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found that a median filter with window size 3 × 3 vector 
spacing is the effective and efficient approach to eliminate 
the experimental noise from PIV measured velocity images 
to a satisfactory level and extract the statistical two-dimen-
sional topological turbulent flow patterns.

List of symbols
Ã  Reduced velocity gradient tensor
fM  Intensity of the measured image
fF  Intensity of the filtered image
f  Intensity of the un-blurred noise-free image
FM  Fourier form of the measured image
F  Fourier form of the un-blurred noise-free image
g  Optimal Wiener Filter
G  Fourier form of the optimal Wiener Filter
h  Point Spread Function of the optical system
H  Fourier form of PSF of the degradation process
H*  Conjugate of H
ng  Local intensity of noise with Gaussian profile
nsp  Local intensity of Salt and Pepper noise with Poisson 

distribution
n  Intensity of the corrupting additive noise
N  Fourier form of the corrupting additive noise
S̃  Rate-of-strain tensor
q2  Turbulent kinetic energy
Reλ  Taylor scaled turbulent Reynolds number
ui  Turbulent flow velocity in i direction
xi  Spatial displacement in i direction
ε  Turbulent kinetic energy dissipation rate
η  Kolmogorov lengthscale
λ  Taylor microscale
Γ  Noise to signal ratio
τη  Kolmogorov time scale
Λ  Integral lengthscale
�̃�i  Eigenvalues of the rate-of-strain tensor

Abstract The experimental evaluation of the topological 
characteristics of the turbulent flow in a ‘box’ of homo-
geneous and isotropic turbulence (HIT) with zero mean 
velocity is presented. This requires an initial evaluation 
of the effect of signal noise on measurement of veloc-
ity invariants. The joint probability distribution functions 
(pdfs) of experimentally evaluated, noise contaminated, 
velocity invariants have a different shape than the corre-
sponding noise-free joint pdfs obtained from the DNS data 
of the Johns Hopkins University (JHU) open resource HIT 
database. A noise model, based on Gaussian and impulsive 
Salt and Pepper noise, is established and added artificially 
to the DNS velocity vector field of the JHU database. Digi-
tal filtering methods, based on Median and Wiener Filters, 
are chosen to eliminate the modeled noise source and their 
capacity to restore the joint pdfs of velocity invariants to 
that of the noise-free DNS data is examined. The remain-
ing errors after filtering are quantified by evaluating the 
global mean velocity, turbulent kinetic energy and global 
turbulent homogeneity, assessed through the behavior of 
the ratio of the standard deviation of the velocity fluctua-
tions in two directions, the energy spectrum of the velocity 
fluctuations and the eigenvalues of the rate-of-strain tensor. 
A method of data filtering, based on median filtered veloc-
ity using different median filter window size, is used to 
quantify the clustering of zero velocity points of the turbu-
lent field using the radial distribution function (RDF) and 
Voronoï analysis to analyze the 2D time-resolved particle 
image velocimetry (TR-PIV) velocity measurements. It was 
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1 Introduction

It has been observed that particle or droplet clustering 
occurs in two-phase flows due to the interaction of drop-
lets or particles of different sizes with the turbulent eddies 
of the continuous phase flow. These clusters are regions 
where the dispersed phase has concentration higher than 
the average value and are complimented with regions of 
voids, where the dispersed phase concentration is lower 
than the average value. There are two proposed mecha-
nisms to explain the formation of clusters of the dispersed 
phase. One is the centrifuging of particles by the turbulent 
eddies due to inertia (e.g., Maxey 1987; Wang and Maxey 
1993; Eaton and Fessler 1994; Sundaram and Collins 1997; 
Hardalupas et  al. 1990, 1992) and the second is a sweep-
stick mechanism, which suggests that the fluid acceleration 
field is swept by the local fluid velocity and particles tend 
to stick to and move with the zero acceleration points (e.g., 
Chen et  al. 2006; Goto and Vassilicos 2006, 2008; Bragg 
et al. 2015). To be able to assess experimentally these two 
mechanisms for dispersed phase clustering, the topology of 
the flow structure in a turbulent flow must be detected and 
quantified across the different scales. This is challenging 
because measurements always contain noise from differ-
ent sources, which influences the ability to analyze the flow 
structures across the different scales. Therefore, we would 
like to assess and optimize the ability to detect flow struc-
tures from experimental velocity measurements and this 
forms the purpose of this work.

To conceptually visualize coherent flow structures in 
turbulent flows, Perry and Chong (1987) described and 
classified the turbulent topological flow patterns using the 
critical points concept, where the slopes of the flow stream-
lines are indeterminate. These topological flow patterns are 
defined by invariants of the velocity gradient that can be 
quantified experimentally.

The calculation of velocity derivatives from two-dimen-
sional and three-dimensional measurements of local veloc-
ity gradients with the discrete differentiation approach 
is largely affected by the spatial resolution of the meas-
urement, the velocity vector spacing and the presence of 
‘noise’ on the recorded images. Previous work, discussing 
the effect of spatial resolution on the fine scale turbulence, 
indicates that coarsely resolved velocity vector fields result 
in underestimation of the magnitude of velocity gradients 
and errors in the estimate of turbulent quantities (Antonia 
et  al. 1994; Sugii et  al. 2000; Lavoie et  al. 2007; Worth 
et al. 2010). The three main sources of ‘noise’ on particle 
image velocimetry (PIV) images have been identified by 
Christensen (2004) as electronic noise of the camera, bias 
error due to pixel peak locking and gradient noise due to 
the local random velocity gradients within the field. West-
erweel (1997, 2000) pointed out that the PIV measurement 

precision also depends on the sub-pixel displacement error 
in the processing algorithm. The influence of spatial resolu-
tion and noise on the measured velocity derivatives deter-
mines the accuracy of the estimation of the fine scale turbu-
lent quantities and associated turbulent kinematic features, 
which, therefore, affect the understanding of the underly-
ing physical processes. Thus, to obtain accurate flow visu-
alization and interpretation of the physical process, there 
is a need to consider the influence of image noise on the 
determination of topological flow patterns defined using 
the phase portrait of the velocity invariants joint probability 
distribution functions (pdfs) (Perry and Chong 1987).

Buxton et al. (2011) studied the effect of spatial resolu-
tion and noise on the three-dimensional fine scale turbulent 
kinematic features and suggested that a minimum reso-
lution of 2.5η (η being the Kolmogorov scale of the flow 
turbulence) is required for the vector spacing. The shape 
of the joint pdfs of the velocity invariants Q and R is sen-
sitive to the vector spacing, resolution and noise that the 
‘Vieillefosse tail’ diminishes with decreased resolution or 
increased level of Gaussian noise. The definition of the 
velocity invariants Q and R is detailed in the work of Perry 
and Chong (1987). The reduced two-dimensional velocity 
invariants are defined in the current work.

