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complicated adaptive PIV algorithms optimizing interro-
gation window sizes and shapes based on seeding density, 
local flow gradients, and other criteria.

1  Introduction

The fundamental challenge to any PIV processing scheme 
is to select the optimal spatial resolution—mainly deter-
mined by interrogation window size and overlap factor—
for a given image quality and information density or signal-
to-noise ratio. In many cases, this is not uniform across the 
image or varying from image to image. Typically, one tries 
to find some compromise in interrogation window size and 
other processing parameters which work reasonably well 
everywhere. Instead, it would be advantageous to locally 
adapt the spatial resolution.

For this purpose, several adaptive PIV techniques have 
been developed taking into consideration local seeding 
densities, flow gradients, or physical constraints like walls, 
locally adjusting the interrogation window position, size, 
and shape (Scarano 2004; Theunissen et  al. 2007, 2008, 
2010; Wieneke and Pfeiffer 2010). These techniques have 
shown to reduce the systematic and random noise level sig-
nificantly, in particular close to object surfaces.

For time-resolved PIV (TR-PIV), one can (additionally) 
use the temporal information for noise reduction apply-
ing various multi-frame correlation techniques (Hain and 
Kähler 2007; Sciacchitano et al. 2012; Jeon et al. 2014; see 
also recent PIV Challenge: Kähler et al. 2016).

Once a velocity field has been obtained, various post-
processing noise reduction schemes can be applied, among 
them standard spatial top-hat or Gaussian smoothing filters, 
polynomial regression fits, or POD analysis (Raiola et  al. 
2014). For TR-PIV, more options are available, since the 
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noise is usually less correlated in time than in space. For 
example, Oxlade et al. (2012) apply a spectral white noise 
subtraction recovering the true velocity spectra. Vétel et al. 
(2011) use an optimal temporal Wiener filter with better 
results than convolution- or wavelet-based filters.

Other denoising approaches utilize physical constraints. 
In particular, for volumetric data and divergence-free 
incompressible flows, one can use the criterion of non-zero 
divergence for uncertainty quantification (Sciacchitano and 
Lynch 2015) as well as reducing the noise by making the 
flow field divergence-free (de Silva et al. 2013; Schiavazzi 
et  al. 2014; Azijli and Dwight 2015; Wang et  al. 2016). 
Atkinson et  al. (2014) estimate the noise of volumetric 
velocity data directly from the velocity fields and apply an 
appropriate spatial filter to achieve more accurate turbulent 
power spectra. For time-resolved volumetric data, one can 
apply Navier–Stokes or some simplified version as a regu-
larizer. For example, Schneiders et al. (2015) apply a time-
marching vortex-in-cell procedure to average multiple flow 
fields with more accurate results than retrieved with spatial/
temporal moving average and polynomial regression filters.

The main issue for any denoising scheme is to select 
the appropriate spatial or temporal filter kernel size, which 
should be as large as possible to average out the random 
noise and short enough not to reduce the amplitude of true 
flow fluctuations (truncation errors). With recent work on 
PIV uncertainty quantification (Charonko and Vlachos 
2013; Timmins et al. 2012; Sciacchitano et al. 2013; Wie-
neke 2015; Sciacchitano and Lynch 2015), it is now pos-
sible to estimate the uncertainty of each computed vector. 
This can help to guide any denoising scheme for optimal 
noise reduction while preserving the true flow fluctuations.

The anisotropic denoising filter described here is based 
on local polynomial approximation (LPA) with locally 
adaptive kernel size well known in the digital signal pro-
cessing community (e.g., Katkovnik 2005; Browne et  al. 
2007) for 1D- and 2D-data (images). While adaptive LPA 
estimates the local noise level from the residual between 
the fitted and the original data, direct knowledge of the PIV 
uncertainties is employed here to guide the size and shape 
of the final 2D filter kernel size. This anisotropic denoising 
scheme is finally validated using synthetic and experimen-
tal vector field data.

