
Vol.:(0123456789)

Social Choice and Welfare (2020) 55:523–545
https://doi.org/10.1007/s00355-020-01256-0

1 3

ORIGINAL PAPER

Truthful fair division without free disposal

Xiaohui Bei1 · Guangda Huzhang1 · Warut Suksompong2

Received: 16 August 2019 / Accepted: 15 April 2020 / Published online: 25 April 2020 
© The Author(s) 2020

Abstract
We study the problem of fairly dividing a heterogeneous resource, commonly known 
as cake cutting and chore division, in the presence of strategic agents. While a 
number of results in this setting have been established in previous works, they rely 
crucially on the free disposal assumption, meaning that the mechanism is allowed 
to throw away part of the resource at no cost. In the present work, we remove this 
assumption and focus on mechanisms that always allocate the entire resource. We 
exhibit a truthful and envy-free mechanism for cake cutting and chore division for 
two agents with piecewise uniform valuations, and we complement our result by 
showing that such a mechanism does not exist when certain additional constraints 
are imposed on the mechanisms. Moreover, we provide bounds on the efficiency of 
mechanisms satisfying various properties, and give truthful mechanisms for multi-
ple agents with restricted classes of valuations.

1 Introduction

Given a heterogeneous divisible resource and a set of interested agents with poten-
tially differing valuations on different parts of the resource, how can we allocate 
the resource to the agents in such a way that all agents perceive the resulting allo-
cation as fair? The resource is often modeled as a cake in the literature, and the 
problem, which therefore commonly goes by the name of cake cutting, has occupied 
the minds of mathematicians, computer scientists, economists, and political scien-
tists alike for the past seventy years (Brams and Taylor 1996; Moulin 2004; Pro-
caccia 2016; Robertson and Webb 1998; Steinhaus 1948). Cake in the cake cutting 
problem is used to represent a desirable resource; all agents wish to maximize the 
amount of resource that they receive. In contrast, the dual problem to cake cutting, 
known as chore division, aims to allocate an undesirable resource to the agents, with 
every agent wanting to receive as little of the resource as possible. Though several 
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algorithms for cake cutting also apply to chore division, the theoretical properties of 
the two problems differ in many cases, and much less work has been done on chore 
division than on cake cutting (Dehghani et al. 2018; Farhadi and Hajiaghayi 2018; 
Heydrich and van Stee 2015; Peterson and Su 1998, 2002).

Perhaps the simplest and most well-known fair division protocol is the cut-and-
choose protocol, which works for both cake cutting and chore division with two 
agents. The protocol operates by letting the first agent divide the resource into two 
parts that she values equally, and letting the second agent choose the part that she 
prefers. The resulting allocation is always envy-free—each agent likes her part at 
least as much as the other agent’s part, and proportional—both agents find their part 
better than or equal to half of the entire resource. However, the protocol has the dis-
advantage that it is not truthful, meaning that a strategic agent can sometimes benefit 
from misreporting her valuation to the protocol. For example, if the first agent values 
the whole cake equally, according to the protocol she will divide the cake into half 
and get half of her value for the entire cake. However, if she knows that the second 
agent only cares about the leftmost quarter of the cake, she can divide the cake into 
the leftmost quarter and the rest, knowing that the second agent will choose the left 
part and leave her with three-quarters of the cake. The failure to satisfy truthfulness 
renders the protocol difficult to participate in, since the first agent needs to guess the 
second agent’s valuation in order to find a beneficial manipulation.

This issue was first addressed by Chen et al. (2013), who gave a truthful deter-
ministic cake cutting mechanism that is Pareto optimal, envy-free, and proportional 
for any number of agents with piecewise uniform valuations. Chen et  al.’s result 
shows that fairness and truthfulness are compatible in the allocation of heterogene-
ous resources. Nevertheless, their result hinges upon a pivotal assumption known 
as the free disposal assumption, which says that the mechanism is allowed to throw 
away part of the resource without incurring any cost.1 While certain resources such 
as cake or machine processing time may be easy to get rid of, for other resources 
this is not the case. For instance, when we divide a piece of land among antagonistic 
agents or countries, we cannot simply throw away part of the land, and any piece of 
land left unallocated constitutes a potential subject of future dispute. The free dis-
posal assumption is even less reasonable when it comes to chore allocation—indeed, 
with this assumption we might as well simply dispose of the entire chore altogether!

With this motivation in mind, we consider in the present paper the problem of 
fairly and truthfully dividing heterogeneous resources without the free disposal 
assumption. Not having the ability to throw away part of the resource makes the task 
of the mechanism more complicated. For example, with free disposal allowed, the 
mechanism can throw away parts that are not valued by any agent, thereby prevent-
ing an agent from gaining by not reporting parts of the resource for which she is 
the only one who has positive value, in the hope of getting some of those parts for 
free along with a larger share of the remaining parts. As Chen et al. (2013) noted, 

1 Note that free disposal does not preclude Pareto optimality. The mechanism can throw away parts 
of the resource not valued by any agent and still maintain Pareto optimality; this is exactly what Chen 
et al.’s mechanism does.
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getting rid of the free disposal assumption adds “significant complexity” to the prob-
lem, since the mechanism would have to specify exactly how to allocate parts that 
no agent desires. The same group of authors also gave an example illustrating that 
removing the assumption can be problematic even in the special case of two agents 
with very simple valuations. Indeed, could it be that there is an impossibility result 
once we dispose of free disposal?

1.1  Our results

Throughout the paper, we focus on deterministic mechanisms that are required to 
allocate the entire resource, which we model as the interval [0, 1]. We assume that 
agents have piecewise uniform valuations, meaning that for each agent the cake can 
be partitioned into desired and undesired intervals, and the agent has the same mar-
ginal utility for any fractional piece of any desired interval. We investigate the com-
patibility of truthfulness and fairness in this setting.

First, in Sect. 3, we show that truthfulness and fairness are compatible when there 
are two agents by exhibiting a truthful, envy-free, and Pareto optimal cake cutting 
mechanism (Theorem 1). At a high level, the mechanism lets the two agents “eat” 
their desired intervals of the cake at the same speed but starting from different ends 
of the cake. Using a simple reduction from chore division to cake cutting, we also 
derive a chore division mechanism for two agents with the same set of properties 
(Theorem 2).

In Sect. 4, we show that if we add certain requirements for the mechanism on top 
of being fair and truthful, then no desirable mechanism exists even for two agents. In 
particular, the impossibility holds when we make any one of the following assump-
tions in addition to truthfulness and envy-freeness: (i) anonymity—the mechanism 
must treat both agents equally (Theorem 3); (ii) connected piece assumption—the 
mechanism must allocate a single interval to each agent (Theorem 4); and (iii) posi-
tion obliviousness—the values that the agents receive depend only on the lengths 
of the pieces desired by various subsets of agents and not on the positions of these 
pieces (Theorem  5). In fact, our first impossibility result still holds even if we 
remove envy-freeness, while for our second and third results we can replace envy-
freeness by the significantly weaker fairness notion of positive share, which requires 

Table 1  Existence of mechanisms satisfying truthfulness in combination with other properties in the case 
of two agents

By “trivial mechanism” we refer to a mechanism that allocates the entire resource to one fixed agent. All 
results hold for both cake cutting and chore division

Properties of mechanism Existence

Truthful + envy-free + Pareto optimal Yes (Theorems 1 and 2)
Truthful + connected + position oblivious Yes (trivial mechanism)
Truthful + anonymous No (Theorem 3 and Corollary 1)
Truthful + connected + positive share No (Theorem 4 and Corollary 1)
Truthful + position oblivious + positive share No (Theorem 5 and Corollary 1)
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that each agent receive a positive utility (for cake cutting) or not incur the entire cost 
(for chore division). Our results in Sects. 3 and 4 are summarized in Table 1.