The significance of the image noise is greater than 
that of the vector spacing resolution on the determina-
tion of the fine scale turbulent kinematic features. Card-
esa et  al. (2013) reported that the shape of the joint pdfs 
of the two-dimensional velocity invariants, measured by 
two-dimensional PIV, appears similar for various turbu-
lent flow geometries and experimental flow conditions. In 
addition, a good agreement was observed between experi-
ments and direct numerical simulations (DNS), so that joint 
pdfs and fine scale turbulent kinematic features, measured 
by planar PIV, is suggested to be less susceptible to noise 
and aliasing errors when compared to measurements with 
3D diagnostics. However, the effect of image noise on the 
processed PIV velocity measurements requires examination 
(Khashehchi et al. 2010), which can be evaluated by adding 
artificial noise on the calculated flow velocity from DNS 
or LES flow computations (Okamoto et al. 2000; Atkinson 
et al. 2014).

The goal of the paper is to evaluate the experimental 
noise effects and select effective digital filtering techniques 
to extract the topological characteristics of the turbulent 
flow in a ‘box of turbulence’ through 2D time-resolved 
PIV. Different types and levels of noise are introduced to 
an openly available DNS data set. Then, the digital filter-
ing techniques are optimized by evaluating their ability to 
remove the added noise from the DNS data while mini-
mizing the introduced modifications to the characteristics 
of the reference DNS flow field. The optimum digital fil-
tering techniques are then applied to the 2D time-resolved 
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PIV measurements to obtain the best evaluation of the flow 
structures, which are relevant to the particle or droplet clus-
tering in two-phase flows. The experimental setup is briefly 
described in Sect. 2. The facility of the ‘box of turbulence’ 
used in the current study that generates homogeneous and 
isotropic turbulence is summarized, while additional details 
are provided by Lian et  al. (2013). The effect of image 
noise is evaluated in Sect. 3 by adding Gaussian noise on 
the DNS data from Johns Hopkins University (JHU) open 
resource database (Perlman et  al. 2007; Li et  al. 2008) of 
forced homogeneous and isotropic turbulence in a 10,243 
periodic cube. The digital filtering methods are proposed 
and evaluated in Sect.  4. Three filtering approaches to 
eliminate the added image noise and spurious vectors are 
considered, namely (a) median filter (Westerweel 1994), 
(b) Wiener filter (Press et al. 1988) and (c) linear coupling 
of median filter and Wiener filter. The above methods are 
applied to measured 2D TR-PIV images of the flow veloc-
ity of homogeneous and isotropic turbulence. In addition 
to the evaluation of the filtering effect on the detection of 
turbulent flow topological patterns, the errors due to image 
filtering are also examined by evaluating the global mean 
velocity, turbulent kinetic energy, global turbulent flow 
homogeneity using the behavior of the ratio of the standard 
deviation of the velocity fluctuations in two directions, the 
energy spectrum of the velocity fluctuations and the eigen-
values of rate-of-strain tensor. Finally, Sect. 5 quantifies the 
effect of image noise on the clustering statistics of turbulent 
topological flow patterns, including instantaneous ‘zero 
velocity’ points. In this way, we establish the appropriate 
filtering approaches that eliminate the experimental noise 
to a satisfactory level to quantify the two-dimensional topo-
logical turbulent flow patterns in a ‘box of turbulence’.

2  Experimental setup

The experimental velocity data are acquired from the flow 
in a ‘box of turbulence’ facility, which generates homo-
geneous and isotropic turbulence without mean flow. The 
operation principle of the ‘box of turbulence’ is simi-
lar to the facility of Hwang and Eaton (2004), Goepfert 
et al. (2009), Charalampous and Hardalupas (2010) and is 
described by Lian et al. (2013). Figure 1 shows a sketch of 
the facility, which comprised a cubic frame with 8 loud-
speakers placed at the vertices, which are covered by a 
plate with 50 holes with 8  mm diameter. The loudspeak-
ers operate at a random frequency between 40 and 60 Hz 
and generate arrays of synthetic jets, which all meet at the 
center of the cube. Careful fine-tuning of the amplitude of 
the imposed oscillations of the loudspeaker membranes 
allows balancing the flow and generating approximately a 
40 mm × 40 mm × 40 mm cubic volume of homogeneous 

and isotropic turbulence without mean flow at the center of 
the facility.

Particle image velocimetry (PIV) measured the instan-
taneous air flow characteristics after introducing fine gly-
col droplets with size less than 3 microns, generated by a 
VIVID stage fog generator. An Edgewave-IS series Nd: 
YAG laser operating at 532 nm was pulsed at high speed 
(up to 3  kHz), in order to illuminate a plane through the 
center of the ‘box’. A planar laser sheet was shaped by 
a −50  mm concave lens and a 500  mm convex lens with 
approximate thickness of 0.1  mm and was aligned at the 
center of an illuminated area of interest (AOI) of around 
40  ×  40  mm2 at the ‘box’ center. The laser sheet illumi-
nated the ‘seeding’ particles and the intensity of the scat-
tered light was recorded by a Photron APX CMOS camera 
(1024 × 1024 pixel) using a 105 mm lens f/2.8, leading to 
a linear magnification of 0.3 and resulting in spatial reso-
lution of 45.5 μm/pixel. The rate of the reported measure-
ments is set at 1500  Hz. The TR-PIV images were pro-
cessed with Davis 7.2 software from Lavision GmbH. The 
first pass interrogation window size was 64  ×  64 pixels 
with 50% overlap and the second pass was 16 × 16 pixels 
with 50% overlap, resulting in velocity vector spacing of 8 
pixels, which represents absolute distance of 364 µm. Since 
the Kolmogorov scale η is 167 µm for the presented condi-
tion of turbulent Reynolds number of 147 (Lian 2014), the 
velocity vector spacing is smaller than 2.5η, as suggested 
by Worth et al. (2010) for appropriate measurement preci-
sion of velocity derivatives. A 3 × 3 pixels Gaussian kernel 
smoothing was applied to the images during the multi-pass, 
with no further post processing.

The Kolmogorov scale and the turbulent Reynolds num-
ber are estimated according to the equations of:

Fig. 1  Experimental Setup of the ‘box of turbulence’ facility for 2D 
TR-PIV measurement
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where ν is the kinematic viscosity of the air, which is 
1.57 × 10−5 m2/s at atmospheric pressure and temperature, 
and λ is the Taylor length scale defined as

where the turbulent kinetic energy q2 is defined as

The details of how the kinetic energy q2, Taylor microscale 
λ, Kolmogorov timescale τη, Kolmogorov lengthscale η, inte-
gral lengthscale Λ are evaluated from the velocity measure-
ments are described in George (2013) and Lian et al. (2013) 
and are not repeated here.

The energy dissipation rate was estimated following 
Eq.  (4), under the assumption of global isotropy (Cardesa 
et al. 2013). The velocity gradient was calculated using the 
central difference algorithm.

The DNS data set is used to identify the effect of the pri-
mary experimental noise types on the velocity tensor invari-
ants and principle components, which is expected to be inde-
pendent of the turbulent conditions of the current experiment. 
The joint pdfs of the velocity invariants and the pdfs of the 
eigenvalues of the rate-of-strain tensor detailed in the follow-
ing sections are normalized to ensure independence from the 
absolute values of the different flow conditions. In this way, 
this evaluation through the DNS data set can optimize the 
digital filtering techniques that can then be used for the pro-
cessing of the experimental data. We chose to use the open 
source JHU DNS database, so that the results reported in the 
paper can be easily repeated,

A summary of the absolute values of the experimental 
turbulent conditions and the forced isotropic turbulence 
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calculated from the DNS of JHU open resource database 
is shown in Table  1 for reference. However, as explained 
above, the normalized DNS data are used to optimize the 
filtering techniques for the processing of the experimental 
data.

