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Abstract
We consider the multi-object allocation problem with monetary transfers where 
each agent obtains at most one object (unit-demand). We focus on allocation mecha-
nisms satisfying individual rationality, non-wastefulness, equal treatment of equals, 
and strategy-proofness. Extending the result of Kazumura et  al. (J Econ Theory 
188:105036, 2020b), we show that for an arbitrary number of agents and objects, 
the minimum price Walrasian is the unique ex-post revenue maximizing mecha-
nism among the mechanisms satisfying no subsidy in addition to the four properties, 
and that no subsidy in this result can be replaced by no bankruptcy on the positive 
income effect domain.

1 Introduction

This is to extend (Kazumura et al. 2020b) to a general case of an arbitrary number 
of agents and objects. They consider the multi-object allocation problem with mon-
etary transfers where each agent obtains at most one object (unit-demand). A (con-
sumption) bundle is a pair of object and payment. Each agent has a continuous pref-
erence relation over bundles satisfying the possibility of compensation and money 
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monotonicity. Preferences are called classical if they satisfies object desirability. The 
classical domain is the class of all classical preferences The extended domain is the 
class of preferences which satisfies all properties but not object desirability.

An (allocation) mechanism, or simply mechanism chooses, for each preference 
profile, the object each agent receives and how much each agent pays. We focus on 
the following four properties of mechanisms. A mechanism is desirable if it satisfies 
those properties.

(i) Individual rationality requires that each agent’s bundle is at least as good as 
receiving nothing with no payment. Without this condition, agents does not partici-
pate the mechanism voluntarily. (ii) Non-wastefulness means that no agent prefers 
his own bundle to unassigned object with no payment. This condition is the prop-
erty of weak efficiency. (iii) Equal treatment of equals requires that if there are two 
agents with same preferences, then their bundles are indifferent for their preferences. 
This is a weak condition of fairness. (iv) Strategy-proofness is the incentive compat-
ible condition, which means that no agent has incentive to misreport his preference.

In multi-object allocation problem, for each preference profile, Walrasian equi-
librium exists (Alkan and Gale 1990), and Demange and Gale (1985) show that the 
set of Walrasian prices has a lattice structure; that is, there is the minimum price 
Walrasian equilibrium for each preference profile. The minimum price Walrasian 
mechanism is desirable (Demange and Gale 1985), and it satisfies efficiency and no 
subsidy (no-negative monetary transfer).

A subdomain of the classical domain is rich if for each object, there is a prefer-
ence in the subdomain which demands only the object for some price and demands 
no object for some other price.1 Kazumura et  al. (2020b) illustrate that various 
domains including the quasi-linear domain are rich, and show that in the case where 
the number of agents is greater than the number of objects, the minimum price Wal-
rasian mechanism is the unique ex-post revenue maximizing mechanism among the 
desirable mechanisms satisfying no subsidy on a classical rich domain; moreover, 
the mechanism is also the unique ex-post revenue maximizing mechanism among 
the desirable mechanisms satisfying no bankruptcy on a domain including positive 
income effect preferences. We extend their results to a general case of an arbitrary 
number of agents and objects and on the subset of extended domain.

This article is organized as follows. Section  2 introduces the model and basic 
concepts, and checks the properties of minimum price Walrasian mechanisms. Our 
results are in Sect. 3. Section 4 provides proofs. Section 5 concludes.

2  The model

Let N = {1, 2,… , n} be the set of agents and M = {1, 2,… ,m} be the set of differ-
ent objects. Not consuming an object in M is called consuming the “null object”. 
Let L ≡ M ∪ {0} , where 0 denotes the null object. Each agent consumes at most one 

1 See Sect. 3.1 for the formal definition of richness.
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object. A typical (consumption) bundle for agent i is a pair zi =
(
xi, ti

)
∈ L ×ℝ : 

agent i receives object xi and pays ti.
Each agent has a complete and transitive preference relation Ri over L ×ℝ . Let Ii 

and Pi be the indifference relation and strict preference relation associated with Ri . A 
typical class of preferences is denoted by R . We call R a domain. Ri is classical if it 
satisfies the following assumptions: 

1. Continuity  For each zi ∈ L ×ℝ ,  the sets {z�
i
∈ L ×ℝ ∶ z�

i
Ri zi} and 

{z�
i
∈ L ×ℝ ∶ zi Ri z

�
i
} are closed.

2. Possibility of compensation For each pair a, b ∈ L and each t ∈ ℝ , there exist 
t�, t�� ∈ ℝ such that (a, t)Ri

(
b, t�

)
 and 

(
b, t′

)
Ri

(
a, t′′

)
.

3. Money monotonicity For each a ∈ L and each pair t, t� ∈ ℝ , if t < t′ , then 
(a, t)Pi

(
a, t�

)
.

4. Object desirability For each a ∈ M and each t ∈ ℝ , (a, t)Pi (0, t).

Let RC be the set of classical preferences—the classical domain. Let RE be the set 
of preferences satisfying the above assumptions except for object desirability. We 
call RE the extended domain. Note that RC

⊊ R
E . We assume that R ⊆ R

E.2
A preference profile is a list of preferences R ≡ (R1,… ,Rn) . Given i ∈ N and 

N′ ⊆ N , let R−i ≡ (Rj)j≠i and R−N� ≡ (Rj)j∈N⧵N�.
A (feasible) object allocation is an n-tuple x =

(
x1, x2,… , xn

)
∈ Ln such that for 

each pair i, j ∈ N , if xi = xj , then xi = xj = 0 . Let A be the set of all object allo-
cations. An allocation is a pair of an object allocation and a vector of payments, 
z =

((
x1, x2,… , xn

)
,
(
t1, t2,… , tn

))
∈ A ×ℝ

n . Given z ∈ A ×ℝ
n and i ∈ N , 

zi =
(
xi, ti

)
∈ L ×ℝ denotes the bundle of agent i.

An (allocation) mechanism associates an allocation to each preference profile. 
Formally, a mechanism is a mapping f = (x, t) ∶ R

n
→ A ×ℝ

n . Given a mechanism f 
and a preference profile R ∈ R

n , agent i’s assignment under f at R is denoted by fi(R) . 
Moreover, we write fi(R) ≡ (xi(R), ti(R)) ∈ L ×ℝ , where xi(R) denotes i’s object 
assignment and ti(R) denotes his payment. We define f (R) ≡

(
f1(R),… , fn(R)

)
.