In Sect. 5, we investigate the efficiency of mechanisms satisfying combinations 
of truthfulness, envy-freeness, and Pareto optimality. Our metric is the efficiency 
ratio, a standard measure for the welfare performance of mechanisms.2 For cake cut-
ting, we show that our mechanism in Sect. 3 achieves an efficiency ratio of 3/4, and 
that this is optimal among all truthful and envy-free mechanisms (Theorem 7 and 
Corollary 2). By contrast, for chore division we show that our mechanism achieves 
the worst possible efficiency ratio of 0; however, this is necessarily the case for any 
truthful and envy-free mechanism (Theorem 10). Moreover, we provide tight bounds 
on the efficiency ratio of mechanisms satisfying each of envy-freeness and Pareto 
optimality, for both cake cutting and chore division (Theorems 8, 9, and 11).

Finally, in Sect. 6, we consider the more general setting where there are multiple 
agents. We assume that each agent only values a single interval of the form [0, xi] . 
We present a truthful, envy-free, and Pareto optimal cake cutting mechanism (Theo-
rem 12) and a truthful, proportional, and Pareto optimal chore division mechanism 
(Theorem 13) for any number of agents with valuations in this class.

1.2  Related work

Cake cutting has been a central topic in the area of social choice and economics for 
decades. While the existence and computation of fair allocations have been exten-
sively studied (Aziz and Mackenzie 2016a, b; Brams and Taylor 1995; Dubins and 
Spanier 1961; Goldberg et al. 2020; Stromquist 1980; Su 1999), the work of Chen 
et  al. (2013) that we mentioned earlier was the first to consider incentive issues. 
As with Chen et al., Maya and Nisan (2012) considered piecewise uniform valua-
tions and gave a characterization of truthful and Pareto optimal mechanisms for two 
agents. Recently, Alijani et al. (2017) presented a truthful and envy-free mechanism 
in the setting where every agent only values a single interval.

For valuation functions beyond piecewise uniform, most results are negative. For 
example, for piecewise constant valuations, Aziz and Ye (2014) showed that there is 
no truthful and robust proportional mechanism,3 two works (Bei et al. 2017; Menon 
and Larson 2017) showed that there is no proportional mechanism that allocates 
connected pieces or is non-wasteful, and Bei et al. (2017) also showed that there is 
no truthful mechanism that satisfies position obliviousness. In the Robertson–Webb 
query model, Kurokawa et al. (2013) showed that there is no truthful and envy-free 

2 The efficiency ratio is closely related to the price of fairness, which measures the worst-case welfare 
loss due to imposing fairness constraints (Bei et al. 2019; Caragiannis et al. 2011; Heydrich and van Stee 
2015).
3 Aziz and Ye (2014) call an allocation robust proportional if it satisfies the following property: even 
if an agent perturbs her value density function, as long as the ordinal information of the function is 
unchanged, then the allocation remains proportional. Robust proportionality is a stronger notion than 
standard proportionality.
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mechanism with bounded queries, while Brânzei and Miltersen (2015) proved that 
any deterministic truthful mechanism for two agents must be a dictatorship.

In all of the works above, either the free disposal assumption is made, or it is 
assumed that every piece of the cake is valuable for at least one agent. In contrast, 
in our work the mechanism is required to always allocate the entire cake.4 Further-
more, all aforementioned results are restricted to deterministic mechanisms. If one 
allows randomization, several truthful-in-expectation mechanisms that guarantee 
either proportionality or envy-freeness have been proposed (Brânzei and Miltersen 
2015; Chen et al. 2013; Mossel and Tamuz 2010).

Finally, preferences analogous to piecewise uniform valuations have been con-
sidered in other settings including matching  (Bade 2015; Bogomolnaia and Mou-
lin 2004) and collective choice (Aziz et al. 2019; Bogomolnaia et al. 2005; Duddy 
2015), where they are known as dichotomous preferences. Fairness notions corre-
sponding to proportionality and positive share have also been studied in the collec-
tive choice setting.

2  Preliminaries

We consider a heterogeneous divisible resource, which we represent by the interval 
[0, 1]. A piece of the resource is a finite union of disjoint intervals. The resource 
is to be allocated to n agents a1, a2,… , an . Each agent ai has a density function 
fi ∶ [0, 1] → ℝ+ ∪ {0} , which captures how the agent values different parts of the 
resource. We assume that the agents have piecewise uniform valuations, i.e., for each 
agent ai , the density function fi takes on the value 1 on a finite set of intervals and 0 
on the remaining intervals. The value of agent ai for a subset S ⊆ [0, 1] is defined as 
vi(S) = ∫

S
fi dx , which is equivalent to the total length of the intervals in S on which 

fi takes on the value 1.5 For chore division we will refer to the value as cost. Let 
Wi ⊆ [0, 1] denote the piece on which fi = 1 . We refer to a setting with agents and 
their density functions as an instance.

An allocation of the resource is denoted by a vector A = (A1,A2,… ,An) , where 
Ai is a union of finitely many intervals6 that represents the piece of the resource 
allocated to ai , and Ai ∩ Aj has measure zero for any i ≠ j . We consider two different 
types of resources: desirable resources, which we represent by a cake, and undesir-
able resources, which we represent by a chore. We refer to the problem of allocat-
ing the two types of resources as cake cutting and chore division respectively. The 
agents want to maximize their value for their allocated piece in cake cutting and 
minimize their cost for their allocated piece in chore division.

4 On the other hand, in the study of truthful mechanisms for allocating indivisible items, it is commonly 
assumed that the mechanism is required to allocate all items (Amanatidis et al. 2017, 2016).
5 In some papers, valuations are normalized so that v

i
([0, 1]) = 1 for all i. We do not follow this conven-

tion except in Sect. 5.
6 We assume without loss of generality that these intervals are closed intervals. The assumption that 
each A

i
 is a union of finitely many intervals is standard in the cake-cutting literature (see, e.g., Procaccia 

2016).
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We are now ready to define the fairness properties that we consider in this 
paper.

Definition 1 In cake cutting, we say that an allocation (A1,A2,… ,An) satisfies

• envy-freeness, if for every agent ai , we have vi(Ai) ≥ vi(Aj) for any j;
• proportionality, if for every agent ai , we have vi(Ai) ≥ vi([0, 1])∕n;
• positive share, if for every agent ai , we have vi(Ai) > 0.

In chore division, envy-freeness and proportionality are defined analogously but 
with the inequality signs reversed, while positive share is defined by the inequal-
ity vi(Ai) < vi([0, 1]).

A mechanism is a function M ∶ (f1, f2,… , fn) → (A1,A2,… ,An) which, given 
the input density functions of the agents, computes an allocation for them. We 
only consider deterministic mechanisms in this paper, meaning that the allocation 
is completely determined by the input density functions. Moreover, we assume 
that the mechanism has to allocate the entire resource to the agents, i.e., in any 
allocation (A1,A2,… ,An) returned by the mechanism, 

⋃n

i=1
Ai = [0, 1] . In other 

words, the mechanism does not have free disposal. Note that when the entire 
resource is allocated, envy-free implies proportionality, and both notions are 
equivalent in the case of two agents. Moreover, both envy-freeness and propor-
tionality are stronger than positive share.

