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This is crucial in, for example, the pulp and paper industry 
where not only do fibre suspensions alter turbulent quan-
tities, but the flowfield in many devices used in the paper 
making process are complex in nature (MacKenzie et  al. 
2014).

Methods such as ultrasonic doppler velocimetry (UDV) 
and electrical impedance tomography (EIT) have conven-
tionally been used for measuring the flowfield of opaque 
suspensions, whereas particle image velocimetry (PIV) 
and laser doppler velocimetry (LDV) are more commonly 
used for measuring the flowfield of transparent fluids. An 
advantage of MRV over other experimental techniques is 
that it can measure the full 3D velocity field in a few min-
utes for both transparent and opaque fluids (Caprihan and 
Fukushima 1990). The limitation of MRV is that in many 
cases computational fluid dynamics (CFD) simulations or 
PIV data are needed to provide details about the turbulent 
velocity fluctuations and Reynolds stresses (Elkins et  al. 
2009; Iaccarino and Elkins 2006). If MRV is to become 
a reliable method for measuring the flowfield of opaque 
suspensions at high Reynolds numbers, where conven-
tional methods are unsuitable, it is important to extend the 
capacity towards measuring turbulent quantities. In doing 
so, it should be shown that MRV can produce rms values 
and Reynolds shear stress that agree with direct numerical 
simulations (DNS) in a well-defined geometry. This paper 
details our efforts in utilising phase-contrast MRV to meas-
ure the variance and covariance components of the Reyn-
olds stress tensor for water in pipe flow. It will be shown 
that MRV provides reliable and accurate data in a large 
portion of the pipe. Works on turbulent flow in fibre sus-
pensions will follow.

Measurements of diffusion with magnetic resonance has 
a long history (Stejskal and Tanner 1965) and this abil-
ity can be used to quantify turbulence through turbulent 
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velocimetry is described. The method relies on flow-com-
pensated and flow-encoding protocols with the flow encod-
ing gradient normal to the slice. The experimental data is 
compared with direct numerical simulations (DNS), both 
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1 Introduction

Magnetic resonance velocimetry (MRV) has been gain-
ing popularity in engineering design due to its versatility 
in measuring laminar and turbulent quantities in complex 
geometries and opaque suspensions. In many engineering 
applications, measuring turbulent quantities enables design 
modifications to enhance production and reduce losses. 
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diffusion. There have been numerous investigations focus-
ing on deriving a method to measure the mean and rms 
component of velocity using MRV (Dyverfeldt et al. 2006; 
Gao and Gore 1991; Gatenby and Gore 1994; Li et  al. 
1994; Newling et al. 2004; Kuethe 1989). Here, the focus 
will be on methods where the rms value of the velocity is 
found by assuming turbulent diffusion to be much greater 
than the molecular self-diffusion of the moving spins. In 
doing so, turbulence can be modelled as the loss of the net 
magnetisation through intravoxel phase dispersion. Spins 
within a voxel which precess at a different phase will be 
incoherent to each other, reducing the magnitude of the 
phase-encoded image.

Depending on method, the rms value of velocity is cal-
culated by modelling the phase-variance for different time 
intervals, or by assuming a phase correlation to the first 
gradient magnetic moment (see Eq.  3). Both methods are 
required to assume a spin velocity distribution of a known 
form. The works of Seymour and Callaghan (1996), Sch-
even et al. (2005), Caprihan and Seymour (2000) and Jul-
lien and Lemonnier (2012) shows promise towards meas-
uring turbulent diffusivity where the velocity distribution 
follows a non-Gaussian behaviour, examples of which 
include the inner layer in fully turbulent pipe flow. By com-
paring the evolution of the normalised rms widths, Scheven 
et al. (2005) found that the second and third moments of the 
perturbed probability distribution for molecular displace-
ments could be found in terms of the measured moments 
from the original distribution. Protocols aiming at direct 
measurements of the velocity distribution has been demon-
strated to obtain good agreement with DNS results (Jullien 
and Lemonnier 2012).

The difficulty inherent in applying this type of analy-
sis in fully turbulent flows surrounds the inability to con-
trol the displacement field in regions where the velocity 
distribution is not Gaussian, largely a result of inadequate 
spatial resolution near the wall. Similar to Seymour and 
Callaghan (1996); Seymour et al. (2000), an effective diffu-
sivity can be found by limiting the dispersion coefficient to 
low q-value data, namely where the attenuation function is 
logarithmically linear with increasing q-values (i.e. Gauss-
ian approximation). In the work of Gao and Gore (1991), 
a velocity autocorrelation for the phase-variance and a 
Gaussian phase distribution was used to derive an expres-
sion for signal loss due to phase dispersion.

The more recent work of Dyverfeldt et  al. (2006) is 
similar as that of Gao and Gore (1991), however, they 
assume that a phase-contrast MRI signal in the presence 
of a first gradient magnetic moment is governed by the 
spin velocity distribution, magnetic field inhomogeneities 
and phase accumulation from the velocity field. With the 
use of two phase-contrast MRI scans, the effect of field 

inhomogeneities can be eliminated, and the rms of the 
velocity can be found. Both works use similar approaches 
towards measuring an rms value of velocity, the difference 
coming from the assumption that the correction for gradi-
ent amplitude duration, separation time, and rise time can-
cel when two successive scans, which differ in first gradient 
moment, are compared.