2 � Method

The denoising scheme described here is restricted to pla-
nar velocity fields with u, v, and possibly w components 
together with uncertainty values Uu, Uv, Uw on a 1-sigma 
level, i.e., the true velocity value utrue is expected to lie 
within u ± Uu with a probability of 68%. Denoising is done 
independently for each vector of the flow field.

At the beginning, for each vector component (u, v, and 
w), a second-order 2D-polynomial function is fitted to a 
5 ×  5 vector neighborhood around the center vector. The 
uncertainty of the vectors in the 5  ×  5 neighborhood is 
averaged and taken as a reference in the following. Vec-
tors just outside the center 5 × 5 region (white squares in 
Fig. 1) are tested if they should be added to the filter kernel. 
Vector a and, at the same time, vector d on the opposite will 
be added if both adjacent inner vectors b and c are part of 
the filter kernel, and if all components (u, v, w) of vectors a 
and d are within an uncertainty band around the fitted poly-
nomial function, as shown in Fig. 2.

If any of the conditions fails, then both vectors, a and 
d, will be discarded, and subsequently, all vectors further 
out in this direction are prevented to become part of the 
smoothing kernel. With such a symmetrical vector addi-
tion, the center of mass of the filter kernel remains at the 
center vector location for all kernel shapes. The resulting 
2D-array of valid vectors is then made more compact and 
regular by deleting vectors if they have ≤2 neighbors and 
adding vectors if they have ≥5 neighbors, even if they 
would be rejected otherwise.

The uncertainty band (Fig. 2) is given by ±S times the 
uncertainty (provided on a 1-sigma level), where S is a 
user-selected filter strength, as shown later typically set to 
around 2.5–3.5. A narrow band of ±1-sigma would be too 
tight, since with a probability of 32%, a vector falls out-
side this range preventing the growth of the filter kernel. 
The procedure stops when no more vectors are added or 
when a user-selected maximum kernel size is reached. At 
the end, the often quite irregular shape of the filter kernel 
is converted to a closest ellipse (Fig. 3). The difference in 
performance with and without ellipse fitting is only minor.

Then, LPA is executed on the vector field inside the filter 
kernel, and the center vector is replaced by the value of the 
polynomial function at the center location. Since the spatial 
derivatives of the flow field are readily available from the 
fitted polynomial function, they are stored, e.g., for subse-
quent vorticity or divergence computation.

Finally, the procedure computes a new uncertainty for 
each vector component using the uncertainty propagation 
rules outlined in Sciacchitano and Wieneke (2016). A sim-
plified version is used here by taking the reference uncer-
tainty divided by sqrt(Neff − 6), where Neff is the num-
ber of independent vectors in the final filter kernel and 6 
is the number of parameters (degrees of freedom) of the 
second-order 2D-polynomial function. Roughly, Neff is 
the total number of vectors in the filter kernel divided by 
the number of vectors within the size of the interrogation 
window. For example, with an interrogation window size 
of 32 ×  32 pixel and 75% overlap, there will be 16 vec-
tors within the window. If one would smooth over these 
16 vectors, there will be effectively very little reduction of 
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the uncertainty and noise, since the errors of all vectors are 
closely correlated.

It is also necessary to update the spatial resolution 
of the vector field, which is related to the spatial auto-
correlation coefficients between neighboring vectors. 
Due to variable filter size and shape, this is different for 
each vector in magnitude and direction, similar to the 
adaptive PIV techniques with varying interrogation win-
dow sizes and shapes. A fully correct treatment is com-
plicated and would require the storage of many addi-
tional correlation values for each vector for subsequent 

uncertainty propagation. Again, a simplified version is 
adopted here setting the spatial resolution to the aver-
age linear dimension of the filter kernel. It needs to 
be shown, if this is sufficient for accurate uncertainty 
quantification when the directional dependence of the 
effective spatial resolution becomes important, e.g., for 
the vorticity field.