We end this section by defining a number of properties of mechanisms that we 
consider in this paper. Given a vector of input density functions � = (f1, f2,… , fn) , 
let L

�
 be the indicator function that maps � to a vector with 2n components, where 

each component corresponds to a distinct subset of agents and the value of the 
component is the length of the piece desired only by that subset of agents (and 
not by any agent outside the subset).

Definition 2 A mechanism M ∶ (f1, f2,… , fn) → (A1,A2,… ,An) is said to satisfy

• envy-freeness, if it always returns an envy-free allocation;
• proportionality, if it always returns a proportional allocation;
• positive share, if it always returns an allocation satisfying positive share;
• truthfulness, if it is a dominant strategy for every agent to report her true den-

sity function;
• Pareto optimality, if for any allocation returned by the mechanism, there does 

not exist another allocation that makes no agent worse off and at least one 
agent better off with respect to the same density functions;

• the connected piece assumption, if each Ai is always a single interval;
• anonymity, if the following holds: Let f1, f2,… , fn be any density functions, 

and � be any permutation of (1, 2,… , n) . If M(f1, f2,… , fn) = (A1,A2,… ,An) 
and M(f

�(1), f�(2),… , f
�(n)) = (A�

1
,A�

2
,… ,A�

n
) , then vi(Ai) = vi(A

�
�−1(i)

) for every 
i.
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• position obliviousness, if the following holds: Let � and � ′ be any vec-
tors of density functions such that L

�
= L

� �
 . If M(� ) = (A1,A2,… ,An) and 

M(� �) = (A�
1
,A�

2
,… ,A�

n
) , then vi(Ai) = v�

i
(A�

i
) for every i.7

Intuitively, a mechanism is anonymous if the utility that the agents receive do not 
depend on the identities of the agents, and position oblivious if the values that the 
agents receive depend only on the lengths of the pieces desired by various subsets of 
agents and not on the positions of these pieces.

3  Truthful mechanisms for two agents

In this section, we focus on the case of two agents. We show that in this case, there 
exists a truthful, envy-free, and Pareto optimal mechanism for both cake cutting and 
chore division, for two agents with arbitrary piecewise uniform valuations.

We first describe the cake cutting mechanism.

Mechanism 1 (for cake cutting between two agents)

Step 1 Find the smallest value of x ∈ [0, 1] such that v1([0, x]) = v2([x, 1]).8
Step 2 Assign to a1 the intervals in [0, x] valued by a1 and the intervals in [x, 1] 
not valued by a2 , and assign the rest of the cake to a2.

While this is a succinct description of the mechanism, it turns out that the 
description is somewhat difficult to work with. We next provide an alternative for-
mulation that is more intuitive and will help us in establishing the claimed proper-
ties of the mechanism.

Mechanism 1 (alternative formulation) 

Phase 1 Let a1 start at point 0 of the cake moving to the right and a2 start at point 
1 of the cake moving to the left. Let both agents “eat” the cake with the same 
constant speed, jumping over any interval for which they have no value according 
to their reported valuations. If the agents are at the same point while both are still 
eating, go to Phase 3. Else, one of the agents has no more valued interval to eat; 
go to Phase 2.
Phase 2 Assume that ai is the agent who has no more valued interval to eat. Let 
ai stop and a3−i continue eating. If the agents are at the same point (either while 
a3−i eats or while a3−i jumps over an interval of zero value), go to Phase 3. Else, 

7 This is a weaker notion of position obliviousness than the one considered by Bei et  al. (2017): Our 
definition only requires that the agents get the same value if the indicator function of their density func-
tions remain the same, whereas Bei et al.’s definition also requires the pieces to be allocated in “equiva-
lent” ways.
8 The existence of x is guaranteed by the intermediate value theorem.
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both agents have stopped but there is still unallocated cake between their current 
points. In this case, let a3−i continue eating the unallocated cake until she is at the 
same point as ai , and go to Phase 3.
Phase 3 Assume that both agents are at point x of the cake. (It is possible that 
the two agents meet while both of them are jumping. In this case, we let a2 jump 
first.) Assign any unallocated interval to the left of x to a2 and any unallocated 
interval to the right of x to a1.

From the perspective of this formulation, Mechanism 1 bears a resemblance to 
the probabilistic serial mechanism for the random assignment problem (Bogomol-
naia and Moulin 2001); both mechanisms let the agents simultaneously eat their 
desired part of the resource at the same speed.

We now prove the claimed properties of Mechanism 1.

Theorem 1 Mechanism 1 is a truthful, envy-free, and Pareto optimal cake cutting 
mechanism for two agents.

Proof We begin with truthfulness. Note that there is no incentive for an agent to 
report an interval that she does not value, since this can only result in the agent 
wasting time eating such intervals. So the only potential deviation is for the agent 
to report a strict subset of the intervals that she values. If the agent does not report 
intervals that she values, then the intervals that she jumps over before the agents 
meet will be lost to the other agent, and the agent can use the extra time gained 
from not reporting these intervals to eat intervals of no more than the same length. 
Moreover, not reporting intervals after the agents meet has no effect on the outcome 
of the mechanism.

Next, for envy-freeness, it suffices to show that each agent gets at least half of her 
valued intervals allocated in each phase. In Phase 1, each agent only gains intervals 
that she values, and loses intervals that she values (due to the other agent’s eating) at 
no more than the same speed. In Phase 2, the agent who continues eating can only 
gain more, while the agent who has stopped eating has no more interval that she val-
ues. In Phase 3, a1 has no unallocated interval to the left of x that she values, so she 
cannot lose any unallocated interval that she values. The same argument holds for a2.

Finally, our mechanism allocates any interval valued by at least one agent to an 
agent who values it. This establishes Pareto optimality.   ◻

Mechanism 1 gives rise to a dual mechanism for two-agent chore division that 
satisfies the same set of properties.

Mechanism 2 (for chore division between two agents) 

Step 1 Use Mechanism  1 to find an initial allocation of the chore, treating the 
chore valuations as cake valuations.
Step 2 Swap the pieces of the two agents in the allocation from Step 1.
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Theorem 2 Mechanism 2 is a truthful, envy-free, and Pareto optimal chore division 
mechanism for two agents.

Proof First, truthfulness holds because minimizing the chore in the swapped alloca-
tion is equivalent to maximizing the chore in the initial allocation, and Theorem 1 
shows that this is exactly what Mechanism  1 incentivizes the agents to do. Next, 
envy-freeness holds again by Theorem 1 because getting at most half of the chore in 
the swapped allocation is equivalent to getting at least half of the chore in the initial 
allocation. Finally, in the initial allocation any interval of the chore that incurs a cost 
to only one agent is allocated to that agent, so in the swapped allocation the interval 
is allocated to the other agent, implying that the mechanism is Pareto optimal.   ◻

Besides truthfulness, envy-freeness, and Pareto optimality, how do Mechanisms 1 
and 2 fare with respect to the other properties defined in Sect. 2?

• Mechanism 1 is not anonymous: If W1 = [0, 0.5] and W2 = [0, 1] , both agents get 
value 0.5, while if W1 = [0, 1] and W2 = [0, 0.5] , a1 gets value 0.75 and a2 gets 
value 0.25.

• It is also not position oblivious: If W1 = [0, 0.5] and W2 = [0, 1] , both agents get 
value 0.5, while if W1 = [0.5, 1] and W2 = [0, 1] , a1 gets value 0.25 and a2 gets 
value 0.75.