In this work, we adopt the method of Dyverfeldt et  al. 
(2006), a general form for measuring the rms component 
of velocity with phase-contrast MRV. In the implementa-
tion of 2D phase-contrast MRV available to us, the flow 
encoding vector is limited to only being defined normal to 
the slice orientation. When measuring quantities such as 
the Reynolds stresses, multiple encoding directions would 
be required to isolate the effects of spanwise perturbations 
in the flow. Without simultaneously encoding the stream-
wise and spanwise directions (Elkins et al. 2009) it is dif-
ficult to acquire quantitative information about the Reyn-
olds stresses due to coordinate system transforms and slice 
orientation. We discuss here the methodology required to 
measure the variance and covariance components of the 
Reynolds stress tensor in a straight pipe with a conventional 
2D phase-contrast MRV sequence. We discuss the reliabil-
ity of this method by comparing our results to DNS data for 
a range of Reynolds numbers.

2  Theory and methods

2.1  Theory

Magnetic resonance velocimetry (Caprihan and Fukushima 
1990; Gladden 1994) works from the basis that hydrogen 
nuclei are dipoles. In the presence of an external mag-
netic field, spin packets of hydrogen nuclei are represented 
by their net magnetisation vector, �, which is oriented 
along the direction of the magnetic field. When the spins 
are relaxed, hydrogen nuclei will align in the direction of 
the external magnetic field while precessing at the Larmor 
frequency, �0 = �|�|∕2�, in the direction of the external 
magnetic field. Here, � is the magnetic field strength, and 
� is the gyromagnetic ratio. The orientation of the spin 
magnetisation vector, �, can be altered by applying radio-
frequency (RF) pulses that match the Larmor frequency of 
the precessing spins. This effectively tilts the spins away 
from their original alignment, which upon turning off the 
RF-pulse, will induce relaxation of the spins towards the 
external magnetic field direction. This relaxation process is 
described by the Bloch (1946) equation

(1)d�

dt
= 𝛾� × � −

Mi

T2
î −

Mj

T2
ĵ −

Mk −M0

T1
k̂,
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where T1 and T2 are the spin–lattice and spin–spin relaxa-
tion times, respectively. If, for example, the external mag-
netic field direction is along k̂, then T1 describes how long 
it will take for the longitudinal component of � to recover 
to 63% of its original value (M0). T2 is the time it takes for 
the transverse component of � to lose 63% of its original 
value. As the magnetisation returns to its original align-
ment, a time varying signal is induced in the receiver coils. 
This signal is detected in the MR system and is the founda-
tion for magnetic resonance imaging (MRI) and MRV. Note 
that a short T2 relaxation time, and a long T1 relaxation 
time would result in a reduction in the signal intensity at 
shorter times.

To generate 2D images, spatially varying magnetic field 
gradients are used to encode the phase and frequency of the 
moving spins. The spins will accumulate phase according 
to

where �0 is the phase accumulation due to magnetic field 
inhomogeneities, � is the magnetic field gradient strength, 
and � is the position. The Larmor frequency of the spins 
will change according to � = �(|�| +� ⋅ �)∕2�. If spins 
are moving at a velocity parallel to a magnetic field gradi-
ent, they will acquire a phase shift which is proportional to 
their velocity �. The total phase accumulation of a moving 
spin can then be written as

where, �
�
 and �

�
 are the zeroth and first order gradient 

magnetic moments, respectively. Conventionally, bipolar 
flow encoding gradients are used to isolate the contribu-
tion of velocity on the total phase accumulation of moving 
spins. Since the accumulation of phase from static spins is 
independent of gradient polarity, the velocity of the moving 
spins can be calculated from the net phase shift between the 
bipolar gradients. The velocity can then be directly calcu-
lated by

where,

(2)� = �0 + � ∫
t

0

�(t�) ⋅ �dt�,

(3)

�(�, t) = �0 + � ⋅ � ∫
t

0

�(t�)dt�

⏟⏞⏞⏞⏟⏞⏞⏞⏟

�0

+ � ⋅ �∫
t

0

�(t�) ⋅ t�dt�

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�1

(4)u
��

= Δ�∕Δ�
�

(5)�
�
= � ∫

t

0

�(t�) ⋅ t�dt�.