3  Noise model on turbulent topological flow 
pattern and rate‑of‑strain tensor

3.1  Turbulent topological flow pattern

The classification of the topological turbulent flow patterns is 
briefly described below, including definitions of two-dimen-
sional velocity gradients, velocity invariants p and q and 
the representation of the invariant phase portrait. Detailed 
descriptions on this topic can be found in Perry and Chong 
(1987) and Cardesa et  al. (2013). It should be noted that a 
two-dimensional analysis is applied to both the DNS data set 
and the experimental images.

The reduced two-dimensional velocity gradient tensor Ã is 
a first-order Cartesian tensor defined as:

The characteristic polynomial equation of Ã is derived as 
follows.

where

The eigenvalues of Ã can be calculated by solving the 
characteristic polynomial equation, so that they are uniquely 
determined by the characteristic polynomial coefficients p 
and q. The classifications of the local critical points are deter-
mined by the local eigenvalue of Ã. As a consequence, the 
categories of the critical points depend entirely on the val-
ues of the characteristic polynomial coefficients p and q. The 
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Table 1  Conditions of 
homogeneous, isotropic 
turbulence for experiments and 
DNS calculations

Turbulent quantities q2  (m2/s2) �  (m2/s2) Re� λ (m) �� (s) � (mm) � (m)

Experiment 2.148 19.69 147 0.003 0.001 0.134 0.032
JHU DNS 0.695 0.093 433 0.118 0.045 2.87 1.376
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topological categories of the critical points in a two-dimen-
sional velocity field were shown in a form of a phase portrait 
of the characteristic polynomial coefficients p and q (Perry 
and Chong 1987). A reproduction of the Perry and Chong 
(1987) phase portrait is presented in Fig. 2.

Five different topological categories of the critical points 
are defined in the phase portrait.

1. Unstable node if p < 0 and q > 0 and q < p2/4;
2. unstable focus if p < 0 and q > 0 and q > p2/4;
3. stable node if p > 0 and q > 0 and q < p2/4;
4. stable focus if p > 0 and q > 0 and q > p2/4;
5. saddle points if p < 0 and q < 0.

Since the topological turbulent flow patterns are defined 
from the joint pdfs phase portrait of the velocity invariants, 
the noise model below is developed based on the phase 
portrait.

3.2  Rate‑of‑strain tensor

The velocity gradient tensor Aij can be expressed as the 
summation of a symmetric and an asymmetric component:

where Sij is the rate-of-strain tensor and Ωij is the rate-of-
rotation tensor, respectively. The rate-of-strain tensor has 
been extensively used to study flow dynamics in various 

(9)Aij =
�ui

�xj
= Sij + �ij,

flow configurations. In the current paper, the rate of strain 
is used to evaluate the global turbulent homogeneity for 
the purpose of quantifying noise propagation and filtering 
errors.

The eigenvalues of the two-dimensional rate-of-strain 
tensor S̃ are given as

Statistical results from Eq. (11) can be derived with the 
averages of �̃�1 and �̃�2 equal in magnitude and opposite in 
sign (Cardesa et al. 2013), which yields

The ratio of the eigenvalues is used to quantify the 
homogeneity of the turbulent flow for evaluating the ‘noise’ 
propagation and filtering errors.

3.3  ‘Noise’ model

The concept and theory of digital noise transfer function 
(point spread function PSF), defined and developed in 
image processing community, is briefed below to provide 
foundations of ‘noise’ elimination in the PIV measured 
velocity vector fields.

The noise present in a digital image is usually modeled 
as either impulse noise or Gaussian noise. The impulse 
noise is also generally referred to as ‘Salt and Pepper noise’ 
and assumed to be Poisson distributed according to the 
form:

Given a specific window size, the probability of having k 
pixels affected by noise yields p(k), where npx is the average 
number of affected pixels and represents the variance of the 
Poisson distribution. The ‘Salt and Pepper noise’ tends to 
have a local effect on individual pixels.

The Gaussian noise is associated with the random noise 
value at a given pixel, which is drawn from a Gaussian dis-
tribution with given expectation and variance, and affects 
the intensity value of each pixel in the whole image area. 
The random noise field from these two noise sources is 
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Fig. 2  The topological categories of the critical points in a two-
dimensional velocity field (Perry and Chong 1987)
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added to the ‘true’ pixel intensity value, thus referred to as 
additive noise.

Apart from the noise presented in a digital image, the 
blurring of an optical system is measured by the Point 
Spread Function (PSF), which expresses how much the 
input intensity value affects the output intensity value 
over locations of pixels when imaging a point source 
(Petrou and Petrou 1999). The line spread function (LSF) 
is the PSF along a given direction and could be measured 
by the scanning edge-knife technique (Soulopoulos et al. 
2014) as the first order derivative of the edge spread func-
tion (ESF) or estimated according to a Gaussian profile 
when the image intensifier is not employed in the optical 
system. The Fourier transform of the line spread function 
is an important parameter in the process of digital filter-
ing and is generally referred to as the modulation transfer 
function (MTF).

Therefore, a measured digital image is blurred by the 
PSF and superimposed additive noise. The combina-
tion of these effects is modeled as ‘Salt and Pepper noise’ 
or Gaussian noise or a combination of these two noise 
sources. The imposed bias on measured velocity fields has 
been summarized by Christensen (2004) and Westerweel 
(2000), who demonstrated the complicated effects of digital 
image noise and PIV processing algorithms. A noise model 
can be developed for the evaluation of the topological char-
acteristics of turbulent flows and the fine scale turbulent 
kinematics to guide the development of the noise elimina-
tion techniques.

To establish the noise model and observe the influence 
of noise on the topological flow patterns and the fine scale 
turbulent kinematics, the two defined noise sources in the 
community of image processing, Gaussian noise and Salt 
and Pepper noise, have been added to the ‘un-blurred’ 
‘noise-free’ two-dimensional velocity vector fields acquired 
from the DNS data of Johns Hopkins University (JHU) 
open resource turbulence database (Perlman et al. 2007; Li 
et al. 2008) expressed as:

where u⃗i,p(x, y) is the pseudo velocity component with 
artificial additive noise at location (x, y); u⃗i,DNS(x, y) is the 
local velocity component from the DNS database of JHU; 
ng(x, y) is the local intensity of noise with Gaussian profile; 
nsp(x, y), is the local intensity of Salt and Pepper noise with 
Poisson distribution.

Zero mean Gaussian noise with variance of 0.001 and 
0.005 and ‘Salt and Pepper noise’ with density of 0.001 
and 0.005 have been separately added with the other term 
set as zero, corresponding to value of  10−3 times the root 
mean square (rms) of the turbulent flow velocity fluctu-
ations urms  =  3.5  m/s, the same levels as those used by 
Buxton et  al. (2011) for the study of the effect of noise 

(14)u⃗i,p(x, y) = u⃗i,DNS(x, y) + ng(x, y) + nsp(x, y),

on three-dimensional conditions. Linear combination of 
the Gaussian noise with variance of 0.005 and the Salt 
and Pepper noise density of 0.005 has also been tested. 
The resulting joint pdfs of velocity invariants are shown 
in Fig. 3.