• The allocation when W1 = [0, 1] and W2 = [0, 0.5] shows that the mechanism 
does not satisfy the connected piece assumption.

The same examples demonstrate that Mechanism  2 likewise satisfies none of the 
three properties. As we show in the next section, these negative results are in fact 
not restricted to the two mechanisms that we consider here, but rather apply to all 
possible cake cutting and chore division mechanisms, even when envy-freeness is 
removed or significantly weakened.

4  Impossibility results

In this section, we present a number of impossibility results on the existence of fair 
and truthful mechanisms that satisfy certain additional properties, for both cake cut-
ting and chore division. In fact, one of the results holds even without envy-freeness, 
while for the remaining results we can replace envy-freeness by the much weaker 
notion of positive share. Interestingly, all of the impossibility results cease to hold if 
the mechanism is not required to allocate the entire resource, which again highlights 
the crucial difference that the free disposal assumption makes. We also observe that 
since these results are negative, they also hold for more general classes of valuations 
beyond piecewise uniform.

Before we introduce our results, some comments on truthful mechanisms are in 
order. At first glance, truthfulness may appear as a strong requirement that limits 
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the feasible mechanisms to Mechanisms 1 and 2 and those returning a fixed allo-
cation. However, the examples that we exhibit next show that the class of truthful 
mechanisms is surprisingly rich. We only describe cake cutting mechanisms, but 
it is possible to obtain corresponding chore division mechanisms via the reduc-
tion used in Mechanism 2. The latter two classes of mechanisms are adaptations 
of the picking and exchange mechanisms (Amanatidis et al. 2017) to the divisible 
goods setting.

• A variant of Mechanism 1 where the two agents eat the cake at possibly different 
speeds fixed in advance. We can also partition the cake into a number of parts, 
“flip” some of these parts horizontally, “paste” some of the parts together, and 
run the variant of Mechanism 1 with different speeds for different parts.

• A dictatorship mechanism, where one fixed agent takes an arbitrary superset 
of her valued piece, and the other agent takes the rest of the cake.

• A picking mechanism, where the cake is cut in advance into a number of parts, 
some designated to a1 and the rest to a2 . Each agent has a set of offers, each 
offer corresponding to a subset of the parts designated to her, and the agent 
picks an offer that she likes most. (For example, if parts 1, 3, 5, and 6 are des-
ignated to a1 , a possible set of offers is {{1, 3}, {3, 5}, {1, 5, 6}} . In this case, if 
a1 picks the offer {3, 5} , then a2 gets parts 1 and 6.)

• An exchange mechanism, where the cake is cut in advance into a number of 
parts, some initially allocated to a1 and the rest to a2 . Some exchange deals are 
considered; each exchange deal involves a subset of a1 ’s parts and a subset of 
a2 ’s parts, where each part appears in at most one exchange deal. An exchange 
deal materializes if the exchange benefits both agents.

It is also possible to combine these mechanisms by partitioning the cake in advance 
and running different mechanisms on different parts. Among these classes of mecha-
nisms, only the first class, with the agents eating at the same speed, is envy-free.

We now proceed to our impossibility results, which demonstrate that even 
though there are several ways to obtain truthfulness, none of them is compatible 
with fairness and other desirable properties. We begin by showing that anonymity 
is directly at variance with truthfulness.

Theorem 3 There does not exist a truthful and anonymous cake cutting mechanism 
for two agents, even when each agent values a single interval of the form [0, xi].

Proof Suppose that such a mechanism exists. Let x ∈ (0, 1) and W1 = W2 = [0, x] . 
Assume without loss of generality that in this instance, a1 gets an interval contain-
ing point x (perhaps as the left endpoint) and ending at point x + f (x) > x , possibly 
among other intervals. By anonymity, both agents must get half of the interval [0, x].

If W1 = [0, x + �] for some � ∈ (0, f (x)) and W2 = [0, x] , then a1 must get value at 
least x∕2 + � , since otherwise she can manipulate by reporting W1 = [0, x] . There-
fore a2 gets value at most x/2 in this instance. By anonymity, if W1 = [0, x] and 
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W2 = [0, x + �] for some � ∈ (0, f (x)) , then a2 gets value at least x∕2 + � and a1 at 
most x/2.

Now suppose that W1 = W2 = [0, x + �] for some � ∈ (0, f (x)) . By anonym-
ity, both agents must get half of the interval [0, x + �] . If a1 gets more than half of 
the interval [x, x + �] , then a2 gets more than half of the interval [0, x]. In this case, 
if W2 = [0, x] , a2 can manipulate by reporting W2 = [0, x + �] . So a1 cannot get 
more than half of the interval [x, x + �] . By symmetry, neither can a2 . This means 
that both agents get exactly half of the interval [x, x + �] . In other words, for any 
y ∈ (x, x + f (x)) , if W1 = W2 = [0, y] , then both agents receive exactly half of the 
interval [x, y].

Next, consider the set

This set is uncountable, since for each of the uncountably many x’s, there is at least 
one y such that (x, y) ∈ A . If for each y there only exist a finite number of x’s such 
that (x, y) ∈ A , this set would be countable, which we know is not the case. Hence 
there exists some y such that (x, y) ∈ A for infinitely many x’s. Fix such a y.

Finally, suppose that W1 = W2 = [0, y] . For any of the infinitely many x’s such 
that (x, y) ∈ A , both agents must receive exactly half of the interval [x, y]. However, 
if the mechanism divides the interval [0, y] into k intervals in the allocation, then 
there can be at most one value of x per interval, and therefore at most k values in 
total, with this property. Since k is finite, this gives us the desired contradiction.   ◻

We remark that with the free disposal assumption, Chen et  al.’s mechanism is 
a truthful, envy-free, and anonymous cake cutting mechanism for two agents with 
arbitrary piecewise uniform valuations. The same authors showed that a particular 
extension of their mechanism, which allocates the desired pieces of the cake in the 
same way as their mechanism and allocates the undesired pieces of the cake in a cer-
tain simple way, is not truthful (Chen et al. 2013, p. 296). Since any mechanism that 
allocates the desired pieces of the cake in this way is also anonymous, Theorem 3 
shows that no extension of Chen et al.’s mechanism can be truthful.

Next, we turn to the connected piece assumption and show that it is incompatible 
with truthfulness and positive share.

Theorem 4 There does not exist a truthful cake cutting mechanism for two agents 
that satisfies positive share and the connected piece assumption, even when each 
agent values a single interval of the form [0, xi].

Proof Suppose that such a mechanism exists. First, we fix x ∈ (0, 1) and assume that 
W1 = [0, x] . For each y ∈ (0, 1) , if W2 = [0, y] , then by the connected piece assump-
tion, a2 gets either a “left interval” of the form [0, z] or a “right interval” of the form 
[z, 1]; by positive share, we have z ∈ (0, 1) , so a2 never gets an interval that is simul-
taneously a left interval and a right interval. We claim that there exist f (x), g(x) > 0 
with f (x) + g(x) < x such that if W2 = [0, y] for some 0 < y < f (x) , then a2 gets a 

A ∶= {(x, y) ∈ ℝ(0,1) ×ℚ(0,1) ∣ x < y < x + f (x)}.
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superset of [0, y], while if W2 = [0, y] for some f (x) ≤ y < f (x) + g(x) , then a2 gets 
exactly [0, f(x)]. To prove this claim, we consider two cases.