The proposed denoising scheme takes typically a few 
seconds of processing time on a standard PC. It can easily 
be extended to volumetric data and to the time domain.

Fig. 1   Adding a new shell to 
the filter kernel

Fig. 2   Polynomial function computed around the center vector at 
x = 0 with data between −3 and +3 and extrapolated to ±4. Red vec-
tor at +4 is rejected, since it lies outside the gray uncertainty band Fig. 3   Final filter kernel (blue) is converted to an ellipse (gray) 

shown for every 13th vector
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3 � Synthetic data validation

The denoising scheme is first tested on a synthetic vec-
tor field with a wide range of spatial wavelengths L and 
signal-to-noise ratios (velocity dynamic range). The vec-
tor field contains 200 × 75 vectors with a grid spacing d 
of 4 pixel. The (true) flow field contains vortices of vari-
ous sizes with spatial wavelengths of 512 pixel on the left 
and 32 pixel on the right of the image with a constant 
(true) amplitude of 1 pixel (Fig.  4 top). Vortices consti-
tute a more challenging case than simple shear flows, 
where the filter kernel shape can be strongly elongated 
along the shear.

Any PIV algorithm has a finite spatial resolution equiv-
alent to a characteristic filter length Lsr reducing small-
scale fluctuations. Here, it is assumed that Lsr is 16 pixel, 
equivalent to 4 vectors, which is similar to using 16 × 16 
pixel interrogation windows with 75% overlap. The filter 

length Lsr as the inverse of the spatial resolution is defined 
here as the sum of the auto-correlation coefficients 
between the errors of neighboring vectors (Sciacchitano 
and Wieneke 2016). If PIV would be a simple single-pass 
linear top-hat filter averaging the displacement informa-
tion within an interrogation window of L × L pixel, then 
Lsr would be equal to L, as can be easily verified. The 
vector field is filtered here with a Gaussian filter func-
tion (∝exp(−x2/2σ2)) of equivalent filter length Lsr =  σ 
sqrt(4π). This leads to a significant reduction in ampli-
tude for small wavelengths, e.g., about 50% for L/Lsr = 2 
(Fig.  4 middle and bottom). The exact spatial frequency 
response depends on details of, e.g., the predictor–correc-
tor scheme of a multi-pass PIV algorithm. This smoothing 
is included to put the noise level and its reduction by the 
anisotropic denoising scheme in perspective to the una-
voidable amplitude reduction of small wavelengths due to 
the limited spatial resolution of the PIV algorithm itself.

Fig. 4   Synthetic vector field 
with constant fluctuation ampli-
tude (top) and after taking the 
finite spatial resolution of a PIV 
algorithm into account show-
ing u component (middle) and 
vorticity (bottom)
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Noise levels of 0–100% are added to each vector compo-
nent, again subject to the PIV spatial filtering, which leads 
to locally correlated noise components between neighbor-
ing vectors. This becomes important when applying locally 
confined averaging, where the noise is very little reduced, 
since it is locally correlated. Viewed another way, local 
averaging/denoising must be done over a kernel size larger 
than Lsr to become effective. The maximum filter kernel 
size is set to 41 × 41 vectors. Final computed kernel sizes 
are typically in the range of 5–15 vectors in each direction.

Figure 5 shows the u component with increasing noise 
level from top to bottom of the original vector field and 
after denoising with strength S of 1, 2, 2.5, 3, and 4 (from 
left to right). For zero noise level (top), the denoising 
scheme does not change the vector field apart of slightly 
decreasing the spatial resolution, i.e., increasing Lsr from 
16 to 19, due to the initial 5 ×  5 polynomial regression, 
which is always done. This is barely visible on the top-
right, where the amplitude of small-scale fluctuations is 
decreased slightly.