Definition 1 An allocation mechanism f = (x, t) is desirable if it satisfies the follow-
ing axioms:

• Individual rationality For each R ∈ R
n and each i ∈ N , fi(R)Ri (0, 0).

• Non-wastefulness For each R ∈ R
n , each i ∈ N and each a ∈ M , if xi(R) ≠ a and 

(a, 0)Pi fi(R) , then there is j ≠ i such that xj(R) = a.
• Equal treatment of equals For each R ∈ R

n and each i, j ∈ N with Ri = Rj , 
fi(R) Ii fj(R).

• Strategy-proofness For each R ∈ R
n , each i ∈ N and each R�

i
∈ R, 

fi(R)Ri fi
(
R�
i
,R−i

)
.

2 Kazumura et al. (2020b) assume that R ⊆ R
C . We discuss the difference of the domains and the rela-

tion of results in Sect. 3.
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Non-wastefulness means that no agent prefers unassigned object with no payment 
to his own bundle. This condition is a weak condition of efficiency.

We say the allocation mechanism satisfies no-wastage if for each R ∈ R
n and 

each a ∈ M , there is i ∈ N such that xi(R) = a . Note that when n < m , no mecha-
nism satisfies no-wastage. Kazumura et  al. (2020b) define desirability by (i) indi-
vidual rationality, (ii) no-wastage, (iii) equal treatment of equals, and (iv) strategy-
proofness, which is different from our definition. However, since they assume that 
the number of agents is greater than the number of objects, no-wastage implies non-
wastefulness. Thus, it is natural to relax no-wastage to non-wastefulness.

Remark 1 (i) If n < m , no mechanism satisfies no-wastage. (ii) If n ≥ m and f satis-
fies no-wastage, then it is non-wasteful.

Definition 2 An allocation mechanism f = (x, t) satisfies no subsidy if for each 
R ∈ R

n and each i ∈ N , ti(R) ≥ 0.

Let p =
(
p1, p2,… , pm

)
∈ ℝ

m
+
 be a price vector. We assume that the price of 

null object is equal to zero; that is, p0 = 0 . Given i ∈ N , Ri ∈ R , and p ∈ ℝ
m
+
 , let 

D(Ri, p) ≡ {a ∈ L ∶ ∀b ∈ L, (a, pa)Ri (b, pb)} denote the demand set of agent i with 
Ri at p.

Next, we define the concept of Walrasian equilibrium. It is a pair of a price vector 
and an allocation such that for each agent it defines the object he demands and its 
price. Furthermore, the price of an unassigned object is zero.

Definition 3 Given R ∈ R
n , a pair ((x, t), p) ∈ (A ×ℝ

n) ×ℝ
m
+
 is a Walrasian equilib-

rium for R if
WE-i: for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi ; and
WE-ii: for each a ∈ M⧵{xj}j∈N , pa = 0.

Given R ∈ R
n , let W(R) be the set of Walrasian equilibria for R, and define

and

Fact 1 (Alkan and Gale 1990) For each R ∈ R
n , there is a Walrasian equilibrium; 

that is, W(R) ≠ �.

Fact 2 (Demange and Gale 1985) For each R ∈ R
n , there is p ∈ ℝ

m
+
 such that for 

each p� ∈ P(R) , p ≤ p′.3

Z(R) ≡ {z ∈ A ×ℝ
n ∶ ∃p ∈ ℝ

m
+
s.t. (z, p) ∈ W(R)}

P(R) ≡
{
p ∈ ℝ

m
+
∶ ∃z ∈ A ×ℝ

n s.t. (z, p) ∈ W(R)
}
.

3 p ≤ p′ means that pa ≤ p′
a
 for each a ∈ M.
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Given R ∈ R
n , we denote the minimum Walrasian price for R by pmin(R) and 

define

We say an allocation mechanism f is a minimum price Walrasian mechanism if for 
each R ∈ R

n , f (R) ∈ Zmin(R).

Fact 3 (Demange and Gale 1985) The minimum price Walrasian mechanism f on Rn 
is strategy-proof.4

By the definition of Walrasian equilibrium, the minimum price Walrasian mech-
anism satisfies individual rationality, non-wastefulness, and equal treatment for 
equals, and so it is desirable; moreover, it satisfies no subsidy.

Fact 4 (Demange and Gale 1985) The minimum price Walrasian mechanism f is 
desirable and satisfies no subsidy.

Remark 2 

 (i) If R ⊆ R
C and n > m , the minimum price Walrasian mechanism on Rn satis-

fies no wastage.
 (ii) Let  a ∈ M  and  R0 ∈ R

E⧵RC  be  such  tha t  (0, 0)P0 (a, 0) .  I f 
R

C ∪ {R0} ⊆ R ⊆ R
E , then there is no mechanism that satisfies individual 

rationality, no subsidy and no wastage.

Remark 3 Let R ⊆ R
C and n ≥ m . Let a mechanism f = (x, t) on Rn satisfy indi-

vidual rationality and no subsidy. Then f satisfies no-wastage if and only if it is 
non-wasteful.

Proof Only if part follows from Remark 1. Thus we show that if part. Assume f 
satisfies non-wastefulness. Suppose that f does not satisfy no-wastage. Then 
there are R ∈ R

n and i ∈ N such that xi(R) = 0 . By individual rationality, 
(0, ti(R)) = fi(R)Ri (0, 0) , and so ti(R) ≤ 0 . By no subsidy, ti(R) ≥ 0 . Thus ti(R) = 0 , 
and so fi(R) = (0, 0).

Since n ≥ m and xi(R) = 0 , there is a ∈ M such that for each j ∈ N , xj(R) ≠ a . 
Since R ⊆ R

C , by object desirability, (a, 0)Pi (0, 0) . Thus by fi(R) = (0, 0) , 
(a, 0)Pi fi(R) , which contradicts non-wastefulness.   ◻

Zmin(R) ≡ {z ∈ A ×ℝ
n ∶ (z, pmin(R)) ∈ W(R)}.