Figure  3 shows that the addition of different levels of 
zero mean Gaussian noise modifies significantly the shape 
of the joint pdfs of the velocity invariants. The tails of the 
pdfs are more pronounced for higher magnitude of Gauss-
ian noise and the shape expands along the horizontal axis. 
The skewness of the joint pdf, calculated from the DNS, 
is reduced when Gaussian noise is artificially added. The 
addition of Salt and Pepper noise modifies the shape of 
the joint pdfs greatly, when the magnitude of density is 
0.005. The skewness could no longer be observed and the 
pointy edges are rounded as shown by the thick dash line 
in Fig. 3.

The effect of both Gaussian and Salt and Pepper noise 
on the joint pdfs is tested by linearly adding up the two 
noise sources, namely the Gaussian noise with zero mean 
and variance of 0.005 and the Salt and Pepper noise with 
density of 0.005. It is shown by the green solid line in 
Fig. 3 that the deterioration of the pdfs due to Salt and Pep-
per noise is reduced after introducing the Gaussian noise. 
The joint pdfs of the velocity invariants, calculated from 
the raw experimental data, are shown by the dotted thick 
green line. It is indicated that the joint pdfs of the raw 

Fig. 3  The joint pdfs of velocity invariants of homogeneous, iso-
tropic turbulence as estimated from the JHU DNS simulation with 
added Gaussian noise and/or Salt and Pepper noise and experimen-
tally measured without applying any noise reduction method during 
image processing
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experimental data are in transition between the joint pdfs of 
the combined Gaussian and Salt and Pepper noise and the 
Salt and Pepper with density level of 0.005, suggesting that 
the Salt and Pepper noise is dominant in the velocity vector 
fields measured by PIV.

To evaluate the effect of noise on the rate-of-strain ten-
sor, the resulting pdfs of the eigenvalues of the rate-of-strain 
tensor, calculated following Eq.  (11), are shown in Fig.  4. 
The two eigenvalues are plotted in separate figures to avoid 
superimposition.

The addition of different levels of zero mean Gaussian 
noise slightly modifies the shape of the pdfs of the eigenval-
ues of rate-of-strain tensor. The pdfs of the eigenvalues are 
significantly affected by the addition of different levels of 
Salt and Pepper type noise. The skewness of the pdfs in the 
high probability region (i.e. higher than  10−2) caused by the 
addition of Salt and Pepper type of noise matches the experi-
mental trend, shown by the light green line. However, in the 
region with probability of  10−3 to  10−2, the experimentally 
measured eigenvalues are closer to zero in comparison to 
the simulation results. Also, for the normalized eigenvalues 
around −8, −6 and 6, 8, the addition of Salt and Pepper noise 
causes local saturation in probability between  10−6 and  10−4.

The eigenvalues resulted from the coupled zero mean 
Gaussian noise with variance of 0.005 and Salt and Pepper 
noise with density of 0.005 recover towards DNS simulation 
comparing to Salt and Pepper noise, shown by the dark green 
solid line in Fig. 4. This finding for the pdfs of the eigenvalue 
is consistent with the finding for the joint pdfs of the velocity 
invariant that the corruption due to Salt and Pepper noise is 
reduced after introducing the Gaussian noise. Also, the linear 
summation of the two noise sources could not re-construct 
the experimentally measured eigenvalues with probability of 
 10−3 to  10−2, suggesting that the interaction of the two types 
of noise could be non-linear.

In contrary to the velocity invariants, the experimentally 
measured eigenvalues are more similar to those obtained after 
the addition of Gaussian noise. This indicates that the effect 
of Gaussian noise might be more pronounced than that of the 
Salt and Pepper noise in estimating eigenvalues of rate-of-
strain tensor, while the Salt and Pepper noise dominates the 
measurement of the velocity invariants.

The ratio of the average of the two eigenvalues that rep-
resents local homogeneity of the turbulent flow is shown in 
Table 2. The addition of different type and level of noise does 
not change the ratio of eigenvalues, suggesting that the global 
homogeneity is not affected by the noise addition. This is 
expected, since the noise addition is uniform spatially.

In summary, a noise model was established for the 
PIV measured velocity data, which has the ability to 
mimic the effect of experimental noise on the topological 

Fig. 4  The pdfs of eigenvalues of rate-of-strain tensor of homoge-
neous, isotropic turbulence as estimated from JHU DNS simulation 
with added Gaussian noise and Salt and Pepper noise and experimen-
tally measured without applying any noise reduction method during 
image processing

Table 2  The ratio of the average of the two eigenvalues of rate-of-strain

Ratio of the two 
eigenvalues

DNS DNS + Gaussian 
0.001

DNS + Gaussian 
0.005

DNS + S and P 
0.001

DNS + S and P 
0.005

DNS + S and P 0.005 
+ Gaussian 0.005

⟨
�̃�1

⟩/⟨
�̃�2

⟩
−1.00 −1.00 −1.00 −1.00 −1.00 −1.00
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characteristics of a turbulent flow and fine scale turbulent 
kinematics, namely the joint pdfs of velocity invariants 
and the pdfs of the eigenvalues of rate-of-strain tensor. The 
topological turbulent flow patterns, defined by the phase 
portrait of the joint pdfs, are sensitive to both the Gauss-
ian noise and Salt and Pepper noise, while the latter effect 
is more pronounced. The eigenvalues of rate-of-strain ten-
sor are also sensitive to both types of noise; however, the 
Gaussian noise appears to be more critical. The finding on 
the dominating noise type is then used to provide guidance 
for the development of digital filtering techniques for noise 
elimination from PIV velocity data to evaluate the topolog-
ical turbulent flow patterns as well as the rate-of-strain ten-
sor. The following section describes the developed digital 
filtering techniques.

4  Digital filtering techniques

For tensor invariants and its principle components, we 
identified the Gaussian noise and the impulsive Salt and 
Pepper noise as the two primary experimental noise types. 
For the presented flow data, the tensor invariants seem to 
be more sensitive to the Salt and Pepper while the prin-
cipal components to Gaussian. For the impulsive Salt and 
Pepper noise, the standard median filter is one of the most 
popular non-linear filters used due to its good de-noising 
power and computational efficiency (Huang et  al. 1979). 
Other types of non-linear filters, i.e., adaptive median fil-
ter, cascade and recursive filters, are applicable but more 
suitable for high noise intensity level >50%. In our case, 
the noise intensity is considered low; thus, the stand-
ard median filter was chosen in the current work, which 
forces the distinct intensity to be more like its neighbors 
and eliminates isolated velocity spikes (Westerweel 1994). 
Digital filters that smooth the velocity field, including con-
volution or wavelet based filters and Wiener filters, are 
generally used to eliminate the Gaussian noise (Petrou 
and Petrou 1999). Among these digital filters, Wiener 
filter is computationally efficient and the most important 
advantage is that it does not requires parameter adjustment 
except estimation of the noise to signal ratio. Other filter-
ing methods, for instance the Gaussian filter, involve fil-
ter width and parameter optimization strongly dependent 
on the noise level (Vétel et al. 2011). Thus, we chose the 
Wiener filter to eliminate the Gaussian noise in the current 
work.