For low noise levels, the procedure accurately recovers 
the round shape of vortices for almost all wavelengths. 
Large-scale vortices with larger possible kernel sizes are 
recovered even at 100% noise level. For smaller wave-
lengths further to the right, the denoising procedure is 
able to reduce the noise as long as the true fluctuations 
are larger than the errors. Beyond that, the algorithm 
cannot distinguish between true and noisy fluctuations 

anymore. Here, given a strong enough filter, the vector 
field is simply averaged over large regions. The algorithm 
assumes that everything is noise (see bottom-right of the 
noise plot in Fig. 6). The optimal filter strength seems to 
be between 2.5 and 3.0, strong enough to eliminate noise 
over potentially large regions for larger wavelength while 
not smoothing over true fluctuations.

The performance of the denoising scheme is quanti-
fied in Fig.  7 plotting the local rms of the noise for a 
filter strength of S =  3 as a function of wavelength for 
the different noise levels of 0–100% (0–1 px). For larger 
wavelength L/Lsr  >  10, the noise is reduced by a factor 
of 2, up to a factor of 4 in some cases and larger wave-
lengths. For large noise levels >50%, only wavelengths 
L/Lsr  >  15 are recovered, which is not surprising, since 
even visually it is difficult to detect smaller vortices in 
the noisy vector field. Smaller wavelengths are simply 
smoothed-over as the algorithm is unable to distinguish 
between true vortices and noise. Therefore, the overall 
noise level is decreased, but hidden flow structures are 
also removed.

For the noise-free vector field, the error increases for 
small wavelengths (L/Lsr = 1–3) by about 5% of the true 
amplitude due to the 5 × 5 polynomial regression, which, 
as mentioned before, leads to 15% lower spatial resolu-
tion. Still, one has to keep in mind that for these wave-
lengths, the amplitude reduction due to the spatial filter-
ing effect of PIV is anyway above 50%.

Fig. 5   Original vector field and after denoising with strength S = 1, 2, 2.5, 3, and 4 from left to right. Noise level 0–100% from top to bottom. 
Color = u component
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The denoising scheme has been compared to a stand-
ard 2nd-order polynomial regression filter with a fixed 
kernel size of 5  ×  5 to 11  ×  11 vectors and a top-hat 
smoothing filter over 9 ×  9 vectors for the case of 20% 
(0.2 px) noise level (Fig.  8). For large wavelengths, the 
polynomial regression filter reduces the noise level with 

successively larger filter kernels. The top-hat 9 × 9 filter 
performs better than polynomial fit of 11 × 11, since it is 
roughly equivalent to a polynomial filter of 20 × 20 vec-
tors. For the intermediate range of L/Lsr between 2 and 7, 
the polynomial regression filter even increases the noise 
level, since the reduction of random noise is less than the 

Fig. 6   Original noise and after denoising (equal to Fig. 5 minus Fig. 4 middle) with strength S = 1, 2, 2.5, 3, and 4 from left to right. Noise level 
0–100% from top to bottom. Color = u component of noise

Fig. 7   Remaining noise level 
after denoising as a function of 
spatial wavelengths for different 
original noise levels of 0–1 px
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extra noise added due to increased truncation errors, i.e., 
smoothing the true flow fluctuations. Clearly, the aniso-
tropic denoising filter outperforms all other schemes due 

to locally adapting the kernel size to the wavelength of the 
true flow fluctuations.

4 � Experimental assessment

The denoising scheme is first tested on image 50 of PIV 
challenge 2003 case A (Stanislas et  al. 2005). Standard 
PIV processing with 16  ×  16 px window size reveals 
small-scale vortices inside the jet with a few remaining 
outliers even after vector validation and leaves a high 
noise level outside the jet (Fig. 9). It is not clear if some 
of the small-scale vortices are actually real or noise. 
Increasing the interrogation window size reduces the 
noise level, but, at the same time, smears out small-scale 
vortices leading to lower peak vorticity levels. The user 
has to choose some compromise, e.g., selecting 24 × 24 
or 32 × 32 pixel windows.