4 Precisely, they show that the minimum price Walrasian mechanism is group strategy-proof; we say a 
mechanism f is group strategy-proof if for each R ∈ R

n and each N′ ⊆ N , there is no R�
N� ∈ R

|N�| such 
that for each i ∈ N , fi(R�

N� ,R−N� )Pi fi(R).
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Remark 4 Let R ⊆ R
C and n ≥ m . The class of mechanisms satisfying desirability 

and no subsidy is equivalent to the class of mechanisms satisfying individual ration-
ality, no-wastage, equal treatment of equals, strategy-proofness and no subsidy.

3  Results

Definition 4 A mechanism f = (xf , tf ) revenue dominates g = (xg, tg) if for each 
R ∈ R

n , 
∑

i∈N t
f

i
(R) ≥

∑
i∈N t

g

i
(R).

A mechanism is ex-post revenue optimal among a class of mechanisms if it belongs 
to the class and revenue dominates each other mechanism in the class. We explore 
ex-post revenue optimal mechanisms among the class of desirable satisfying no sub-
sidy on rich domains in Sect.  3.1, and among the class of desirable satisfying no 
bankruptcy on the positive income effect domain in Sect. 3.2.

3.1  The result on rich domains

We define the richness of a domain.

Definition 5 A domain R ⊆ R
E is rich if for each a ∈ M and each p ∈ ℝ

m
+
 with 

pa > 0 and pb = 0 for each b ∈ M⧵{a} and for each p′ > p,5 there is Ri ∈ R such 
that

Since the requirement R ⊆ R
E is weaker than R ⊆ R

C , the above richness condi-
tion is weaker than that of Kazumura et al. (2020b). The example below illustrates 
this fact.

Example 1 Let

Then R̂ satisfies the above richness condition, but not that of Kazumura et  al. 
(2020b) since R̂ ⊆ R

E⧵RC.

Fact 5 (Theorem 1 in Kazumura et al. (2020b)) Let R ⊆ R
C be rich and n > m . The 

minimum price Walrasian mechanism is the unique ex-post revenue optimal mecha-
nism among the class of desirable mechanisms satisfying no subsidy on Rn.

D(Ri, p) = {a} and D(Ri, p
�) = {0}.

R̂ ≡
⋃

a∈M

{Ri ∈ R ∶ (a, 0)Pi (0, 0) and (0, 0)Pi (b, 0) ∀b ∈ M⧵{a}}.

5 p′ > p means that p′
a
> pa for each a ∈ M.
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Fact 6 (Morimoto and Serizawa 2015) Let R ⊆ R
C , R ∈ R

n and p = pmin(R) . Then, 
(i) if n > m , then for each a ∈ M , pa > 0 , and (ii) if n ≤ m , then there is a ∈ M such 
that pa = 0.

In Kazumura et al. (2020b), the proof of Fact 5 depends on Fact 6 (i). How-
ever, when the number of agents is less or equal to the number of objects, we 
cannot use their method directly. Moreover, even when the number of agents is 
greater than the number of objects, if preferences do not satisfy object desirabil-
ity, then there is a minimum price Walrasian equilibrium in which some object’s 
price is zero. Hence, to show the result of Kazumura et al. (2020b) in the general 
cases, we need to use another proof method.

Theorem 1 shows that for an arbitrary number of agents and objects, the mini-
mum price Walrasian mechanism is revenue optimal among the same class on a 
rich domain.

Theorem 1 Let R ⊆ R
E be rich. The minimum price Walrasian mechanism is the 

unique ex-post revenue optimal mechanism among the class of desirable mecha-
nisms satisfying no subsidy on Rn.

The proof of Theorem 1 only depends on the richness of a domain and so it 
holds whether preferences in R satisfy object desirability or not. Hence we have 
the following corollary.

Corollary 1 Let R ⊆ R
C be rich. The minimum price Walrasian mechanism is the 

unique ex-post revenue optimal mechanism among the class of desirable mecha-
nisms satisfying no subsidy on Rn.

3.2  The result on the positive income effect domain

We define the positive income effect domain.

Definition 6 A preference Ri satisfies positive income effect if for each a, b ∈ L and 
each t, t� ∈ ℝ with t < t′ and (b, t�) Ii (a, t) , for each 𝛿 > 0,

Let R++ be the set of positive income effect preferences.

Definition 7 A mechanism f satisfies no bankruptcy if there is l ≤ 0 such that for 
each R ∈ R

n , 
∑

i∈N ti(R) ≥ l.

Remark 5 Let R ≡ R
E . Then there is no mechanism that satisfies individual ration-

ality, no bankruptcy and no wastage.

(b, t� − �)Pi (a, t − �).
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Proof Suppose that there is f that satisfies individual rationality, no bankruptcy and 
no wastage. Let l ≤ 0 be the associate lower bound of no bankruptcy and R0 ∈ R 
be such that for each a ∈ M , (0, 0)P0 (a, l) . Let R ∈ R

n be such that for each i ∈ N , 
Ri = R0 . Then, by no wastage, there is j ∈ N such that xj(R) ≠ 0 . By individual 
rationality, for each i ∈ N , ti(R) ≤ 0 and tj(R) < l . Thus, 

∑
i∈N ti(R) < l , which con-

tradicts no bankruptcy.   ◻

Remark 6 Let R ⊆ R
C and n ≥ m . The class of mechanisms satisfying desirability 

and no bankruptcy includes the class of mechanisms satisfying individual rational-
ity, no-wastage, equal treatment of equals, strategy-proofness and no bankruptcy.

Fact 7 (Theorem  2 in Kazumura et  al. (2020b)) Let RC ∩R
++

⊆ R ⊆ R
C and 

n > m . The minimum price Walrasian mechanism is the unique ex-post revenue 
optimal mechanism among the class of mechanisms satisfying individual rationality, 
no-wastage, equal treatment of equals, strategy-proofness and no bankruptcy on Rn.

Similarly to Fact 7, but on the subset of the extended domain and for an arbitrary 
number of agents and objects, we have:

Theorem 2 Let RC ∩R
++

⊆ R ⊆ R
E . The minimum price Walrasian mechanism is 

the unique ex-post revenue optimal mechanism among the class of desirable mecha-
nisms satisfying no bankruptcy on Rn.

By the same logic of Corollary 1, we have the following corollary, which implies 
Fact 7.