This section presents the theory of the digital filtering 
behind the Wiener filter and the Median filter approaches in 
order to enhance and restore noisy images with the applica-
tion of these digital filtering techniques on the two-dimen-
sional velocity vector field.

4.1  The Wiener filter and the median filter

The Wiener filter is a technique to restore the image blurred 
by PSF and mainly the Gaussian additive noise. The 
Median filter is an effective method to remove impulsive 
Salt and Pepper noise.

The theory of the Wiener filter is briefed first. In the 
following discussion, it should be noted that lower case 
expressions donate image intensity values in physical space 
and upper case expressions donate image intensity values 
in Fourier space. An image blurred by PSF and with addi-
tive noise can be expressed as

where fM(r) is the measured image, f(r) is the un-blurred 
noise-free image, h(r) is the PSF of the optical system and 
n(r) is the corrupting additive noise. The Fourier form of 
this expression is:

Applying a digital filter, the filtered image can be 
expressed as:

with its Fourier form as:

The least square error between the un-blurred noise-free 
image and the filtered image is defined as:

where E donates the expectation.
The Wiener filter is an optimal linear solution to the 

least squares error estimation between the ideal image 
and the filtered image. Its Fourier form has been obtained 
(Petrou and Petrou 1999) as:

where G(k) is the Fourier form of an optimal Wiener filter, 
H(k) is the Fourier form of PSF of the degradation process, 
H*(k) is the conjugate of H(k). The spectral densities of the 
additive noise and un-blurred noise-free image are Sn(k) 
and S(k).

The construction of the Wiener Filter requires estima-
tion or measurement of the PSF. In the current work, the 
PSF is represented by a Gaussian profile, which is expected 
for most of the optical systems without the presence of an 
image intensifier that alters the PSF with a longer tail.

(15)fM(r) = ∫
+∞

−∞ ∫
+∞

−∞

h(r − r�)f (r�)dr� + n(r),

(16)FM(k) = H(k)F(k) + N(k),

(17)fF(r) = ∫
+∞

−∞

fM(r
�)g(r − r�)dr�,

(18)FF(k) = FM(k)G(k).

(19)e2=E
{[

f (r) − fF(r)
]2}

,

(20)G(k) =
H∗(k)

|H(k)|2 +
Sn(k)

S(k)

,
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In the context of fluid mechanics, where the Wiener Fil-
ter is applied to the two-dimensional velocity vector field, 
the estimation of spectral density of noise and un-blurred 
noise-free ‘image’ is achieved via kinetic energy power 
spectrum following the approach of Soulopoulos et  al. 
(2014). The kinetic energy power spectrum of the turbulent 
flow condition, detailed in Table 1, is shown in Fig. 5.

According to the procedure described by Soulopoulos 
et al. (2014), power spectral density estimation is shown in 
Fig. 5. FM(k) represents the measured kinetic energy power 
spectrum of the turbulent flow with Reynolds number 
of 147. N(k) is the estimated noise spectrum using cubic 
spline extrapolation from the measured power spectrum. 
The filtered energy spectrum is the deduction between the 
two, shown as FM(k)−N(k). The term Sn(k)/S(k) of Eq. (20) 
can be simplified as a constant Γ, following suggestions by 
Petrou and Petrou (1999), which indicates the noise to sig-
nal ratio. In the current work, Γ is approximated as 1/10.

The procedure of applying Wiener filter on the two-
dimensional velocity vector field is summarized as follows:

1. Evaluate the modulation transfer function (MTF) Η(k), 
which is the Fourier transform of the point spread func-
tion (PSF). The PSF can be approximated as a Gauss-
ian profile or measured with the scanning knife-edge 
technique.

2. Estimate the constant Γ from the kinetic energy power 
spectrum.

3. Calculate the two-dimensional Fourier Transform of 
the instantaneous velocity vector field measured by 
PIV, F(k).

4. Multiply F(k) point by point with the constructed Wie-
ner filter G(k).

5. Calculate the inverse Fourier transform to obtain the 
filtered instantaneous velocity vector field, Ff(r).

6. Calculate the fluctuating velocity vector field from the 
filtered instantaneous velocity vector field for velocity 
gradient and invariants estimation.

The Median filter is a non-linear digital de-noising 
method widely used by the image processing community 
to remove the impulsive Salt and Pepper noise, which, 
according to Westerweel (1994), represents similar prop-
erties as that of spurious velocity vectors occurring in 
PIV measurements. It replaces the current pixel entry 
with the median value of the neighboring pixel entries 
within the square filter window size of n × n, where n is 
usually set as an integer less than 10.

4.2  Filtering results

The raw experimental two-dimensional velocity vector 
fields are processed with digital filters constructed from a 
Wiener filter and a median filter.

The resulting joint pdfs of velocity invariants are plot-
ted in Fig.  6 with thick black dashed line. The shape of 
the joint pdfs is similar to that of the DNS data with Salt 
and Pepper noise of density level 0.005, suggesting that 
the Wiener Filter removes certain levels of Gaussian noise, 

Fig. 5  Power spectral density estimation with optimal Wiener filter

Fig. 6  The joint pdfs of velocity invariants of homogeneous, iso-
tropic turbulence from experiment, processed by median filter, Wie-
ner filter and linear coupling of median and Wiener filters
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leaving the velocity vector fields dominated by Salt and 
Pepper noise. The median filter with different window sizes 
(2 × 2, 3 × 3 and 5 × 5 vector spacing) has been applied 
to the experimental PIV data, as shown in Fig.  6. The p 
and q joint pdfs shrink and approach the ‘ideal shape’, 
identified by the DNS data without any noise, better with 
a larger window size. It is observed that the median filter 
effectively removes the spurious velocity vectors.

As indicated by the noise model established in the pre-
vious section, the velocity vector fields are contaminated 
by both Gaussian and Salt and Pepper noise with the lat-
ter dominating. The combined median and Wiener filters 
seem to be the solution to filter the experimental velocity 
vector fields thus tested and shown in Fig.  6. No signifi-
cant improvement, but only a bit of smoothing, is observed 
comparing to the result from filtering with a 5 × 5 vector 
spacing window sized Median Filter. It should be noted that 
the sequence of applying the Wiener and Median Filters on 
the images does not modify the result. This confirms the 
suggestion that the Salt and Pepper noise, effectively the 
spurious vector in the velocity vector fields, is the dominant 
factor in the noise model influencing the evaluation of the 
topological characteristics of the turbulent flow.

The experimentally measured pdfs of the eigenvalues 
deviate from the pdfs estimated from the DNS database. 
Following the same filtering approach applied to velocity 
invariants, the filtered pdfs of the eigenvalues of the rate-
of-strain tensor are shown in Fig. 7.