2.2  Turbulence MRV measurements

2.2.1  Velocity variance in the direction of the slice

In MRV, intravoxel phase-dispersion within a spin packet 
reduces the amplitude of the acquired signal from the MR 
system, which in turn can be modelled as an rms value 
in velocity. In this work, the method of Dyverfeldt et al. 
(2006) was adopted, which first starts with considering 
the signal S(�

�
) within a voxel for given flow and encod-

ing parameters as

where s(�) is the spin velocity distribution, defined in this 
work to be Gaussian, namely as

where � is the standard deviation. Equation  6 shows that 
for phase-contrast MRV, the signal acquired from the MR 
system within a voxel is governed by magnetic field inho-
mogeneities and intravoxel phase accumulation. Previous 
works (Dyverfeldt et al. 2006; Gao and Gore 1991) found 
that if a velocity distribution is assumed, such as the Gauss-
ian distribution shown in Eq. 7, then S(�

�
) = g(urms). Sub-

stituting Eq. 7 into Eq. 6 results in

By combining the results of two scans with different first 
gradient moments, the effect of magnetic field inhomo-
geneities can be eliminated. Since the variant term, �2, is 
located in the real part of the exponent, the magnitude por-
tion of S(�

�
) gives

The flow encoding vector can be defined to measure 
the velocity in any direction on a 3D cartesian coor-
dinate system. If the encoding direction is defined as: 
� = xî + yĵ + zk̂, where k̂ is along the streamwise direc-
tion z,  and ĵ and î are along the spanwise directions y and 
x,   respectively, then Fig.  1 shows the resulting slice ori-
entation for flow encoding vectors �

�
= 0î + 0ĵ + 1k̂ and 

�
�
=
√
2∕2î + 0ĵ +

√
2∕2k̂ (remember that our flow encod-

ing gradient can only be normal to the slice).
The tilting of the orientation of the slice to flow 

encode a straight pipe along a direction in the îk̂ or ĵk̂-
plane results in an elliptic image as shown in Fig. 1. With 

(6)
S(�

�
) = f (�)ei�0

⏟⏟⏟
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⋅∫V

s(�)e−i��⋅�d�
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extrinsic matrix rotations the coordinate system defined 
with �

�
 (i.e. normal to the streamwise direction) can be 

derived from �
�
, and the Reynolds stress tensor can thus 

be computed using the measured velocity variances from 
multiple encoding directions.

2.2.2  Reynolds stresses

The method adopted here for determining the Reynolds 
stresses was originally used for hot-wire anemometry or 
single probe LDV measurements (e.g. Inasawa et al. 2003), 
and has been extended in this work to account for the use of 
multiple flow encoding directions. To compare the results 
obtained from MRV to DNS, a relationship between the 
variance of the measured velocity, flow encoded in a Car-
tesian system, to the Reynolds stress tensor in cylindrical 
coordinates can be achieved by decomposing the measured 
velocity variance to the averaged variance and covariance 

components of the stress tensor. Table  1 summarises the 
flow encoding vector directions and the resulting variance 
and covariance components found from selectively decom-
posing lines from the 2D images.

To exemplify Table 1, the instantaneous velocity decom-
position for a flow encoding vector � throughout the cross-
section of the pipe is detailed. The tangential position 
within the pipe is defined as

where y and x define the position of a voxel on the Carte-
sian coordinate system. The instantaneous measured veloc-
ity for a flow encoding vector � can then be shown to be

where uz, u� , and ur are the fluctuating components of 
velocity, and eî and ek̂ are the components of the encod-
ing vector as described in Table 1. A relationship between 
the variance of the measured velocity, ⟨u2

M
⟩, and the Reyn-

olds stress components can be found by expanding Eq. 11, 
squaring the result and averaging to get

To calculate the variance and covariance components in 
Eq. 12 from the measured MRV data ⟨u2

M
⟩, the set of linear 

equations, defined by the flow encoding vectors in the îk̂
-plane and k̂-plane (i.e. ⟨u2

z
⟩) shown in Table 1, are solved 

using a least-squares fit. If a line of data along Φo = 0 is 
selected, the linear system to be solved can be expressed as

where,

If a line of data is selected along Φo = �, the terms ⟨u2
r
⟩ 

and ⟨uzur⟩ in Eq. 13 would be replaced with ⟨u2
�
⟩ and ⟨uzu�⟩, 

respectively. In this work, the covariant turbulent stresses 
⟨uzu�⟩ and ⟨uru�⟩ were not investigated.

2.3  Extracting measured data from DNS

In order for the data obtained from Eq. 13 to be accurate, 
the artefacts induced by spatial averaging in combination 

(10)Φ = tan−1
(y
x

)
,

(11)uM(x, y) = [ek̂uz + eî(u𝜃 sinΦ + ur cosΦ)],

(12)

⟨u2
M
⟩ = e2

k̂
⟨u2

z
⟩ + e2

î
⟨u2

𝜃
⟩ sin2 Φ + e2

î
⟨u2

r
⟩ cos2 Φ

+ 2eîek̂⟨uzur⟩ cosΦ + 2eîek̂⟨uzu𝜃⟩ sinΦ
+ 2e2

î
⟨u

𝜃
ur⟩ cosΦ sinΦ.

(13)
N�
n=1

A(�) ⋅

⎡
⎢⎢⎢⎣

⟨u2
z
⟩

⟨u2
r
⟩

2⟨u
z
u
r
⟩

⎤
⎥⎥⎥⎦
=

N�
n=1

⟨u2
M
⟩
n

⎡
⎢⎢⎢⎣

e
2

k̂

e
2

î
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.