Corollary 2 Let RC ∩R
++

⊆ R ⊆ R
C . The minimum price Walrasian mechanism is 

the unique ex-post revenue optimal mechanism among the class of desirable mecha-
nisms satisfying no bankruptcy on Rn.

Since RE , RC and R++ are supersets of RC ∩R
++ and subsets of RE , the follow-

ing is a corollary of Theorem 2.

Corollary 3 Let R ∈ {RE,RC,R++} . The minimum price Walrasian mechanism is 
the unique ex-post revenue optimal mechanism among the class of desirable mecha-
nisms satisfying no bankruptcy on Rn.

3.3  Efficiency

Finally, we discuss the property of efficiency.

Definition 8 A mechanism f = (x, t) satisfies efficiency if for each R ∈ R
n , there is 

no allocation z ∈ A ×ℝ
n such that (i) for each i ∈ N , zi Ri fi(R) , (ii) for some j ∈ N , 

zj Pj fj(R) and (iii) 
∑

k∈N tk ≥
∑

k∈N tk(R).
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Since ex-post revenue optimal mechanism is the minimum price Walrasian 
mechanism and it is an efficient mechanism (Morimoto and Serizawa 2015), ex-post 
revenue optimal mechanism is efficient (Kazumura et al. 2020b). By the results of 
Kazumura et al. (2020b) and ours, we have:

Corollary 4 Let R ⊆ R
E be rich. For each n,m ∈ ℕ , if f is ex-post revenue optimal 

among desirable mechanisms satisfying no subsidy, then f is efficient.

Corollary 5 Let RC ∩R
++

⊆ R ⊆ R
E . For each n,m ∈ ℕ , if f is ex-post revenue 

optimal among desirable mechanisms satisfying no bankruptcy, then f is efficient.

4  Proofs

Given i ∈ N , Ri ∈ R , a ∈ L and (b, t) ∈ L ×ℝ+ , the compensated valuation 
VRi(a;(b, t)) of a from (b, t) for Ri is the value such that (a,VRi(a;(b, t))) Ii (b, t).

Fact 8 Let f satisfy individual rationality. Let R ∈ R
n , i ∈ N and 

zi = (xi, ti) ∈ L ×ℝ+ . If zi Pi fi(R) , then xi ≠ 0.

Proof Assume zi Pi fi(R) . Suppose xi = 0 . By individual rationality, fi(R)Ri (0, 0) , 
and so zi Pi (0, 0) . By xi = 0 , (0, ti)Pi (0, 0) . Thus by money monotonicity, ti < 0 . 
Since ti ≥ 0 , this is a contradiction.   ◻

Fact 9 (Lemma 1 in Kazumura et al. (2020b)) Let g = (xg, tg) be a minimum price 
Walrasian mechanism. Then, for each mechanism f = (xf , tf ) and each R ∈ R

n,

4.1  Proof of Theorem 1

Throughout this subsection, we assume that R is rich. Our proof employes many 
results of Kazumura et  al. (2020b). We omit the proofs of such results, and write 
only the proofs of our new results.

We introduce the concept of favoring preferences. Given a ∈ M , let 
R

a
≡ {Ri ∈ R ∶ ∀b ∈ L⧵{a} , (a, 0)Pi (b, 0)} . By the richness of domains, for each 

a ∈ M , Ra
≠ ∅ . We say a preference Ri ∈ R

a is a-favoring.

Definition 9 Given (a, t) ∈ M ×ℝ+ , R�
i
∈ R

a is (a, t)-favoring if for each b ∈ L⧵{a} , 
VR�

i (b;(a, t)) < 0.

Remark 7 Let f satisfy no subsidy. Let R ∈ R
n , i ∈ N , and zi ∈ M ×ℝ+ be such that 

Ri is zi-favoring. If xi(R) ≠ xi , then zi Pi fi(R).

[∀i ∈ N, fi(R)Ri gi(R)] ⇒
∑

i∈N

t
g

i
(R) ≥

∑

i∈N

t
f

i
(R).
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Proof Let xi(R) ≠ xi . Since Ri is zi -favoring, VRi(xi(R);zi) < 0 . By no subsidy, 
ti(R) ≥ 0 . Thus VRi(xi(R);zi) < ti(R) , which means that zi Pi fi(R) .   ◻

We say a preference Ri is (a, t)�-favoring if at price p ∈ ℝ
m
+

 such that pa = t and 
pb = 0 for each b ≠ a , agent i demands only object a, but when all objects’ prices 
slightly increase, then he demands nothing.

Definition 10 Given (a, t) ∈ M ×ℝ+ and 𝜀i > 0 , Ri is (a, t)�i-favoring if Ri is (a, t)-
favoring and

Given a ∈ M and a preference Ri ∈ Ra , let t∗(Ri, a) ≡ minb∈L⧵{a}{V
Ri (a;(b, 0))}.

Remark 8 Let a ∈ M and Ri ∈ R
a . (i) Ri is (a, t) -favoring preference if and only if 

t∗(Ri, a) > t . (ii) For each b ∈ L⧵{a} and each t ∈ [0, t∗(Ri, a)) , VRi(b;(a, t)) < 0.

Note that even if all object price is zero except object a, agent i with prefer-
ence Ri ∈ R

a demands only object a if object a’s price is less than t∗(Ri, a) . Given 
a ∈ M and Ri ∈ R

a , t∗(Ri, a) > 0 and we call t∗(Ri, a) the supremum a-favoring 
payment for Ri.

Facts 10 and 11 do not depend on the numbers of agents and objects. Moreover 
these facts hold whether R satisfies object desirability or not.

Fact 10 (Lemma 2 in Kazumura et  al. (2020b)) Let R be rich. Then, for each 
(a, t) ∈ M ×ℝ+ and each 𝜀 > 0 , there is Ri ∈ R such that it is (a, t)�-favoring.

Fact 11 (Lemma 3 in Kazumura et al. (2020b)) Let f be desirable and satisfy no sub-
sidy. For each R ∈ R

n , each i ∈ N , and each t ≥ 0 , if there is j ≠ i such that Rj is 
(xi(R), t)-favoring, then ti(R) > t.