The median filter with different window sizes (2  ×  2, 
3  ×  3 and 5  ×  5 vector spacing) has been applied to the 
experimental PIV data, shown as gray lines in Fig. 7. The 
green raw result has a ‘dip’ at probability of  10−2 to  10−3. 
The median filter effectively removes local velocity vec-
tors with high variance at the range of high probability, 
yet cause deviation at lower range of probability with the 
shapes of the pdfs of the eigenvalues deviate further away 
from the DNS results, suggesting the eigenvalues are sensi-
tive to the fine modifications on the local velocity fields.

The resulting pdfs of the eigenvalues from the two-
dimensional raw experimental velocity vector fields pro-
cessed with the constructed Wiener Filter are plotted as 
the thick black dashed lines in Fig.  7. The Wiener Filter 
removes certain levels of Gaussian noise leaving the veloc-
ity vector fields dominated by Salt and Pepper noise. A sig-
nificant improvement is observed relative to the result fol-
lowing filtering by a 5 × 5 vector spacing window Median 
Filter. Furthermore, the combined Wiener filter and Median 
filter with window size of 5 × 5 vector spacing yields the 
best filtering result. This confirms the finding of the previ-
ous section that the Gaussian noise is the dominant factor 
influencing the measurement of the rate-of-strain tensor.

In summary, the Gaussian noise is the dominant factor 
influencing the measurement of the rate-of-strain tensor. 

However, the Salt and Pepper noise, effectively the spuri-
ous vector in velocity vector fields, is the dominant factor 
in the noise model influencing the evaluation of the topo-
logical characteristics of the turbulent flow. The proposed 
digital filtering techniques recover the rate-of-strain tensor 
and topological characteristics derived from velocity invar-
iants. The filtering errors are quantified in the following 
Section in order to evaluate the modifications to turbulent 
statistics introduced by the digital filtering process.

4.3  Filter error estimation

The velocity vector field restored by the Wiener filter 
with noise to signal ratio set at Γ  =  1/10 is used as the 

Fig. 7  The pdfs of eigenvalue of rate-of-strain tensor of homogene-
ous, isotropic turbulence from experiment, processed by median filter, 
Wiener filter and coupled median and Wiener filters
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benchmark, because the optimal Wiener filter minimizes 
the error relative to the un-blurred, noise-free image (Vétel 
et  al. 2011) and demonstrates good accuracy in temporal 
filtering (Oxlade et al. 2012). The filtering errors with other 
filtering techniques are examined by comparing with the 
benchmark calculation of the global mean velocity, turbu-
lent kinetic energy and the global turbulent homogeneity, 
which is evaluated by the behavior of the energy spectrum 
and the eigenvalues of the rate-of-strain tensor.

The turbulent spectrum calculated from the two-point 
velocity correlation function processed via different filter-
ing techniques is shown in Fig.  8. The red dotted line is 
the benchmark spectrum processed with a Wiener filter. 
Although the Wiener filter is optimal in the sense of error 
minimization, it introduces negative bias at the high fre-
quency range of the energy spectrum. As observed in the 
rms of the velocity fluctuations, the median filter decreases 

the turbulent kinetic energy and results in negative bias at 
both low and high frequency ranges of the energy spec-
trum. Combination of the Weiner filter and the median fil-
ter corrects the bias in the low frequency range, caused by 
the application of median filter; however, the negative bias 
at the high frequency range still exists. Thus, there is lim-
ited improvement on the reduction of energy spectrum by 
combining Wiener filter and median filter.

The percentage filtering errors (%) of the global mean 
velocity and rms of the velocity fluctuations and the ratio 
of the rms of the velocity fluctuations in x and y directions 
are shown in Table 3. The median filter replaces the current 
pixel entry with the median value of the neighboring pixel 
entries within the square filter window size of n × n. As a 
result, the error percentage of the rms of velocity fluctua-
tions increases from 2.0% to a maximum of 17.9%, when 
the filter window size varies from 2 to 5 pixels, respec-
tively. The effect of median filter on the ratio of the rms 
of velocity fluctuations is limited within 0.7%, suggest-
ing good reproduction of global homogeneity. The filter-
ing variation in the global mean velocity ranges from 4.3 
to 15.2%. However, the absolute value of the global mean 
velocity decreases towards zero. Thus, the median filter 
introduces limited effect on the global zero mean velocity 
and global homogeneity. There is a notable reduction in 
the turbulent kinetic energy up to 30% with the maximum 
error in rms of velocity fluctuations of 17.9% in the case of 
median filter of 5 × 5 vector spacing.

In addition, the global homogeneity is examined as the 
ratio of the average of the two eigenvalues of the rate-of-
strain tensor calculated from the raw and filtered velocity 
fields. The percentage filtering error on the ratios of the two 
eigenvalues are summarized in Table 4. The filtering pro-
cess with the median and Wiener filters has slight influence 
on the global homogeneity with the ratio of two eigenvalues 
slightly lower than unity and is considered to be within a 
reasonable range with a maximum deviation of 2.6%. This 
is in agreement with the observation obtained from the per-
centage error in the ratio of the rms of the velocity fluctua-
tions, while the eigenvalues of the rate-of-strain tensor are 

Fig. 8  Two-dimensional energy spectrum with different filtering 
techniques

Table 3  Percentage filtering error (%) on turbulent statistics

Filter error (%) Raw exp Exp + median 2 × 2 
vector spacing

Exp + median 3 × 3 
vector spacing

Exp + median 5 × 5 
vector spacing

Exp + median 5 × 5 
vector spacing + 
Wiener

⟨ũ1⟩ 9.9 6.8 6.0 4.3 1.6
⟨ũ2⟩ 9.9 6.9 9.8 15.2 3.2⟨
ũ1,rms

⟩
25.8 2.1 7.9 17.4 13.6

⟨
ũ2,rms

⟩
26.6 2.0 8.2 17.9 13.8

⟨
ũ1,rms

⟩/⟨
ũ2,rms

⟩
0.6 0.03 0.3 0.7 0.3
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more prone to the filtering techniques with slightly higher 
error percentage.

Thus, by the velocity vector field restored by the Wiener 
filter as the benchmark, all of the 4 proposed digital filtering 
techniques (median filter 2 × 2, 3 × 3, 5 × 5 vector spac-
ing and linear combination of Wiener filter and median 
filter 5  ×  5 vector spacing) are capable of recovering the 
rate-of-strain tensor and topological characteristics derived 
from velocity invariants with negligible modification on 
the turbulence global homogeneity and zero mean velocity. 
The negative bias on the high frequency range of the energy 
spectrum is improved with the addition of the Wiener fil-
ter. However, the reduction in the turbulent kinetic energy 
is still up to 20–30%. In addition, there are limitations of the 
current proposed filtering technique, since the shape of the 
joint pdfs of velocity invariants and pdfs of eigenvalues of 
rate-of-strain tensor could not be fully ‘recovered’ to coin-
cide with the joint pdfs of un-blurred, noise-free velocity 
vector invariants from DNS data. This is possibly due to the 
fact that the coupling of Gaussian noise and Salt and Pep-
per noise does not follow a linear relationship, as modeled 
in Eq. (14), thus the digital filtering techniques needed are 
not linear operators. To fully resolve the noise elimination 
in evaluating topological characteristics of turbulent flows 
requires constructing a non-linear noise model and modify-
ing further the digital filtering techniques. However, this is 
beyond the content of the current work. The effects of digital 
filtering techniques on the statistical quantifications of the 
turbulent velocity stagnation points are evaluated in the fol-
lowing Section to establish the appropriate digital filtering 
method in identifying turbulent topological characteristics.