• Case 1 For some y ∈ (0, 1] , if W2 = [0, y] , then a2 gets a right interval. We show 
that this right interval must be the same for all such y. Suppose for contradic-
tion that a2 gets [z1, 1] when W2 = [0, y1] and gets [z2, 1] when W2 = [0, y2] , for 
some z1 < z2 . By positive share, we have z2 < y2 . When W2 = [0, y2] , a2 can 
manipulate by reporting W2 = [0, y1] and obtain a higher utility. So we must 
have z1 = z2 . Hence there exists h(x) ∈ (0, 1) such that whenever a2 gets a right 
interval, she gets exactly the interval [h(x), 1]. In particular, if W2 = [0, y] for 
some y ∈ (0, h(x)) , then positive share implies that a2 must get a left interval.

  Next, define 

 From the previous paragraph, we have f (x) > 0 ; moreover, positive share 
implies that f (x) ≤ x . If W2 = [0, y] for some y ∈ (0, f (x)] , then a2 must get 
the entire interval [0,  y] (and possibly more); otherwise, by definition of f(x), 
she can manipulate to get the more of the interval [0,  y]. In particular, when 
W2 = [0, f (x)] , the definition of f(x) implies that a2 gets exactly the interval 
[0, f(x)]. By positive share, this also means that f (x) < x.

  Now, let g(x) ∈ (0, h(x)) be such that f (x) + g(x) < x . Suppose that 
W2 = [0, y] for some f (x) < y < f (x) + g(x) . If a2 gets a right interval, this 
interval must be [h(x),  1], which yields value strictly less than f(x) to her. 
However, she can manipulate by reporting W2 = [0, f (x)] and get value f(x). So 
a2 must get a left interval of length at least f(x). By definition of f(x), this must 
be exactly the interval [0, f(x)]. Therefore f(x) and g(x) satisfy the conditions 
of our claim.

• Case 2 For any y ∈ (0, 1] , if W2 = [0, y] , then a2 gets a left interval. We define 
f(x) as in the previous case and choose any g(x) > 0 such that f (x) + g(x) < x . A 
similar argument as before shows that f(x) and g(x) satisfy the conditions of our 
claim.

Next, let x� ∈ (f (x), x) . Since our choice of x was arbitrary, for x′ there also exist 
f (x�) and g(x�) satisfying analogous conditions. Suppose first that f (x�) < f (x) . 
Let y ∈ (f (x�), f (x�) + g(x�)) be such that y < f (x) , and assume that W2 = [0, y] . If 
W1 = [0, x] , then since y < f (x) , our claim implies that a2 gets at least the interval 
[0,  y]. However, a1 can manipulate by reporting W1 = [0, x�] so that a2 only gets 
the interval [0, f (x�)] . So we cannot have f (x�) < f (x) . Likewise, if f (x�) > f (x) , we 
can take y ∈ (f (x), f (x) + g(x)) to arrive at a contradiction. Hence we must have 
f (x�) = f (x) . Since our choice of x′ was arbitrary, this holds for any x� ∈ (f (x), x).

Finally, let x�� ∈ (0, f (x)) . Assume that when W1 = [0, x��] and W2 = [0, f (x)] , 
a1 gets value r > 0 . Let r� ∈ (0,min{r, x − f (x)}) . If W1 = [0, f (x) + r�] and 
W2 = [0, f (x)] , then since f (f (x) + r�) = f (x) , a2 gets exactly the interval [0,  f(x)], 
which leaves value at most r′ to a1 . However, in this case a1 can manipulate by 
reporting W1 = [0, x��] to obtain value r > r′ . This is a contradiction.   ◻

f (x) ∶= sup
y∈(0,1]

{z ∣ a2 gets the interval [0, z] when W2 = [0, y]}.
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Bei et al. (2017) showed that a similar impossibility result with envy-freeness 
instead of positive share holds with the free disposal assumption, but using the 
larger class of piecewise constant valuations. For the class of valuations that we 
consider in Theorem  4, there exists a simple truthful and envy-free mechanism 
that always returns a connected allocation assuming free disposal. The mecha-
nism works as follows: Assume that agent ai declares Wi = [0, xi] for i = 1, 2 . If 
x1 ≥ x2 , allocate the interval [x1∕2, x1] to a1 and [0, x1∕2] to a2 ; otherwise allocate 
the interval [0, x2∕2] to a1 and [x2∕2, x2] to a2 . One can check that this mechanism 
satisfies the claimed properties.

We now consider position obliviousness and show the non-existence of a truth-
ful and position oblivious cake cutting mechanism that satisfies positive share for 
two agents. In Appendix A, we prove a statement that uses proportionality instead 
of positive share but holds for any even number of agents.

Theorem 5 There does not exist a truthful and position oblivious cake cutting mech-
anism for two agents that satisfies positive share.

Proof Suppose that such a mechanism exists. First, we claim that for any 
x ∈ (0, 1∕3) , if W1 = W2 = [0, x] , then one of the agents gets length strictly less 
than x from the interval [x, 1]. Assume that this is not the case, and suppose that 
a1 receives value r > 0 in the instance where W1 = W2 = [0, x] . Since both agents 
get length at least x from [x,  1], we may assume without loss of generality that 
a1 gets [x,  2x] (perhaps among other pieces). This means that if W1 = [0, 2x] and 
W2 = [0, x] , a1 must receive value at least x + r ; otherwise she can manipulate by 
reporting W1 = [0, x] . We now show that a1 must still receive value at least x + r 
when W1 = W2 = [0, 2x] . This suffices to establish our claim since by symmetry, a2 
also receives value more than x when W1 = W2 = [0, 2x] , which is impossible.

If it were not the case that a1 receives value at least x + r when W1 = W2 = [0, 2x] , 
then a2 receives value more than x − r in this instance. In the instance where 
W1 = [0, 2x] , and W2 has length x and contains a piece of length more than x − r 
that a2 values in the previous instance, a2 must receive value more than x − r ; other-
wise she can manipulate by reporting W2 = [0, 2x] . Hence a1 receives value less than 
x + r in this instance. However, we know that a1 receives value at least x + r when 
W1 = [0, 2x] and W2 = [0, x] . This is a contradiction with position obliviousness. So 
a1 indeed receives value at least x + r when W1 = W2 = [0, 2x] , proving our claim.

Next, fix x ∈ (0, 1∕3) . Assume without loss of generality that when 
W1 = W2 = [0, x] , a2 gets length strictly less than x from the interval [x, 1], and that 
a2 does not get any piece outside the interval [1 − x, 1] . Consider the instance where 
W1 = [0, 1 − x] and W2 = [0, x] . Note that a1 must get value more than 1 − 2x ; other-
wise she can manipulate by reporting W1 = [0, x] . Now, consider the instance where 
W1 = W2 = [0, 1 − x] . If a2 gets value at least x, let B2 be a piece of length x that a2 
values and gets. If W1 = [0, 1 − x] and W2 = B2 , a2 must get at least the entire B2 , 
and hence a1 gets value at most 1 − 2x . However, we know that a1 receives value 
greater than 1 − 2x when W1 = [0, 1 − x] and W2 = [0, x] , which contradicts posi-
tion obliviousness. Hence a2 gets value less than x when W1 = W2 = [0, 1 − x] . This 
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means that when W1 = [0, 1 − x] and W2 = [0, 1] , a2 gets value less than 2x; other-
wise a2 can manipulate by reporting W2 = [0, 1] when in fact W2 = [0, 1 − x].