Lemma 1 Let f satisfy individual rationality and strategy-proofness. Let R ∈ R
n 

and zi ∈ M ×ℝ+ . Assume that there is i ∈ N such that zi Pi fi(R) . Then, (i) there are 
�i ∈ (0,VRi(xi;fi(R)) − ti) and z�i

i
-favoring preference R�

i
∈ R , and (ii) xi(R�

i
,R−i) ≠ xi

Proof 

 (i) By zi Pi fi(R) , ti < VRi(xi;fi(R)) . Thus, there is �i ∈ (0,VRi(xi;fi(R)) − ti) . Moreo-
ver, by zi ∈ M ×ℝ+ and Fact 10, there is z�i

i
-favoring preference R�

i
∈ R.

 (ii) S u p p o s e  xi(R
�
i
,R−i) = xi  .  T h e n ,  by  i n d i v i d u a l  r a t i o n a l i t y, 

ti(R
�
i
,R−i) ≤ VR�

i (xi;(0, 0)) , and by (i), VR�
i (xi;(0, 0)) < VRi(xi;fi(R)) . Thus, 

ti(R
�
i
,R−i) < VRi(xi;fi(R)) , and hence fi(R�

i
,R−i)Pi fi(R) . This contradicts strat-

egy-proofness. Thus, xi(R�
i
,R−i) ≠ xi.

   ◻

VRi (a;(0, 0)) < t + 𝜀i and V
Ri(b;(0, 0)) < 𝜀i for each b ∈ M⧵{a}.
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Lemma 2 Let f be desirable and satisfy no subsidy. Let R ∈ R
n , N′ ⊆ N and 

z ∈ A ×ℝ
n
+
 be such that for each i ∈ N� , xi ≠ 0 and Ri is zi-favoring. Then, 

(i)  for each i ∈ N� , there is j ∈ N such that xj(R) = xi and
(ii)  if i ≠ j , then tj(R) ≥ t∗(Ri, xi) > ti.

Proof 

 (i) Let i ∈ N� . Then xi ≠ 0 . Suppose that for each j ∈ N  , xj(R) ≠ xi . Since 
xi(R) ≠ xi and Ri is zi-favoring, by Remark 7, 

 which contradicts non-wastefulness.
 (ii) Let i ∈ N� and j ∈ N be such that i ≠ j and xj(R) = xi . Since Ri is zi-favoring, by 

Remark 8 (ii), for each t ∈ [0, t∗(Ri, xi)) , Ri is (xi, t) -favoring. Thus by Fact 11, 
tj(R) ≥ t∗(Ri, xi) , and by Remark 6 (i), ti < t∗(Ri, xi) . Thus, tj(R) ≥ t∗(Ri, xi) > ti.

   ◻

Proposition 1 Let R ⊆ R
E be rich. Let f be desirable and satisfy no subsidy. For 

each R ∈ R
n , each z ∈ Zmin(R) and each i ∈ N , fi(R)Ri zi.

Proof Let R ∈ R
n , p = pmin(R) and z ∈ Zmin(R) . Let

Suppose that there is i ∈ N such that zi Pi fi(R) . Without loss of generality, let i ≡ 1.

Claim For each k ≥ 0 , there are sets N(k) and N(k + 1) of distinct agents such that 
N(k + 1) ⊇ N(k) , |N(k)| = k , |N(k + 1)| = k + 1 , say N(k) = {1, 2,… , k} , 
N(k + 1) = {1, 2,… , k + 1} , and (�j)j∈N(k+1) ∈ ℝ

k+1
++

 , R(k) ≡ (R�
N(k)

,R−N(k)) ∈ R
n and 

R(k+1) ≡ (R�
N(k+1)

,R−N(k+1)) ∈ R
n such that 

(i-a)  zk+1 Pk+1 fk+1(R
(k)) and

(i-b)  xk+1 ≠ 0,
(ii-a)  𝜀1 < min({p,VR1(x1;f1(R)) − t1}⧵{0}) and R′

1
 is z�1

1
-favoring,

(ii-b)  for each j ∈ N(k + 1)⧵{1} , 𝜀j < min{𝜀j−1,t
∗(R�

j−1
, xj−1),V

Rj(xj;fj(R
(j−1))) − tj} 

and R′
j
 is z�j

j
-favoring,

(iii)  xk+1(R(k+1)) ≠ xk+1 and zk+1 P�
k+1

fk+1(R
(k+1)),

(iv)  xk+1(R(k+1)) ∉ {xl}l∈N(k+1) , and
(v)  there is j ∈ N⧵N(k + 1) such that xj ∈ {xl}l∈N(k+1) and zj Pj fj(R

(k+1)).

We prove Claim by induction on k.

(xi, 0) Ri
by 0≤ti

zi Pi fi(R),

p ≡

{
min{pa ∈ ℝ ∶ a ∈ M and pa > 0} if ∃a ∈ M such that pa > 0

0 otherwise
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Base Case. Let k = 0 . 

(i) By assumption, z1 P1 f1(R) . Thus, (i-a) holds. By (i-a), zi ∈ L ×ℝ+ and Fact 8, 
x1 ≠ 0 . Hence, (i-b) holds.

(ii) By z1 P1 f1(R) ,  t1 < VR1(x1;f1(R))) .  Thus, there is 𝜀1 > 0 such that 
𝜀1 < min({p,VR1(x1;f1(R)) − t1}⧵{0}) . By (i-b), x1 ≠ 0 . Thus, by Fact 10, there 
is z�1

1
-favoring preference R�

1
∈ R . Hence, (ii-a) holds. By k = 0 , (ii-b) holds 

vacantly.
(iii) By (i-a), (ii-a) and Lemma 1 (ii), x1(R(1)) ≠ x1 . Thus since R′

1
 is z�1

1
-favoring, by 

Remark 7, z1 P�
1
f1(R

(1)).
(iv) By k = 0 , (iv) directly follows from (iii).
(v) By x1(R(1)) ≠ x1 and Lemma 2 (i), there is j ∈ N⧵{1} such that xj(R(1)) = x1 . 

Without loss of generality, let j ≡ 2 . We show that z2 P2 f2(R
(1)) . By Lemma 2 

(ii) and (z, p) ∈ W(R) , t2(R(1)) > t1 = px1 . Thus, 

Thus, z2 P2 f2(R
(1)).