5  On the clustering of ‘zero velocity points’

It has been found in the previous sections that the median 
filter is an effective method to remove the Salt and Pepper 
noise, which is the dominant factor in the evaluation of the 
topological characteristics of the turbulent flow. To demon-
strate the influence of median filtering of the PIV measured 
velocity data on the identified topological turbulent zero 
velocity points, an instantaneous spatial distribution of zero 
velocity points in the flow field, identified with different 
median filter window sizes, is shown in Fig. 9.

Detailed flow structures can be observed after filtering 
the PIV velocity with a 2 × 2 vector spacing median fil-
ter. The morphology of the zero velocity points remains 
and the main structures are captured after filtering with 
3 × 3 and 5 × 5 vector spacing median filters. It is also 
observed that the representation of zero velocity points 
with 3  ×  3 and 5  ×  5 vector spacing Median filter are 
similar to that of the noise-free DNS data, forming clear-
edged clusters. Since these are instantaneous spatial dis-
tributions, the results from the experiments and the DNS 
data could not be identical. The statements rely on visual 
inspection of Fig. 9, which demonstrates the presence of 
spatial clustering of the zero velocity points in the experi-
ments and the DNS data. Quantitative description of the 
clustering of the zero velocity points follows.

The saddle points, one of the turbulent topological 
flow patterns, are of interest in the study of droplet-laden 
flows, since they are possibly responsible for the prefer-
ential concentration of dispersed particles (Chen et  al. 
2006; Goto and Vassilicos 2006, 2008). The acceleration 
field is estimated with the back Eulerian method from 
two velocity fields, measured with PIV. Thus, the influ-
ence of the noise elimination digital filtering technique 
is examined on the clustering behavior of the saddle 
points of velocity vector fields, also referred to as zero 
velocity points. In the following discussion, zero veloc-
ity points are used to represent the saddle points of the 
velocity vector fields. The clustering behavior of the zero 
velocity points is quantified by two methods, namely the 
Radial Distribution Function (RDF) (Sundaram and Col-
lins 1997) and Voronoï analysis (Monchaux et al. 2010).

The radial distribution function (RDF) was proposed 
by Sundaram and Collins (1997) and defined as:

(21)RDF =
N(ri)A

A(ri)N
,

Table 4  Percentage filtering 
error (%) on the ratio of the 
average of the two eigenvalues 
of the rate-of-strain

Percentage filter-
ing error (%) on 
the ratio of the 
two eigenvalues

Raw exp Exp + median 
2 × 2 vector 
spacing

Exp + median 
3 × 3 vector 
spacing

Exp + median 
5 × 5 vector 
spcaing

Exp + median 
5 × 5 vector spac-
ing + Wiener

⟨
�̃�1

⟩/⟨
�̃�2

⟩
0.4 1.2 1.3 2.6 0.2

Fig. 9  Instantaneous spatial distribution of zero velocity points 
identified with different Median filter window size. a Raw PIV data; 
b PIV velocity field filtered by 2  ×  2 vector spacing window sized 
median filter; c PIV velocity field filtered by 3  ×  3 vector spacing 
window sized median filter; d PIV velocity field filtered by 5 × 5 vec-
tor spacing window sized median filter; e noise-free DNS data

◂
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where N(ri) is the number of zero velocity points in a 
ring with width of 2dr and radius ri from the center of a 
randomly selected location. A(ri) is the area of the ring 
between r − dr to r + dr, A is the total area and N is the 
total number of zero velocity points on an image of the 
flow field. The RDF measures the number density of the 
zero velocity points within a ring of certain radius rela-
tive to the average zero velocity points number density in 

the area of interest. As a consequence, RDF values larger 
than 1 indicate clustering above the average number density 
across the area of interest.

Figure  10a shows the RDF of zero velocity points 
derived from raw, median filtered experimental data and 
noise-free DNS data. All results demonstrate that there is 
strong clustering of zero velocity points, since the value 
of RDF is larger than 1. The lengthscale of the clusters 
is identified when the value of RDF becomes 1. It can 
be seen from Fig. 10a that the lengthscale of the clusters 
is around 10–15 times the Kolmogorov scale η for the 
experimental results, while the DNS results indicate val-
ues, which are around 20η.

It is expected that the data filtered by Median filter with 
5  ×  5 vector spacing window size are measured with the 
highest clustering intensity and the ones from the raw 
experimental data return the least degree of clustering, 
agreeing with the visualization of Fig. 9. This is illustrated 
in Fig. 10a, where the dotted RDF curve marked with tri-
angular symbols, linked to the data filtered by 5 × 5 vec-
tor spacing Median Filter, is slightly above the other three 
curves of the data filtered by 3 × 3 vector spacing Median 
Filter, the data filtered by 2 × 2 vector spacing Median fil-
ter and the raw experimental data for cluster lengthscales 
smaller than around 10η. Also, it is interesting that there 
is a fairly good spatial correlation for cluster lengthscales 
larger than 10η between all the RDFs regardless of the 
data noise level. It seems that, although the application of 
the Median filter significantly alters the shape of the joint 
pdfs of the velocity invariants, the RDF measurements of 
the clustering of the turbulent zero velocity points are not 
affected much by the applied Median Filter. The magni-
tude of the RDF of the noise-free DNS data is higher than 

Fig. 10  Quantification of instantaneous clustering of turbulent zero 
velocity points. a Radial distribution function (RDF); b probability 
distribution of the normalized Voronoï area

Fig. 11  The standard deviation of the normalized Voronoï area
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the experimental result, indicating stronger clustering of 
zero velocity points occurring in the numerical simulation. 
However, the DNS and experimental RDF have the same 
behavior (i.e., slope) across all the scales. The remaining 
differences between DNS and experiments may be due to 
the higher turbulent intensity represented by a turbulent 
Reynolds number of Reλ = 433 compared to the considered 
experimental condition of Reλ  =  147. It is noted that the 
physical mechanisms leading to the clustering of turbulent 
‘zero velocity’ points is not the focus of the current paper, 
but was discussed by Lian (2014).

The Voronoï analysis decomposes the two-dimensional 
space into individual Voronoï cells that correspond to each 
zero velocity point, where each cell surface is closer to the 
considered zero velocity point than any other points. The 
Voronoï cell area A is the inverse of the local concentra-
tion of zero velocity points. Thus, the distribution function 
of Voronoï cell areas can provide information of the local 
clustering level of the zero velocity points. The probability 
distribution function of the normalized Voronoï cell areas 
A/Aavg has been applied to the quantification of clustering 
(preferential concentration) of particles (Monchaux et  al. 
2010).