Finally, assume that a2 receives value s > 0 when W1 = W2 = [0, 1] . Let 
s� ∶= s∕3 ∈ (0, 1∕3) . If a1 manipulates by reporting W1 = [0, 1 − s�] , a2 gets value 
less than 2s′ < s . Hence this is a beneficial manipulation for a1 , a contradiction.   ◻

As with the connected piece assumption, Bei et  al. (2017) showed a similar 
negative result for position obliviousness and envy-freeness with the free disposal 
assumption but using the larger class of piecewise constant valuations. For piece-
wise uniform valuations, Chen et al.’s mechanism is truthful, envy-free, and position 
oblivious under the free disposal assumption.

We end this section by showing that our impossibility results also carry over to 
chore division. The idea is the same as the one used in Mechanism 2, except that 
here we use it to establish negative results.

Corollary 1 There does not exist a truthful chore division mechanism for two agents 
that satisfies any one of the following set of conditions: (i) anonymity; (ii) connected 
piece assumption and positive share; (iii) position obliviousness and positive share.

Proof If there were a truthful mechanism that satisfies one of the additional set of 
properties, we could obtain a cake cutting mechanism with the same properties as 
follows: First, we use the chore division mechanism to compute an initial alloca-
tion of the cake, treating the cake valuations as chore valuations. Then we swap the 
pieces of the two agents in this allocation. However, the existence of a cake cut-
ting mechanism with these properties would contradict one of Theorems 3, 4, and 5, 
respectively.   ◻

5  Bounds on the efficiency ratio

In this section, we investigate the efficiency of mechanisms satisfying various prop-
erties using the efficiency ratio, which is a standard measure for the welfare perfor-
mance of mechanisms. In particular, we show that for both cake cutting and chore 
division, no truthful and envy-free mechanism attains a better efficiency ratio than 
the mechanisms we presented in Sect. 3.

In contrast to the rest of the paper, in this section we do engage in interpersonal 
comparison of utility. For this reason, we assume that each agent has a value (or 
cost) of  1 for the entire resource, and scale the agent’s utility for a subset of the 
resource proportionally.9 In cake cutting, the social welfare of an allocation is the 
sum of the values that the two agents receive, and the efficiency ratio of a mecha-
nism is the infimum, over all feasible instances, of the ratio between the social wel-
fare of the allocation produced by the mechanism and the maximum social welfare. 

9 For this to make sense, we also assume that each agent has a positive value (or cost) on a nonempty 
subset of the interval [0, 1].
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Similarly, in chore division, the social cost of an allocation is the sum of the costs 
that the two agents incur, and the efficiency ratio of a mechanism is the infimum, 
over all instances, of the ratio between the minimum social cost and the social cost 
of the allocation produced by the mechanism.10 Note that by definition, the effi-
ciency ratio is always at most 1.

5.1  Cake cutting

We start with cake cutting. Our first result gives a lower bound on the efficiency 
ratio of envy-free and Pareto optimal mechanisms.

Theorem  6 Any envy-free and Pareto optimal cake cutting mechanism for two 
agents has efficiency ratio at least 3/4, and this bound is tight.

Proof Fix an envy-free and Pareto optimal cake cutting mechanism. Consider an 
instance where the two agents value pieces of length x ≤ y respectively, and these 
pieces have an overlap of length z ≤ x . The welfare-maximizing allocation gives the 
entire overlap to a1 , yielding welfare 1 + y−z

y
= 2 −

z

y
 . Next, we derive a lower bound 

for the welfare of the allocation that the mechanism produces. We consider two 
cases.

• Case 1: z ≤ x∕2 . Since the mechanism is Pareto optimal, the welfare achieved is 
at least the welfare when the entire overlap is allocated to a2 . This yields welfare 
1 +

x−z

x
= 2 −

z

x
≥ 3

2
 . Hence the efficiency ratio is at least 3∕2

2
=

3

4
.

• Case 2: z > x∕2 . The minimum welfare is achieved by minimizing a1 ’s share of 
the overlap. Since the mechanism is envy-free, a1 gets a piece of length at least 
x/2. This means that she gets length at least x

2
− (x − z) = z −

x

2
 from the overlap. 

If she gets length exactly z − x

2
 from the overlap, the social welfare is 

 where the inequality holds since x ≥ z . Hence the efficiency ratio is at least 

The tightness of the bound follows from the fact that Mechanism 1 has efficiency 
ratio 3/4, which we show in Corollary 2.   ◻

Next, we provide an upper bound on the efficiency ratio of truthful and envy-free 
mechanisms.

1

2
+

y − z + x∕2

y
≥

3

2
−

z

2y
,

3

2
−

z

2y

2 −
z

y

=
1

2
⋅

3 −
z

y

2 −
z

y

≥
3

4
.

10 Here we assume that 0
0
= 1 . This is a reasonable choice because if the mechanism produces an alloca-

tion with zero social cost for a certain instance, there is no loss of efficiency in that instance.
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Theorem 7 Any truthful and envy-free cake cutting mechanism for two agents has 
efficiency ratio at most 3/4, and this bound is tight.

Proof Fix a truthful and envy-free cake cutting mechanism. Consider the instance 
where W1 = W2 = [0, �] for some small 𝜖 > 0 . Since the mechanism is envy-free, 
it must allocate exactly half of the interval [0, �] to each agent. Assume without 
loss of generality that the mechanism gives a1 at least half of the interval [�, 1] ; 
let B1 ⊆ [𝜖, 1] be the piece that a1 receives. Next, consider the instance where 
W1 = [0, �] ∪ B1 and W2 = [0, �] . By truthfulness, a1 must receive B1 and half of the 
interval [0, �] , and therefore a2 can only receive half of [0, �] . For small � , the optimal 
social welfare approaches 2, while the social welfare of the allocation produced by 
the mechanism is at most 1∕2 + 1 = 3∕2 . Hence the efficiency ratio of the mecha-
nism is at most 3/4, as claimed.

The tightness of the bound follows from the fact that Mechanism 1 has efficiency 
ratio 3/4, which we show in Corollary 2.   ◻

The bounds in Theorems 6 and 7 yield the following corollary, which immedi-
ately implies the tightness of both bounds. Moreover, it follows from the corollary 
that no truthful and envy-free cake cutting mechanism has a better efficiency ratio 
than Mechanism 1.

Corollary 2 Any truthful, envy-free, and Pareto optimal cake cutting mechanism 
for two agents has efficiency ratio exactly 3/4. In particular, the efficiency ratio of 
Mechanism 1 is 3/4.

Next, we prove tight upper and lower bounds for mechanisms satisfying each of 
envy-freeness and Pareto optimality.

Theorem 8 Any envy-free cake cutting mechanism for two agents has efficiency ratio 
at least 1/2 and at most 2+

√

3

4
≈ 0.933 , and both bounds are tight.

Proof We consider the lower and upper bounds in turn.
Lower bound An envy-free mechanism always gives each agent a utility of at 

least 1/2, so the social welfare of the resulting allocation is at least 1. On the other 
hand, the optimal social welfare is at most 2. Hence the efficiency ratio is at least 
1/2. To show that this bound is tight, consider a mechanism that always outputs the 
allocation output by the Mechanism 1, except when W1 = [0, 1] and W2 = [0, �] for 
some small 𝜖 > 0 . For this instance, the mechanism gives the piece [�∕2, (1 + �)∕2] 
to a2 and the rest of the cake to a1 . This is an envy-free allocation, and both agents 
receive utility 1/2. On the other hand, for small � , the optimal welfare in this instance 
approaches 2.