Fig. 1  Example of slice orientation with two different flow encoding 
vectors. �

�
= 0î + 0ĵ + 1k̂ and �

�
=
√
2∕2î + 0ĵ +

√
2∕2k̂

Table 1  Summary of flow encoding directions used to calculate the 
Reynolds stresses

The encoding vector is defined as: � = xî + yĵ + zk̂, where k̂ is along 
the streamwise direction. The selected angle, defined as “Φo”, is the 
angle about the pipe’s origin a line of measured velocity variance 
data is decomposed. The “components” indicates which components 
of the Reynolds stress tensor, in cylindrical coordinates, the measured 
variance decomposes into along the selected line

� î ĵ k̂ Φo Components

�1 1 0 0 �

2
⟨u2

�
⟩

�2 0 1 0 0 ⟨u2
�
⟩

�3 0 0 1 [0 2�] ⟨u2
z
⟩

±�4 ± sin
�

36
0 cos

�

36
0 ⟨uzur⟩, ⟨u2r ⟩, ⟨u2z ⟩ 

±�5 ± sin
�

18
0 cos

�

18
0 ⟨uzur⟩, ⟨u2r ⟩, ⟨u2z ⟩ 

±�6 ± sin
�

12
0 cos

�

12
0 ⟨uzur⟩, ⟨u2r ⟩, ⟨u2z ⟩ 

±�7 ± sin
�

9
0 cos

�

9
0 ⟨uzur⟩, ⟨u2r ⟩, ⟨u2z ⟩ 

±�8 ± sin
�

6
0 cos

�

6
0 ⟨uzur⟩, ⟨u2r ⟩, ⟨u2z ⟩ 

±�9 ± sin
�

4
0 cos

�

4
0 ⟨uzur⟩, ⟨u2r ⟩, ⟨u2z ⟩ 
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with tilting of the slice must be limited. Data from two pub-
lished DNS studies (Ahn et al. 2015; Khoury et al. 2013) is 
used to evaluate these effects. First, a flowfield of the meas-
ured quantities in Eq. 11 for multiple flow encoding vectors 
is created. An example of the velocity variance, ⟨u2

M
⟩1∕2 is 

shown in Fig.  2. As a comparison, the velocity variance 
measured directly from MRV with an identical flow encod-
ing vector is shown. It can be seen that qualitatively DNS 
and MRI agree well, where both exhibit the same asymmet-
ric variance over the cross-section of the pipe. The asym-
metry is a result of slice obliqueness and averaging along 
the slice thickness direction.

Using elemental matrix rotations, the 2D field of ⟨u2
M
⟩ 

from DNS was rotated such that the xy-plane is normal to a 
defined flow encoding vector. An illustration of the rotation 
is shown in Fig. 3. To investigate the effect of slice thick-
ness and averaging, the variance of the measured quantity 
⟨u2

M
⟩ in the DNS was averaged normal to the plane, similar 

to the operation of the MRI. This can be expressed as

where x′
c
 and y′

c
 are the coordinates along the centre of the 

slice, and h(2�) is the number of positions along z′ that 
were averaged. For all numerical simulations, Δz� was set 
to Δy�.

The DNS data was interpolated to match the MRI grid in 
the x′y′-plane by averaging according to

where FOV is the MRI’s field-of-view, and IPRy is the 
y-component of the MRI’s in-plan matrix resolution (see 

(14)⟨u2
M
⟩(x�

c
, y�

c
) =

1

h(2�)

z�=��
z�=−�

⟨u2
M
⟩(x�

c
, y�

c
, z�),

Δy� =
FOV

IPRy

Δx� =
Δy�

ek̂
,

Sect.  2.4). The spatially matched DNS data can then be 
rotated back into the xy-plane by

where z is zero ∀ (x, y). The variance and covariance com-
ponents are finally calculated using Eq. 13. Note that a lin-
ear interpolation along Φo was used to match the spatial 
resolution of the rotated data to that acquired with ek̂ = 1.

2.4  MR system

All of the experiments in this work were performed on a 
1T MR system (Aspect Imaging, Shoham, Israel) with 
a 30  G/cm peak gradient strength. The MR system com-
poses of 3 gradient coils and 1 radio frequency coil. Data 
was collected using a variety of flow encoding directions 
where the field-of-view (FOV) ranged from 38 to 56 mm, 
depending on the orientation of the slice. All measurements 
were made with water with no contrast agent. The T1 and 
T2 relaxation times are assumed to be approximately 4 and 
2 s, respectively. The in-plane matrix resolution (IPR) was 
chosen to be 128 × 128 pixels. The PC-MRV sequence, 

