable cost ratio index that satisfies (CON) , (ISI) and (NARC) , 
then by item (2.) in Proposition 3.2, f also satisfies (IRC) . Hence by Theorem 3.1, 
f = �.

Conversely, if f = � , then by Theorem 3.1, f is a reasonable cost ratio index 
that satisfies (CON) , (ISI) and (IRC) . By Proposition 3.2, f also satisfies (NARC).

  ◻

Corollary 3.4 A cost allocation rule F is additive and is associated to a reason-
able cost ratio index that satisfies (CON) , (ISI) and (NARC) if, and only if, F = Φ.

4  Conclusion

The counting rule and its cost ratio index for cost allocation problems with possi-
bly redundant resources have been characterized in this paper within the class of 
cost allocation rules that are additive in cost. This has been achieved by combin-
ing some normative conditions such as consistency and independence properties. 
The intuition of independence axioms in this paper is based on the idea that, if 
some changes occur in the service constraints of two or more agents in such a 
way that the overall service demand on a resource is preserved, then other agents 
should not be impacted. The counting rule is not manipulable when only regular 
concatenations are feasible; but is manipulable in general by merging or splitting 
agents needs. Designing reasonable and non manipulable allocation rules within 
the current framework deserves further investigations.
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