Upper bound Caragiannis et  al. (2011, Theorem 9) showed that for two agents 
with arbitrary (not necessarily piecewise uniform) valuations, the maximum welfare 
of an envy-free allocation is no less than 2+

√

3

4
 times the optimal social welfare. 

Hence a mechanism that always returns an envy-free allocation with maximum 
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welfare has efficiency ratio at least 2+
√

3

4
 . To show that this bound is tight, we adapt 

the example of Caragiannis et  al. to piecewise uniform valuations. Consider the 
instance where W1 = [0,

√

3 − 1] and W2 = [0, 1] . The welfare-maximizing alloca-
tion gives the entire overlap to a1 , yielding welfare 1 + (2 −

√

3) = 3 −
√

3 . On the 
other hand, any envy-free allocation gives a1 a piece of length at most 1/2 from the 
overlap. So the maximum welfare of an envy-free allocation is 1∕2

√

3−1
+

1

2
=

3+
√

3

4
 . 

Hence the efficiency ratio of any envy-free mechanism is at most (3+
√

3)∕4

3−
√

3
=

2+
√

3

4
 , as 

claimed.   ◻

Theorem 9 Any Pareto optimal cake cutting mechanism for two agents has efficiency 
ratio at least 1/2 and at most 1, and both bounds are tight.

Proof We consider the lower and upper bounds in turn.
Lower bound Consider an instance where the two agents value pieces of length 

x ≤ y respectively, and these pieces have an overlap of length z ≤ x . The welfare-
maximizing allocation gives the entire overlap to a1 , yielding welfare 
1 +

y−z

y
= 2 −

z

y
 . On the other hand, the lowest welfare of a Pareto optimal allocation 

is achieved by giving the entire overlap to a2 , which yields welfare 1 + x−z

x
= 2 −

z

x
 . 

Hence the efficiency ratio of a Pareto optimal mechanism is at least 2−z∕x
2−z∕y

≥ 2−1

2−0
=

1

2
 . 

To show that this bound is tight, consider a mechanism that always outputs the allo-
cation output by Mechanism  1, except when W1 = [0, 1] and W2 = [0, �] for some 
small 𝜖 > 0 . For this instance, the mechanism gives the entire cake to a1 . This is a 
Pareto optimal allocation with social welfare 1. On the other hand, for small � , the 
optimal welfare approaches 2.

Upper bound By definition, the efficiency ratio of any mechanism cannot exceed 
1. Moreover, a mechanism that always returns an allocation with maximum social 
welfare is Pareto optimal and has efficiency ratio exactly 1.   ◻

5.2  Chore division

We now address chore division and exhibit a surprising contrast to cake cutting. 
Our first result shows that unlike for cake cutting, for chore division no truthful and 
envy-free mechanism has a positive efficiency ratio. Since Mechanism 2 is truthful 
and envy-free, the result applies to the mechanism as well.

Theorem  10 Any truthful and envy-free chore division mechanism for two agents 
has efficiency ratio 0. In particular, the efficiency ratio of Mechanism 2 is 0.

Proof Fix a truthful and envy-free chore division mechanism. Consider the instance 
where W1 = W2 = [0, �] for some small 𝜖 > 0 . Since the mechanism is envy-free, 
it must allocate exactly half of the interval [0, �] to each agent. Assume without 
loss of generality that the mechanism gives a2 at least half of the interval [�, 1] ; 
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let B2 ⊆ [𝜖, 1] be the piece that a2 receives. Next, consider the instance where 
W1 = [0, �] ∪ B2 and W2 = [0, �] . By truthfulness, a1 must receive at most half of the 
interval [0, �] , and therefore a2 receives at least half of the interval [0, �] . For small 
� , the minimum social cost in this instance approaches 0, while the social cost of the 
allocation produced by the mechanism is at least 1/2. Hence the efficiency ratio of 
the mechanism is 0, as claimed.   ◻

Theorem 10 also implies that any combination of truthfulness, envy-freeness, and 
Pareto optimality does not suffice to guarantee a positive efficiency ratio. On the 
other hand, a mechanism that always returns an allocation with minimum social cost 
is Pareto optimal and has the highest possible efficiency ratio of 1. Our next result 
shows that an envy-free mechanism can achieve an efficiency ratio of up to 8/9.

Theorem 11 Any envy-free chore division mechanism for two agents has efficiency 
ratio at most 8/9, and this bound is tight.

Proof Caragiannis et al. (2011, Theorem 17) showed that for two agents with arbi-
trary (not necessarily piecewise uniform) valuations, the minimum cost of an envy-
free allocation is no more than 9/8 times the optimal social cost. Hence a mechanism 
that always returns an envy-free allocation with minimum cost has efficiency ratio 
8/9. To show that this bound is tight, we adapt the example of Caragiannis et al. to 
piecewise uniform valuations. Consider the instance where W1 = [0, 2∕3] and 
W2 = [0, 1] . The cost-minimizing allocation gives the entire overlap to a2 , yielding 
cost 2/3. On the other hand, any envy-free allocation gives a2 a piece of length at 
most 1/2 from the overlap. So the minimum cost of an envy-free allocation is 
1∕6

2∕3
+

1

2
=

3

4
 . Hence the efficiency ratio of any envy-free mechanism is at most 

2∕3

3∕4
=

8

9
 , as claimed.   ◻

6  Extensions to multiple agents

In this section, we consider the general setting where we allocate the resource 
among any number of agents. We assume that each agent ai only values (or has cost 
on) the interval [0, xi] for some xi . Such valuations may appear in a scenario where 
the agents are dividing machine processing time: agent ai has a deadline xi for her 
jobs, so she would like to maximize the processing time she gets before xi but has 
no value for any processing time after xi . We also remark that the example used to 
illustrate that removing the free disposal assumption can be problematic consists of 
two agents whose valuations belong to this class (Chen et al. 2013, p. 296). Hence, 
designing a fair and truthful algorithm is by no means an easy problem even for this 
valuation class.

We first describe the cake cutting mechanism.
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Mechanism 3 (for cake cutting among n agents)

Step 1 If there is one agent left, the agent gets the entire remaining cake. Else, 
assume that there are k ≥ 2 agents and length � of the cake left. Find the maxi-
mum x ∈ [0,�] such that agent i values the entire interval [(i − 1)x, ix] for all 
i = 1, 2,… , k , and allocate the interval [(i − 1)x, ix] to agent i.
Step 2 The agent whose right endpoint of her allocated interval coincides with the 
right endpoint of her valued piece exits the process. If there are more than one 
such agent, choose the one with the lowest number.11

Step 3 Renumber the remaining agents in the same order starting from 1, and 
relabel the left endpoint of the remaining cake as point 0. Return to Step 1.

Theorem 12 Let n be any positive integer. Mechanism 3 is a truthful, envy-free, and 
Pareto optimal cake cutting mechanism for n agents, if each agent only values a sin-
gle interval of the form [0, xi].

Proof First, for truthfulness, there are two types of manipulation: moving xi to the left 
and to the right. Moving xi to the left can only cause ai to quit the process early when 
she could have gained more by staying on. On the other hand, if moving xi to the right 
causes the allocation to change in some round of Step 1, the agent can only get less 
value from the allocated interval as its right endpoint moves past xi . Moreover, since 
she has no more valued intervals to the right, she cannot make up for the loss.