Figure  10 shows the result of the denoising scheme 
with a filter strength S of 3.5 and a maximum kernel 
size of 15 × 15 vectors. Compared to 32 × 32 windows 
without denoising, if using 24  ×  24 with denoising, 
one arrives at higher peak vorticity levels and smaller 

Fig. 8   Comparison of anisotropic denoising with the second-order 
polynomial regression filter with 5 × 5 to 11 × 11 vector kernel and 
9 × 9 top-hat smoothing filter. Original noise level = 0.2 pixel

Fig. 9   PIV Challenge 2003, 
case A, image 50 processed 
with interrogation window sizes 
of 16 × 16, 24 × 24, 32 × 32, 
and 48 × 48 pixel (from top-left 
to bottom-right) with 75% over-
lap. Color = vorticity (a.u.)
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resolved flow features. At the same time, the noise lev-
els in regions of low flow gradients outside the jet are 
strongly reduced, which would be otherwise only achiev-
able, e.g., with 48 × 48 or larger windows.

Another experimental example is a cut through a ring 
vortex in air (Fig.  11) with 24 ×  24 interrogation win-
dows and 75% overlap. Since the jet is mostly laminar, 
the small-scale granular structure of the vorticity pat-
tern is purely noise related. Denoising clearly reduces 
the noise level while preserving and highlighting the true 
flow structures.

Finally, time-resolved PIV data from a turbulent pipe 
flow (van Doorne and Westerweel 2007) are analyzed 
using the new spatial denoising technique and/or applying 
at each location a temporal polynomial regression filter 
of second order over 11 time steps. As shown in Fig. 12 
and in the associated movie in the supplementary data, 
with an interrogation window size of 32 × 32 pixel, the 
vector fields at each time step (top-left) are clearly quite 
noisy in space and flickering also over time. This quali-
tative judgement is based on the knowledge that here, 
small-scale spatial variations lack physical justification. 

Within the 2  ms between time steps and corresponding 
3–5 pixel displacement of particles, the temporal flicker-
ing is mostly due to noise.

After applying the anisotropic denoising scheme, the 
flow field (top-right) is much smoother spatially, but still 
flickering significantly over time. When applying the tem-
poral filter on the raw vector fields, the result is now tempo-
rally smooth over time at each spatial location, but still spa-
tially noisy (bottom-left). Applying both schemes (here first 
spatial denoising, then temporal filter, bottom-right), the 
result is finally spatially and temporally smooth with only 
small reduction in spatial and temporal resolution com-
pared to the raw vector fields. This indicates a significant 
reduction of the noise level, about equally by the temporal 
and spatial denoising scheme.

5 � Summary

A rather simple denoising scheme is presented as a post-
processing step on vector fields using the uncertainty 
value for each vector as a reference. Vectors will be 

Fig. 10   Denoising applied on 
vector fields with IW = 16 × 16 
(left) and 24 × 24 (right). 
S = 3.5

Fig. 11   Ring vortex processed 
with 24 × 24 windows and 
75% overlap without (left) and 
with denoising (right, S = 3.5). 
Seeding and PIV processing are 
only applied inside the vortex. 
Color = vorticity (a.u.)
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progressively added in all directions to the filter kernel if 
the velocity value is inside the uncertainty band around 
the locally fitted function. This is repeated until the true 
flow field can no longer be approximated by the second-
order polynomial function. The final shape and size of the 
filter kernel automatically adjusts to local flow gradients 
in an optimal way preserving true velocity fluctuations 
above the noise level.

This anisotropic denoising scheme is validated on syn-
thetic vector fields with varying spatial wavelengths and 
noise levels showing a significant increase of the velocity 
dynamic range for wavelengths about four times larger 
than the spatial resolution. For noise levels above 50%, 
the procedure is no longer able to distinguish between 
true flow fluctuations and noise except for large wave-
lengths of L/Lsr >10.

The procedure has been shown to work well for typi-
cal experimental flow fields. It can be easily extended to 
volumetric data and to the time domain.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license, and indicate if changes were 
made.
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