Voronoï analysis has been applied here to evaluate 
the clustering of the zero velocity points in the measured 
instantaneous turbulent flow fields in the ‘box of turbu-
lence’. The normalized pdfs of the Voronoï areas surround-
ing zero velocity points derived from raw and median fil-
tered data are shown in Fig. 10b. It should be noted that the 
normalized Voronoï area pdfs are more sensitive to the de-
noising process in comparison to the robustness observed 
in the RDF analysis. The application of the Median filter 
with 2 × 2, 3 × 3 and 5 × 5 vector spacing window size 
results in a stronger degree of clustering compared to the 
raw measurements, by the pdfs of Voronoi areas show-
ing the larger deviation from the random poisson process 
(RPP) of Voronoi areas (Monchaux et al. 2010). The zero 
velocity points of the raw experimental data are more likely 
to be distributed randomly, as expected due to the noise 
on the image. The degree of clustering correlates with the 
increased window size of Median Filter. The observed 
increase in the degree of clustering could possibly be due 
to the fact that the Voronoï analysis is more accurate in 
capturing the clustering statistics of zero velocity points, 
since the averaging occurs once per image. It is consist-
ent with both the visual inspection of Fig. 9 and the results 
for the RDF of Fig. 10a that the noise-free DNS data and 
the experimental data filtered by Median filter with 5 × 5 
vector spacing window size show a stronger degree of clus-
tering. Generally, for scales lower than around 10η, there 
is good agreement between the pdfs of the Voronoi areas 
from DNS and experimental data. Deviations occur at the 
larger scales, where still the results from experimental data 

processed with Median filter with window 3  ×  3 vector 
spacing remain closer to the quantification results. Increas-
ing the window size to 5 × 5 vector spacing result in the 
magnitude of clustering higher than that of the noise-free 
DNS data, indicating stronger clustering of zero velocity 
points, in contrary to the RDF quantification.

The standard deviation of the normalized Voronoï area 
is a single metric representing the magnitude of cluster-
ing (Monchaux et  al. 2010), with the value of the ran-
dom poisson process as 0.53. Larger value of the stand-
ard deviation suggests stronger degree of clustering. The 
comparison between raw and filtered experiment as well 
as DNS is shown in Fig. 11, which supports the findings in 
Fig. 10b that applying median filter increases the magni-
tude of clustering. The median filter with window of 5 × 5 
vector spacing increases the magnitude above the DNS at 
 Reλ = 433. Thus, the window size of the Median filter is 
to be limited to 3  ×  3 vector spacing, which is effective 
to eliminate the experimental noise to a satisfactory level 
and extract the two-dimensional topological turbulent flow 
patterns without altering its statistical quantifications. It 
should be noted that the normalized Voronoï area pdfs of 
zero velocity points are calculated based on the PIV vector 
field with vector spacing of 8 pixels, effectively 364 µm, 
and improvement of the spatial resolution of the measure-
ments could improve the accuracy to the extracted flow 
patterns.

To summarize, the clustering of instantaneous turbu-
lent ‘zero velocity’ points, derived from raw and median 
filtered experimental data, is quantified by RDF and 
Voronoï analysis. For the quantifications with RDF, it 
seems that the RDF measurements of the clustering of 
the turbulent ‘zero velocity’ points are not affected much 
by the applied median filter on the images, although the 
application of the Median filter significantly alters the 
shape of the joint pdfs of the velocity invariants. Also, 
it is interesting that there is a fairly good spatial correla-
tion for cluster lengthscales larger than 10η between all 
the RDFs regardless of the filtering process. However, 
for the quantification with Voronoï analysis, the cluster-
ing behavior of the turbulent zero velocity points is found 
to be sensitive to the filtering techniques. There is no 
significant difference in terms of clustering magnitude 
compared to other data sets to distinguish the appropri-
ate Median filter window size. For consistency in quanti-
fying the magnitude of clustering with RDF and Voronoï 
analysis, the velocity field processed by Median filter with 
3 × 3 vector spacing window size, is considered the most 
appropriate for noise elimination in evaluating turbulent 
topological flow patterns. Therefore, the current analysis 
of the clustering behavior of zero velocity points can be 
used to evaluate suggestions that the clustering behavior 
of dispersed droplets by the flow turbulence is correlated 
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with the turbulent topological points (Chen et  al. 2006; 
Goto and Vassilicos 2006, 2008). This study is described 
in Lian (2014).

6  Conclusions

This paper evaluates a data processing approach to calcu-
late the topological characteristics of turbulent flow struc-
tures in homogeneous, isotropic turbulence without mean 
flow from velocity data measured by two-dimensional TR-
PIV. To identify the primary noise types presented in the 
experimental data, we added noise to the velocity field, 
according to Eq.  (14), to noise-free numerical data from 
the JHU open source database. We found the two quanti-
ties are sensitive to two types of noise. The tensor invari-
ants seem to be more sensitive to the Salt and Pepper noise, 
while the principle components to Gaussian noise. So the 
median filter and the Wiener filter were chosen to eliminate 
the Salt and Pepper noise and Gaussian noise, respectively. 
We evaluated the effects of both filters on the tensor invari-
ants and principle components obtained from experiments 
following the optimized noise filtering processes identified 
from the numerical data. The urms and other flow quantities 
are further analyzed to quantify the errors on the global 
flow kinetic energy level, homogeneity and isotropy due to 
the filtering process. Once satisfied with the induced fil-
tering errors, the statistical clustering behavior of the zero 
velocity points was evaluated to conclude the optimisation 
of the filtering method (a median filter with window size 
3 × 3 vector spacing) to extract zero velocity points from 
the TR-PIV measurements. The evaluation of the effects of 
noise through the DNS data set and the optimization of the 
digital filters allowed us to extend the digital filtering to 
additional quantities related to the experimental data. The 
main findings of this paper are summarized as follows.

1. A ‘noise’ model is established by adding Gaussian 
noise and Salt and Pepper noise to the velocity vector 
fields of the DNS velocity data of homogeneous and 
isotropic turbulence from the JHU database. The digi-
tal Wiener Filter and the median filter were applied 
to eliminate experimental noise. The Salt and Pepper 
noise is found to be the main noise source in the evalu-
ation of velocity invariants and topological character-
istics of turbulent flows. The Gaussian noise is found 
to be the dominating noise source influencing the esti-
mate of the rate-of-strain tensor.

2. With the velocity vector field restored by the Wiener 
filter used as the benchmark, the 4 proposed digital fil-
tering techniques (median filter 2 × 2, 3 × 3, 5 × 5 vec-
tor spacing and linear combination of Wiener filter and 

median filter 5 × 5 vector spacing) can recover the rate-
of-strain tensor and topological characteristics derived 
from velocity invariants with negligible modification 
on the turbulence global homogeneity and zero mean 
velocity. However, the application of the digital filter-
ing techniques causes reduction in the turbulent kinetic 
energy.

3. The clustering characteristics of the instantane-
ous turbulent ‘zero velocity’ points are quantified by 
RDF and Voronoï analysis. It was found that the RDF 
measurements of the clustering of the turbulent veloc-
ity saddle points are not affected much by the applied 
median filtering, while the Median filter de-noising 
process results in noticeable difference in the normal-
ized Voronoï area pdfs, when the window size of the 
median filter exceeds 3 × 3 vector spacing. Thus, 3 × 3 
median filter is found to be the appropriate filtering 
method of the measured velocity images to extract the 
statistical turbulent topological characteristics.
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