Inductive Hypothesis. Let k ≥ 1 . There are sets N(k − 1) and N(k) of distinct agents 
such that N(k) ⊇ N(k − 1) , |N(k − 1)| = k − 1 , |N(k)| = k , say 
N(k − 1) = {1, 2,… , k − 1} , N(k) = {1, 2,… , k} , and (�j)j∈N(k) ∈ ℝ

k
++

 , 
R(k−1) ≡ (R�

N(k−1)
,R−N(k−1)) ∈ R

n and R(k) ≡ (R�
N(k)

,R−N(k)) ∈ R
n such that 

(i-a-k)  zk Pk fk(R
(k−1)) and

(i-b-k)  xk ≠ 0,
(ii-a-k)  𝜀1 < min({p,VR1(x1;f1(R)) − t1}⧵{0}) and R′

1
 is z�1

1
-favoring,

(ii-b-k)  for each j ∈ N(k) , 𝜀j < min{𝜀j−1, t
∗(R�

j−1
, xj−1),V

Rj (xj;fj(R
(j−1))) − tj} and 

R′
j
 is z�j

j
-favoring,

(iii-k)  xk(R(k)) ≠ xk and zk P�
k
fk(R

(k)),
(iv-k)  xk(R(k)) ∉ {xl}l∈N(k) , and
(v-k)  there is j ∈ N⧵N(k) such that xj ∈ {xl}l∈N(k) and zj Pj fj(R

(k)).

Inductive Step.

 (i) By (iv-k), there is j ∈ N⧵N(k) such that zj Pj fj(R
(k)) . Without loss of general-

ity, let j = k + 1 . Then, (i-a) holds. By (i-a), zi ∈ L ×ℝ+ and Fact 8, xk+1 ≠ 0 . 
Thus, (i-b) holds.

 (ii) The hypothesis (ii-a-k) is equivalent to (ii-a).

Next we show (ii-b). By Inductive Hypothesis, 𝜀k > 0 . By 
(i-a), tk+1 < VRk+1(xk+1;fk+1(R

(k))) . By tk ≥ 0 , Remark 8 (i) 
and (ii-b-k), t∗(R�

k
, xk) > 0 . Thus, there is 𝜀k+1 > 0 such that 

𝜀k+1 < min{𝜀k, t
∗(R�

k
, xk),V

Rk+1(xk+1;fk+1(R
(k))) − tk+1} . By (i-b), xk+1 ≠ 0 . Thus, 

by Fact 10, there is z�k+1
k+1

 -favoring preference R�
k+1

∈ R . Hence by (ii-b-k), (ii-b) holds. 

z2 R2
by (z,p)∈W(R)

(x1, px1 ) P2
by t2(R

(1))>px1

(x1, t2(R
(1))) =

by x2(R
(1))=x1

f2(R
(1)).
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(iii)  By (i-a), (ii-a) and Lemma 1 (ii), xk+1(R(k+1)) ≠ xk+1 . Thus since R�
k+1

 is zk+1
-favoring, by Remark 7, zk+1 P�

k+1
fk+1(R

(k+1)).
(iv)  Suppose that xk+1(R(k+1)) ∈ {xl}l∈N(k+1) . By (iii), since xk+1(R(k+1)) ≠ xk+1 , 

there is j ∈ N(k + 1)⧵{k + 1} such that xk+1(R
(k+1)) = xj . By 

xk+1(R
(k+1)) ≠ xk+1 and (ii-b), VR�

k+1(xk+1(R
(k+1));(0, 0)) < 𝜀k+1 . By individual 

rationality, tk+1(R(k+1)) ≤ VR�
k+1(xk+1(R

(k+1));(0, 0)), and so tk+1(R(k+1)) < 𝜀k+1 . 
By (ii-b), 𝜀k+1 < t∗(R�

j
, xj), and so tk+1(R(k+1)) < t∗(R�

j
, xj) . However, by 

Lemma 2 (ii), tk+1(R
(k+1)) ≥ t∗(R�

j
, xj). This is a contradiction. Thus, 

xk+1(R
(k+1)) ∉ {xl}l∈N(k+1).

(v)  By (ii-a), (ii-b) and Lemma 2 (i), for each i ∈ N(k + 1) , there is j ∈ N 
such that xj(R(k+1)) = xi . By (iv), since xk+1(R(k+1)) ∉ {xl}l∈N(k+1) , there is 
j ∈ N⧵N(k + 1) such that xj(R(k+1)) ∈ {xl}l∈N(k+1).

By Lemma 2 (ii) and (z, p) ∈ W(R) , tj(R(k+1)) > tj = pxj(R(k+1)) . Thus,

Hence zj Pj fj(R
(k+1)) . The proof of Claim is completed.

By the above Claim, we derive a contradiction. For k = n − 1 , by (i-b), for each 
i ∈ N , xi ≠ 0 . If n > m , it is impossible. Thus, we assume that n ≤ m.

By (ii-a), (ii-b) and Lemma 2 (i), for each i ∈ N , there is j ∈ N such that 
xj(R

(n)) = xi . However, by Claim (iv), since xn(R(n)) ∉ {xi}i∈N , this is also impos-
sible.   ◻

Proof of Theorem 1 By Proposition 1 and Fact 9, a minimum price Walrasian mecha-
nism is ex-post revenue optimal in the class of desirable mechanisms satisfying no 
subsidy. The uniqueness of the ex-post revenue optimal mechanism directly follows 
from the proof of Theorem 1 in Kazumura et al. (2020b).   ◻

4.2  Proof of Theorem 2

Throughout this subsection, we assume that R ⊇ R
C ∩R

++ and l ≤ 0 is the associ-
ated lower bound of no bankruptcy.

Given a ∈ M and 𝛿 > 0 , define Ra(�) ≡ {Ri ∈ R ∶ ∀b ∈ L⧵{a}, (a, 0)Pi (b,−�)} . 
Note that for each a ∈ M and each 𝛿 > 0 , there is Ri ∈ R

C ∩R
++ such that 

Ri ∈ R
a(�) . Thus, for each a ∈ M and each 𝛿 > 0 , Ra(�) ≠ �.

Definition 11 Given (a, t) ∈ M ×ℝ+ and 𝛿 > 0 , R�
i
∈ R

a(�) is (a,  t)-favoring with 
subsidy � if for each b ∈ L⧵{a} , VR�

i (b;(a, t)) < −𝛿.