⎡⎢⎢⎣

x

y

z

⎤⎥⎥⎦
=

⎡⎢⎢⎣

ek̂ 0 eî
0 1 0

−eî 0 ek̂

⎤⎥⎥⎦

−1⎡⎢⎢⎣

x�
c

y�
c

z�
c

⎤⎥⎥⎦
,

Fig. 2  Measured rms ⟨u2
M
⟩1∕2 normalised to the centreline veloc-

ity from DNS (left) data at Re
�
= 360 and MRI data (right) at 

Re
�
= 321. The measured velocity variance ⟨u2

M
⟩ was calculated 

for DNS using Eq.  12 with a flow encoding vector defined as: 
�9 =

√
2∕2î + 0ĵ +

√
2∕2k̂, whereas the MRI was directly measured 

with the flow encoding vector �9

Fig. 3  Illustration of coordinate rotation. x′ and z′ denote the rotated 
coordinate system, where ±� is 1/2 of the slice thickness in front of or 
behind the centre of the slice. Similarly to the MRI, the data is aver-
aged normal to the rotated coordinate system, along z′
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shown in Fig. 4, was set with a slice thickness of 5 mm or 
Dpipe∕7 and a repetition time (TR) defined as either 10 ms 
for Re

�
≤ 321 or 6.1 ms for Re

�
≥ 597. The echo time (TE) 

for all Reynolds numbers was 3 ms and the flip angle was 
30◦. Note that in this work, Re

�
= �Dpipeu�∕�, where u

�
 is 

the friction velocity, found experimentally via the pressure 
gradient relation �u2

�
= �w = Dpipe|dP∕dz|∕4. Details on the 

measurements can be found in Sect.  2.5. The density and 
viscosity of water, � and � respectively, where used for all 
calculations.

To increase the signal-to-noise ratio, five signal acquisi-
tions, or combined images, were prescribed for each exper-
iment where, depending on Reynolds number (see Table 2), 
between 25 and 120 experiments were repeated. With a 
TR time of 10  ms the total scan time for 25 experiments 
at one bipolar gradient amplitude was 6.2 min. The veloc-
ity encode (VENC) for measuring the mean component of 
flow was set such that the maximum velocity in the phase-
unwrapped image was always less than the VENC. The 
VENC defined for the turbulent stress measurements was 
chosen to be 15% of the velocity encode used to measure 
the mean component of flow at the same Re

�
. That particu-

lar value was chosen because the DNS data showed that no 
variant or covariant rms components exceeded 14% of the 
centreline velocity, therefore, the resolution in phase vari-
ance was increased by choosing a VENC to be 15% of what 
was used to measure the mean flow.

2.5  Flow loop

A centrifugal pump (Flygt model no. 040-6716260) pro-
vided flow, ranging from 0.11 to 2.5  l/s. The volumetric 
flow rate was measured using a Krohne aquaflux 070 flow-
meter and the pressure gradient was measured using a Fuji 
electric FCX-AII differential pressure transducer. Both the 
flow meter and the differential pressure transducer were 
connected to a NI-9205 DAQ device for data logging. Flow 
exits the pump through approximately 10  m of flexible 

5 cm I.D. tubing, before splitting into two 5 cm I.D. PVC 
pipes. The split flow enters a single 5 cm I.D. PVC with a 
90◦ bend before constricting to the 3.5 cm I.D. acrylic test 
section. The MRV is located more than 140 pipe diameters 
from the constriction.

Figure  5 shows the friction factor data for a range of 
Reynolds numbers measured in the test rig. It can be seen 
that a transition from laminar flow occurs near Re ≈ 2000, 
where the data agrees well to the Colebrook friction factor 
line (Colebrook and White 1936), with an assumed rough-
ness height of 1.6 μm, from Re = 4000 to 10,000. Note that 
the Reynolds number was experimentally calculated as 
Re = 4�Qflow∕��Dpipe, where Qflow is the volumetric flow 
rate measured from the Krohne aquaflux flowmeter. The 
data suggests that the experimental rig agrees with the typi-
cal range for transition from laminar to turbulent flow. The 

Fig. 4  The 2D PC MRV sequence used to measure the mean flow 
and turbulent quantities

Fig. 5  Friction factor vs. Reynolds number curve measured in the 
test rig

Table 2  Summary of experiments

Re u
�
 (cm/s) Re

�
# Exp. Symbol

4111 0.9 160 25

10,195 1.8 321 25

20,136 3.4 597 30

32,600 5.3 922 40

40,166 6.4 1115 45

60,401 9.1 1600 60

69,185 10.4 1827 80

90,200 13.0 2283 120
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position of the differential pressure transducer was found 
to have no effect on the measured friction factor, indicating 
the flow is fully developed for all Reynolds numbers within 
the MRI test section.

3  Results

The results presented here are broken into two sections: 
evaluation of the errors inherent in the MRI measurements 
by utilisation of the DNS data, and results from the MRI. 
The evaluation of the error was made for Re

�
= 180, 360, 

550, 1000, and 3000, whereas eight Reynolds numbers 
were measured using MRV. A summary of the measure-
ments can be found in Table 2.