Next, for envy-freeness, if an agent is no longer in the process, she has no more 
piece of value. During the process, in each round all remaining agents receive an 
interval of the same length. Since each agent values the entire interval that she 
receives, she does not envy any other agent.

Finally, our mechanism allocates any interval valued by at least one agent to an 
agent who values it. This establishes Pareto optimality.   ◻

We remark that constructing truthful and envy-free mechanisms that work 
beyond the class of valuations in Theorem 12 appears to be highly nontrivial. For 
instance, even if every agent only values a single interval (not necessarily starting 
at 0), then a mechanism that tries to find valued intervals of equal length accord-
ing to the agent ordering no longer works: if W1 = [0.5, 1] and W2 = [0, 0.5] , such a 
mechanism would not be able to allocate any of the cake. Alternatively, one could 
try a generalization of Mechanism 3 that finds the smallest x such that ix is the right 
endpoint of some agent i’s valued interval. However, if W1 = W2 = [0.5, 1] , then this 
mechanism would allocate [0, 0.5] to agent 1 and [0.5, 1] to agent 2, thereby leaving 
agent 1 envious.

Unlike in the case of two agents, there is no simple reduction between cake cut-
ting and chore division in the general case. Nevertheless, our next result shows a 
truthful and proportional chore division mechanism for any number of agents.12 We 

11 There always exists at least one such agent, since otherwise the value of x in Step 1 can be increased.
12 We are grateful to Bo Li for pointing out an error in an earlier version of this mechanism.
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were not able to strengthen the proportionality guarantee to envy-freeness and leave 
it as an interesting open question for future research.

Mechanism 4 (for chore division among n agents) 

Step 1 Let a1 take the piece [0, x1∕n] ∪ [x1, 1] . If some other agent has no cost on 
parts of the interval [0, x1∕n] , give those parts to the agent. (If there are several 
such agents, allocate the parts arbitrarily.)
Step 2 Proceed similarly with the next agent up to an−1 and the remaining chore; 
agent ai takes the leftmost interval with value yi∕n as well as any piece for which 
she has no cost, where yi ∶= min(x1, x2,… , xi) . (If ai has cost less than yi∕n left, 
she takes the entire remaining chore.)
Step 3 Agent an takes all of the remaining chore.

Theorem 13 Let n be any positive integer. Mechanism 4 is a truthful, proportional, 
and Pareto optimal chore division mechanism for n agents, if each agent only has 
cost on a single interval of the form [0, xi].

Proof We begin with truthfulness. First, any agent who has no cost on some piece 
that the mechanism initially allocates to another agent has no incentive not to take 
the piece. Apart from this, agent an has no control over her allocation, so the mecha-
nism is truthful for her. For any other agent, there are two types of manipulation: 
moving xi to the left and to the right. Moving xi to the right can only increase the 
value of the piece that ai has to take. If ai moves xi to the left while staying to the 
right of yi−1 = min(x1, x2,… , xi−1) , nothing changes. Else, she moves xi by an 
amount z on the left of yi−1 . In this case, she can save a cost of at most z/n but has to 
take a piece of cost z at the end. So ai does not have a profitable manipulation.

We now consider proportionality. Each agent ai up to an−1 gets a piece of cost at 
most yi∕n ≤ xi∕n . For an , we consider two cases. If xn ≤ yn−1 , then each of the first 
n − 1 agents takes at least 1/n of the interval [0, xn] , so at most 1/n of this interval is 
left for an . Else, we have xn > yn−1 . The intervals [0, (n − 1)yn−1∕n] and [yn−1, 1] will 
not be left to an , meaning that an incurs a cost of at most yn−1∕n < xn∕n.

Finally, our mechanism allocates any interval for which some agent has no cost to 
one such agent. This establishes Pareto optimality.   ◻

7  Conclusion and future work

In this paper, we study the problem of fairly dividing a heterogeneous resource in 
the presence of strategic agents and demonstrate the powers and limitations of truth-
ful mechanisms in this setting. An immediate question that arises is whether the 
mechanisms in Sect. 3 can be generalized to work for any number of agents with 
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piecewise uniform valuations. While our results in Sect. 6 provide a partial answer 
to this question, extending to the general setting seems to require a drastically differ-
ent idea. Indeed, while other examples of truthful mechanisms given in Sect. 4 can 
be generalized to multiple agents, these extensions do not satisfy envy-freeness or 
even positive share. Of course, it could also be that there is an impossibility result 
once we move beyond the case of two agents.

Another direction for future work is to allow agents to have valuations from a 
larger class. A natural next step would be to consider the class of piecewise constant 
valuations, in which an agent values each interval uniformly but can have different 
marginal utilities for different intervals. Intriguingly, it is not known whether there 
exists a deterministic truthful and envy-free mechanism even for two agents with 
piecewise constant valuations, either with or without the free disposal assumption. 
Again, the question is still open even if we relax envy-freeness to positive share; 
it does not seem clear whether (significantly) relaxing the fairness notion helps in 
designing a truthful mechanism for piecewise constant valuations.

Finally, our results in Sect. 5 leave open the question of determining the best effi-
ciency ratio that can be achieved by a truthful mechanism. This quantity has been 
called the price of truthfulness by Maya and Nisan (2012), who studied it in the set-
ting where free disposal is allowed. While we have established tight upper bounds 
on the efficiency ratio of truthful and envy-free mechanisms for both cake cutting 
and chore division, our current techniques are not sufficient to show that the bounds 
remain tight in the absence of envy-freeness. If a truthful mechanism with a higher 
efficiency ratio were to exist, it would be useful in situations where only resistance 
to strategic behavior is desired.
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A Additional impossibility result

Theorem 14 Let n = 2k for some positive integer k. There does not exist a truthful, 
proportional, and position oblivious cake cutting mechanism for n agents.
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Proof Suppose that such a mechanism exists. For simplicity, we represent the cake 
by the interval [0, 4k2 + k] ; this can be easily normalized back to [0, 1].

First, consider the instance where W2i−1 = W2i = [i − 1, i] for i = 1, 2,… , k . Since 
the interval [k, 4k2 + k] is of length 4k2 and there are 2k agents, some agent gets 
value more than 2k − 1 from the interval. Assume without loss of generality that a1 
is one such agent, and that a1 gets the interval [k, 3k − 1] . Since the mechanism is 
proportional, a1 must get value at least 1/2k from the interval [0, 1] as well.

Next, consider the instance where W1 = [0, 1] ∪ [k, 3k − 1] , W2 = [0, 1] , and 
W2i−1 = W2i = [i − 1, i] for i = 2, 3,… , k . Agent a1 must still get value at least 1/2k 
from the interval [0,  1]; otherwise she can report W1 = [0, 1] instead. This means 
that a2 gets a total value of at most 1 − 1∕2k in this instance.

Finally, consider the instance where W1 = W2 = [0, 1] ∪ [k, 3k − 1] and 
W2i−1 = W2i = [i − 1, i] for i = 2, 3,… , k . By proportionality, a2 must receive value 
at least 1; let B2 ⊆ [0, 1] ∪ [k, 3k − 1] be a piece of length 1 that a2 receives. If 
W2 = B2 while the other Wi ’s remain fixed, then since the mechanism is position 
oblivious, a2 must get a total value of at most 1 − 1∕2k . However, in that case a2 can 
report W2 = [0, 1] ∪ [k, 3k − 1] and receive value 1. This implies that the mechanism 
is not truthful and yields the desired contradiction.   ◻
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