Given a ∈ M , 𝛿 > 0 and Ri ∈ R
a(�) , let t∗(Ri, a, �) ≡ minb∈L⧵{a}{V

Ri (a;(b,−�))}.

zj Rj (xj(R
(k+1)), pxj(R(k+1))) by (z, p) ∈ W(R)

Pj (xj(R
(k+1)), tj(R

(k+1))) by tj(R
(k+1)) > pxj(R(k+1))

= fj(R
(k+1)).
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Remark 9 Let a ∈ M , 𝛿 > 0 and Ri ∈ R
a(�) . (i) Ri is (a, t)-favoring with subsidy � 

if and only if t∗(Ri, a, 𝛿) > t . (ii) For each b ∈ L⧵{a} and each t ∈ [0, t∗(Ri, a, �)) , 
VRi(b;(a, t)) < −𝛿.

For each a ∈ M , each 𝛿 > 0 and each Ri ∈ R
a(�) , t∗(Ri, a, 𝛿) > 0.

Given (a, t) ∈ M ×ℝ+ , 𝜀 > 0 and 𝛿 > 0 , let R((a, t), �, �) be the set of (a, t)�
-favoring preferences in Ra(�).

Fact 12 For each (a, t) ∈ M ×ℝ+ , each 𝜀 > 0 and each 𝛿 > 0 , 
R

C ∩R
++ ∩R((a, t), �, �) ≠ �.

Given (a, t) ∈ M ×ℝ+ , 𝜀 > 0 and 𝛿 > 0,

let R++
C

((a, t), �, �) ≡ R
C ∩R

++ ∩R((a, t), �, �).

Given R ∈ R
n and l ≤ 0 , let �(R, l) ≡ n(maxk∈N maxb∈L V

Rk (b;(0, 0))) − l.

Fact 13 (Lemma 4 in Kazumura et  al. (2020b)) Let f be desirable and satisfy no 
bankruptcy. For each R ∈ R

n , each i ∈ N , and each (a, t) ∈ M ×ℝ+ with xi(R) = a , 
if there is j ≠ i such that for each b ∈ L⧵{a} , VRj(b;(a, t)) < −𝛿(R, l) , then ti(R) > t.

Lemma 3 Let f satisfy individual rationality and no bankruptcy. For each R ∈ R
n 

and i ∈ N , ti(R) ≥ −�(R, l).

Proof Suppose that there is i ∈ N such that ti(R) < −𝛿(R, l). Note that by individual 
rationality, for each j ∈ N⧵{i} , tj(R) ≤ maxb∈L V

Rj (b;(0, 0)) . Thus,

which contradicts no bankruptcy.   ◻

Remark 10 Let f satisfy individual rationality and no bankruptcy. Let R ∈ R
n , i ∈ N , 

and zi ∈ M ×ℝ+ and 𝜀 > 0 be such that Ri ∈ R
++
C

(zi, �, �(R, l)) . If xi(R) ≠ xi , then 
zi Pi fi(R).

Proof Since Ri ∈ R
++
C

(zi, �, �(R, l)) , VRi(xi(R);zi) < −𝛿(R, l) . By no bankruptcy and 
Lemma 3, ti(R) ≥ −�(R, l) . Thus VRi(xi(R);zi) < ti(R) , which means that zi Pi fi(R) .  
 ◻

∑

k∈N

tk(R) <
∑

j∈N�{i}

max
b∈L

VRj (b;(0, 0)) − 𝛿(R, l)

≤ (n − 1)max
k∈N

max
b∈L

VRk (b;(0, 0)) − 𝛿(R, l)

= (n − 1)max
k∈N

max
b∈L

VRk (b;(0, 0)) − n(max
k∈N

max
b∈L

VRk (b;(0, 0))) + l

≤ l
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Lemma 4 Let f satisfy individual rationality and strategy-proofness. Let R ∈ R
n 

and zi ∈ M ×ℝ+ . Assume that there is i ∈ N such that zi Pi fi(R) . Then, (i) there are 
�i ∈ (0,VRi(xi;fi(R)) − ti) and R�

i
∈ R

++
C

(zi, �i, �(R, l)) and (ii) xi(R�
i
,R−i) ≠ xi.

Proof 

 (i) By zi Pi fi(R) , ti < VRi(xi;fi(R)) . Thus, there is �i ∈ (0,VRi(xi;fi(R)) − ti). Moreo-
ver, by zi ∈ M ×ℝ+ and Fact 12, there is a preference R�

i
∈ R

++
C

(zi, �, �(R, l))

 (ii) Directly follows from the proof of Lemma 1 (ii).

  ◻

Lemma 5 Let f be desirable and satisfy no bankruptcy. Let R ∈ R
n , N′ ⊆ N , 

z ∈ A ×ℝ
n
+
 and (�i)i∈N� ∈ ℝ

|N�|
++  be such that for each i ∈ N� , xi ≠ 0 and 

Ri ∈ R
++
C

(zi, �, �(R, l)) . Then, 

 (i) for each i ∈ N� , there is j ∈ N such that xj(R) = xi and
 (ii) if i ≠ j , then tj(R) ≥ t∗(Ri, xi, 𝛿(R, l)) > ti

Proof 

 (i) Let i ∈ N� . Suppose that for each j ∈ N  , xj(R) ≠ xi . Since xi(R) ≠ xi and 
Ri ∈ R

++
C

(zi, �, �(R, l)) , by Remark 10, 

 which contradicts non-wastefulness.
 (ii) Let i ∈ N� and j ∈ N  be such that i ≠ j  and xj(R) = xi .  Since 

Ri ∈ R
++
C

(zi, �, �(R, l)) , by Remark 9 (ii), for each t ∈ [0, t∗(Ri, xi, �(R, l))) , 
VRi(b;(xi, t)) < −𝛿(R, l) . Thus by Fact 13, tj(R) ≥ t∗(Ri, xi, �(R, l)). By Remark 
9 (i), ti < t∗(Ri, xi, 𝛿(R, l)). Thus, tj(R) ≥ t∗(Ri, xi, 𝛿(R, l)) > ti.

  ◻

Proposition 2 Let R ⊇ R
++ ∩R

C . Let f be desirable and satisfy no bankruptcy. For 
each R ∈ R

n , each z ∈ Zmin(R) and each i ∈ N , fi(R)Ri zi.