3.1  Evaluation of errors in the measurements

The error evaluation using DNS data is used to determine 
the optimal combination of encoding vectors to minimize 
the effect of spatial averaging along the rotated streamwise 
direction, z′, and secondly, the effect of slice thickness on 
the deviation from the un-averaged ⟨uzur⟩ and ⟨urur⟩ com-
ponents. Nine pairs of encoding vectors were considered, 
ranging from

to

in increments of �∕36 (see Table  1). The covariance and 
variance components, ⟨uzur⟩ and ⟨urur⟩, were calculated 
using Eq. 13 for multiple combinations of encoding pairs. 
Figure 6 shows the L2-norm of ⟨uzur⟩ and ⟨urur⟩, normal-
ised to the streamwise centreline velocity U∞, for every 
combination of flow encoding vector pairs. This can be 
expressed as, for example,

In Eq.  15 the difference in the covariance component 
⟨uzur⟩ is defined as,

where ⟨uzur⟩measured is obtained by averaging DNS data 
and is a function of N. Note that r̄ in Eq.  15 is the non-
dimensional radius and N is the number of encoding pairs 
ranging from 1 to 9. The L2-norm here is used as a quan-
titative measure of the deviation from the original DNS 

�
�
= ± sin

𝜋

36
î + 0ĵ + cos

𝜋

36
k̂

�
�
= ± sin

𝜋

4
î + 0ĵ + cos

𝜋

4
k̂,

(15)�f2(uzur)�(N) =
�∑r̄=1

r̄=0
�Δ⟨uzur⟩(r̄)�

� 1

2

U∞

.

Δ⟨uzur⟩ = ⟨uzur⟩measured − ⟨uzur⟩DNS,

data due to spatial averaging of the MRV for each combi-
nation of encoding vectors. It can be seen from Fig. 6 that 
the L2-norm for the value of ⟨uzur⟩ is always less than 3% 
of U∞, regardless of the number of encoding pairs consid-
ered in Eq.  13. The L2-norm in the rms value of ⟨urur⟩, 
however, was found to deviate up to 43% of U∞ if only 
±�9 = ± sin

𝜋

4
î + 0ĵ + cos

𝜋

4
k̂ was used. This is a result of 

the gradient in the rms values along z′, which increases 
with decreasing size of the outer layer (i.e. (1 − r)+ > 50) 
or Re

�
. Note that (1 − r)+ is the distance from the wall 

measured in viscous lengths, calculated only with DNS as 
(1 − r)+ = u

�
(R − r)∕�.

In Fig.  7 the effect of slice thickness is shown in the 
diagnostic plot for Re

�
= 180 and 1000. The result of 

only spatially condensing the data to match the resolution 
of the MRI (refer to Sect.  2.3) is illustrated with 2� = 0, 
where it can be seen that �Δ⟨uzur⟩1∕2� and �Δ⟨urur⟩1∕2� 
for Re

�
= 1000 is greater than with Re

�
= 180 near 

U∕U∞ = 0.65. This correlates well to (1 − r)+ = 50 or 
r̄ = 0.95 for Re

�
= 1000, which effectively means that the 

MRI will likely be unable to measure beyond the peak in 
⟨uzuz⟩ for high Reynolds number flows purely due to spa-
tial resolution. Increasing the slice thickness to 2� = D∕7 
and 2D/7,  it can be seen that the effect of averaging along 
z′ resulted in Δ⟨uzur⟩1∕2 values always below 1% of U∞ for 
either Re

�
 equal to 180 or 1000 in the outer layer.

The most profound effect of the slice thickness is on the 
radial variance ⟨urur⟩ for Re

�
= 180, where �Δ⟨urur⟩1∕2� 

Fig. 6  L2-norm of the variance and covariance turbulent stress 
components from DNS data at Re

�
= 550 as a function of number 

of velocity encode pairs, N,   used in Eq. 13. The slice thickness for 
this case was defined as 2� = D∕7. The circles show the resulting 
L2-norm when using a random combination of flow encoding vec-
tor pairs, whereas the square markers show the optimal combination 
of encoding pairs. The light green square is the combination which 
minimizes the L2-norm in ⟨urur⟩, whereas the blue square shows the 
combination which minimizes the L2-norm in ⟨uzur⟩
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varied between 2 and 8% of U∞ within U∕U∞ = 0.8 and 
0.6, respectively. As mentioned, this is a result of the outer 
layer starting at r̄ = 0.72 or U∕U∞ = 0.83. The radial 
variance as well diverged from zero near (1 − r)+ = 50 or 
U∕U∞ ≈ 0.65 for Re

�
= 1000. The error in both ⟨uzur⟩ and 

⟨urur⟩ near U∕U∞ = 1 was found to exist for all Reynolds 
numbers, and is a result of the steep gradient in all rms 
components within U∕U∞ ∈ (0.92, 0.96).

3.2  MRV results

The experimental rig used for this work is primarily used 
for analysing multiphase cellulose fibre suspension flows, 
and as a result does not contain a settling chamber to 
remove swirl from pipe bends and pumping, or oscillations 
from connections in the piping system. This is because fibre 

suspensions tend to flocculate and clog settling chambers. 
Upon measuring the mean tangential velocity profile it was 
found that the flow of water exhibited relatively high mag-
nitudes of swirl. Figure 8 shows the magnitude of the swirl 
measured from the MRI in a format similar to the diag-
nostic plot. A swirl number was defined as, S = U

�,w∕U∞, 
where U

�,w is the maximum swirl component measured 
nearest to the wall. Conventionally, a swirl number is used 
for rotating pipe flows, however, it has been adopted in this 
work to account for the effects of the swirl on the mean 
streamwise velocity component. Of the Reynolds numbers 
investigated in this work, it was found that the swirl num-
ber ranged from 0.1 to 0.7. This indicates that near the wall 
there is shear layer from the swirling component, leading 
to an increase in the friction velocity at lower bulk veloci-
ties. To account for the swirl when comparing the rms 
values measured from MRV to DNS, a scaling factor was 
introduced on the centreline velocity measured from the 
MRI. This scaling is justified with the work of Örlü and 
Alfredsson (2008), who studied the mean and rms of the 
streamwise component in a swirling jet emanating from a 
fully developed axially rotating pipe flow. It was found that 
a rotating pipe of swirl number 0.5 reduced the centreline 
velocity by almost 12% at the pipe exit, whereas the rms 
component was unaffected.

We adopt the outer layer scaling law proposed by Ober-
lack (1999) for a rotating pipe flow, which can be expressed 
as

(16)
U∞ − Uz

u
�

= �

(
U

�,w

u
�

)(
r

R

)�

,

Fig. 7  DNS results showing the effect of averaging along z′ for 
Re

�
 equal to 180 and 1000. The data is plotted in a manner similar 

to the diagnostic plot, where Δ⟨uzur⟩
1

2 is the difference between the 
corrected rms value of the variance or covariance stress, using the 
method described in Sect. 2.3, and the original DNS rms values. The 
corrected rms values were calculated using all nine encoding vector 
pairs

Fig. 8  Local swirl measured with MRV. The normalised swirl is 
plotted against the mean flowfield to highlight the intensity of the 
swirl relative to the streamwise velocity. See Table 2 for the marker 
definitions
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where � is a function of the velocity ratio and � is a con-
stant. Since the form of � is unknown, and the swirl cannot 
be controlled for a given Re

�
, a first order empirical swirl-

correction for U∞ was used. Assuming that � = 1 and � is a 
non-uniform expansion, chosen to be

with limits,

Substituting � and � into Eq. 16 and rearranging yields

For simplicity, the corrected centreline velocity will be 
defined as

Figure 9 compares the MRV data in the diagnostic plot, 
with and without scaling in U∞, to DNS. It can be seen that 
without the scaling, the normalised rms values deviate fur-
ther from the DNS data for Reynolds numbers which dis-
play strong swirl (e.g. Re

�
= 160). Applying the swirl cor-

rection to the rms value improves the agreement to DNS for 
Re

�
≥ 321, however, the correlation is still limited to either 

the resolution of the MRI, or the onset of the viscous wall 
region, (1 − r)+ < 50. It must be noted that we make no 
attempt to model the swirl in either the viscous wall region, 
or the outer layer. It is assumed that the effect of the swirl-
ing component on the distribution of the mean flow is neg-
ligible in the outer layer, and that the swirl correction fails 
for Re

�
= 160 and 2283 as a result of dU

�
∕dr being highly 

non-linear in the outer layer.
To establish the effect of encoding angles on the calcu-

lated variance and covariance components from Eq. 13, the 
L2-norm was calculated for all possible combinations of 
encoding pairs ranging from �4 to �9. Figure 10 presents the 
minimum L2-norm for each Reynolds number considered 
in this work, compared against DNS data at an Re

�
 closest 

to that measured with MRI. It can be seen that, depending 
on encoding angles, the L2-norm of ⟨uzur⟩ was below 0.06 
for all Reynolds numbers. The encoding angles which mini-
mised the L2-norm for three Reynolds numbers, Re

�
= 321, 

1115, and 1827 are highlighted. It was found that ±45◦ or 
±�∕4 was a common encoding pair between the Reynolds 
numbers shown in Fig.  10. It appears that the encoding 

� = 1 − �

U
�,w

u
�

where, � =
u
�

U∞

(
1 +

U
�,w

U∞

) ,

� → 1 as
U

�,w

u
�

→ 0 and,

� → 0 as
U∞

U
�,w

→ 0.

U∞

(
1 +

U
�,w

U∞

)(
1 −

Uz

U∞

)
= u

�

(
r

R

)
.

Û∞ = U∞(1 + 𝜉) where, 𝜉 =
U

𝜃,w

U∞

.

Fig. 9  Diagnostic plot of the streamwise rms component ⟨uzuz⟩1∕2 
with (middle) and without (top) scaling in U∞. The solid lines are 
DNS data for Re

�
= 180, 360, 550, 1000, and 3000 whereas the 

dashed lines containing markers are the MRI data. The filled stars 
markers indicate where (1 − r)+ = 50 and the filled diamonds mark-
ers indicate where r̄ = 1–10 Δy�∕Dpipe (i.e. to highlight to resolution 
limitation of the MRI). The scaling factor � is zero for all DNS data 
and between 0.1 and 0.7 for the MRI data. The bottom figure high-
lights the agreement to DNS outside the region of uncertainty for the 
experimental data obtained at Re

�
= 321–1115. Refer to Table 2 for 

the summary of experiments
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vector �9 gives leading order accuracy for the covari-
ance component, where higher order accuracy is achieved 
by acquiring data at encoding angles which approach the 
direct measurement of the streamwise variance (i.e. �3).