Proof Let R ∈ R
n , p = pmin(R) and z ∈ Zmin(R) . Let

Suppose that there is i ∈ N such that zi Pi fi(R) . Without loss of generality, let i ≡ 1.

Claim For each k ≥ 0 , there are sets N(k) and N(k + 1) of distinct agents such that 
N(k + 1) ⊇ N(k) , |N(k)| = k , |N(k + 1)| = k + 1 , say N(k) = {1, 2,… , k} , 

(xi, 0) Ri
by 0≤ti

zi Pi fi(R),

p ≡

{
min{pa ∈ ℝ ∶ a ∈ M and pa > 0} if ∃a ∈ M such that pa > 0

0 otherwise
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N(k + 1) = {1, 2,… , k + 1} , and (�j)j∈N(k+1) ∈ ℝ
k+1
++

 , R(k) ≡ (R�
N(k)

,R−N(k)) ∈ R
n and 

R(k+1) ≡ (R�
N(k+1)

,R−N(k+1)) ∈ R
n such that 

(i-a)  zk+1 Pk+1 fk+1(R
(k)) and

(i-b)  xk+1 ≠ 0,
(ii-a)  𝜀1 < min({p, t∗(R�

1
, x1, 𝛿(R, l)) − t1}⧵{0}) and R�

1
∈ R

++
C

(z1, �1, �(R, l)),
(ii-b)  for each j ∈ N(k + 1)⧵{1} , 𝜀j < min{𝜀j−1, t

∗(R�
j−1

, xj−1, 𝛿(R, l)),

VRj(xj;fj(R
(j−1))) − tj} and R�

j
∈ R

++
C

(zj, �j, �(R, l)),
(iii)  xk+1(R(k+1)) ≠ xk+1 and zk+1 P�

k+1
fk+1(R

(k+1)),
(iv)  xk+1(R(k+1)) ∉ {xl}l∈N(k+1) , and
(v)  there is j ∈ N⧵N(k + 1) such that xj ∈ {xl}l∈N(k+1) and zj Pj fj(R

(k+1))

To replace Lemma 1 with Lemma 4, Lemma 2 with Lemma 5, Remark 7 with 
Remark 10, Remark 8 with Remark 9, and Fact 10 with Fact 12, by the same logic in 
Proposition 1, we can prove the above claim.   ◻

Proof of Theorem 2 The same logic in Theorem 1.   ◻

5  Concluding remarks

By extending the results of Kazumura et  al. (2020b), we showed that for an arbi-
trary numbers of agents and objects, the minimum price Walrasian mechanism is the 
unique ex-post revenue maximizing mechanism on rich domains among desirable 
mechanisms, and that no subsidy in this result can be replaced by no bankruptcy on 
the positive income effect domain.

There is the literature on auction with non-quasi-linear preferences. We conclude 
the paper by referring to some existing literature on auction with non-quasi-linear 
preferences and mentioning some lines for future research.

Most of the literature on auction with non-quasi-linear preferences focus on effi-
ciency rather than on revenue maximization. Saitoh and Serizawa (2008) and Sakai 
(2008) show that in the cases of homogeneous objects and unit-demand preferences, 
the generalized Vickrey mechanism is the only mechanism satisfying strategy-
proofness, efficiency, individual rationality, and no subsidy. Morimoto and Serizawa 
(2015) extend these results to the case of heterogeneous objects by maintaining unit-
demand preferences, and show that the minimum price Walrasian mechanism is 
the only mechanism satisfying the same four properties on classical domain. These 
works assume that the number of agents is greater than objects. Thus, it is an open 
question whether these results hold for an arbitrary numbers of agents and objects.

Zhou and Serizawa (2018) also maintain unit-demand preferences, but study the 
special class of preferences, the common-tiered domains. It says that objects are par-
titioned into several tiers, and if objects are equally priced, agents prefer an object 
in the higher tier to one in the lower. They show that for each number of agents and 
objects, the minimum price Walrasian mechanism is the only mechanism satisfying 
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same four properties on the common-tiered domains. Moreover, when the number of 
agents is less than the number of objects including null object, the minimum price 
Walrasian mechanism is also the only mechanism satisfying same four properties on 
the positive income effect domain. It is an open question whether their results also 
hold on the common-tiered domains exhibiting positive income effects for an arbi-
trary number of agents and objects.

There is also the literature on auction with non-quasi-linear preferences admitting 
multi-demand in various settings. Kazumura and Serizawa (2016) study classes of 
preferences that include unit-demand preferences and additionally includes at least 
one multi-demand preference, and show that when the number of agents is greater 
than the number of objects, no mechanism satisfies the four properties on such a 
domain. Malik and Mishra (2021) study the special classes of preferences, “dichoto-
mous” domains. A preference is dichotomous if there is a set of objects such that 
the valuations of its supersets are constant and the valuations of other sets are zero. 
A dichotomous domain includes all such dichotomous preferences for a given set 
of objects. They show that when there are at least three agents and two objects, no 
mechanism satisfies the four properties on a dichotomous domain, but that for each 
number of agents and objects, the generalized Vickrey mechanism is the only mech-
anism satisfying the four properties on a class of dichotomous preferences exhibit-
ing positive income effects.

Baisa (2020) assumes that objects are homogeneous and shows that on the class 
of preferences exhibiting decreasing marginal valuations, positive income effect, 
and single-crossing property, if the preferences are parametrized by one dimensional 
types, there is a mechanism satisfying the above four properties, but that if types are 
multi-dimensional, no mechanism satisfies these properties. Shinozaki et al. (2020) 
also assume the homogeneity of objects, and show that on the class of preferences 
including sufficiently various preferences exhibiting non-decreasing marginal valua-
tions (minimal richness), the generalized Vickrey mechanism is the only mechanism 
satisfying the four properties, but that no mechanism satisfies these properties on 
the class of preferences that additionally includes at least one preference exhibiting 
decreasing marginal valuations.

These different results in various settings of multi-demand suggest that analyzing 
revenue maximization mechanisms in multi-demand settings would be technically 
challenging. However, such research is important in practical applications. Recently, 
Kazumura et al. (2020a) develop methods to analyze strategy-proof mechanisms in 
general settings including multi-demand cases. Their method does not depend on 
the number of agents and objects. We believe that such methods would be useful to 
analyze revenue maximization mechanisms in multi-demand settings.
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