The L2-norm of the radial variance was found to 
range between 0.18 and 0.46 for Re

�
= 160–2283. It was 

found that out of all possible combinations, the minimum 
L2-norm was acquired with only �9. This is not surprising 
considering that an encoding angle of 90◦ or �∕2 would 
directly measure the radial variance, however, only at the 
centre of the pipe. Based upon the corrected DNS, measur-
ing the radial variance will be a challenge as steep encod-
ing angles result in increased error but approach a direct 
measurement of the radial variance as eî → 1. A reduction 
in slice thickness would undoubtedly reduce the averaging 
effects, but decreases the signal-to-noise ratio. It also must 
be noted that the effects of the swirl on the radial variance 
are not quantified in this work, which may well be contrib-
uting to the divergence from DNS. Limiting the swirl and 
optimising the MR measurement is required before a quan-
titative analysis on ⟨urur⟩ is possible.

Figure 11 presents the DNS and MRV (see Table 2 for 
marker summary) covariance rms component in the diag-
nostic format for all the Reynolds numbers considered in 
this work. The data shown was calculated using the encod-
ing angles which minimised the L2-norm, the values of 
which can be seen in Fig.  10. The MRV data measured 
at Re

�
= 321 and 597 (top figure) was found to agree to 

DNS results at Re
�
= 360 (green) and 550 (red), respec-

tively. The middle plot in Fig.  11 shows good agreement 

for Re
�
= 922 and 1115 when compared to DNS acquired 

at 1000. The normalised covariance measured from MRI 
at Re

�
= 1600 is slightly discontinuous when compared 

to DNS near U∕U∞ = 0.95, a possible result of the cor-
rection factor failing to account for the swirl. Similarly, 
Fig. 11 (bottom) indicates that the swirl correction factor � 
failed for Re

�
= 180, 1827, and 2283. The covariance rms 

measured at Re
�
= 2283 was significantly lower than the 

DNS data both with and without the swirl correction fac-
tor, an analogous result to the streamwise variance shown 
in Fig. 9.

Figure 12 presents the radial distribution of the normal-
ised turbulent stress for the MRV cases with minimal swirl. 
The turbulent stress and position were defined as

where u
�
 is the friction velocity determined experimentally 

from the axial pressure gradient measured along the test 
section. The MRV results are in excelled agreement to the 
corrected DNS where the discrepancies are largely a result 
of the uncertainty in wall position. To overcome this uncer-
tainty, it is suggested to diagnose turbulent stress data when 
using titled slices in the format shown in Figs. 9 and 11.

4  Conclusions

A method for measuring the turbulent stresses using phase-
contrast magnetic resonance velocimetry with the flow 
encoding gradient normal to the slice has been detailed. 
Data from DNS was used to quantify the effects of spa-
tial averaging from the MRI, where it was found that slice 
thickness and encoding angle had a much more profound 
effect on the radial variance rather than the covariance 
component. Results from MRV were presented in a diag-
nostic format for the streamwise variance and a covariance 
component of the turbulent stress tensor. It was found that 
the streamwise variance agreed well to DNS once a correc-
tion factor was applied to account for the swirl within the 
test section. The swirl is a deficiency in the flow loop since 
it is optimised to handle suspensions, not to create a perfect 
single phase flow.

The covariance rms ⟨uzur⟩1∕2 calculated from the MRV 
data was in good agreement to DNS for Reynolds numbers 
with minimal swirl without any corrections. The discrep-
ancies between DNS and MRV measurements are likely a 
result of the additional shear caused by the swirl. Quantify-
ing the angular and axial momentum along the test section 
would likely rectify swirl effects, however, is outside the 
scope of this work.

�
+
T
=

⟨uzur⟩
u2
�

,

Fig. 10  Minimum L2-norm of the variance and covariance turbulent 
stress components from MRI data. The L2-norm was calculated using 
Eq. 15 where Δ⟨uiuj⟩ = ⟨uiuj⟩MRI − ⟨uiuj⟩DNS. The DNS data which 
was used to compare against the MRI data was chosen such that the 
difference in Re

�
 was at a minimum. Recall that the MRV data is 

compared against DNS acquired at Re
�
= 180, 360, 550, 1000, and 

3000. The encoding vector arrows are described in Table 1
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The use of tilted slices was found to be effective in 
measuring the covariance component ⟨uzur⟩ and the stream-
wise variance of the turbulent stress tensor for r∕R < 0.75 

with phase-contrast MRV. Excellent agreement with DNS 
was obtained in this region. Whether

A particularly interesting application for this method 
will be measurements in opaque suspensions, where turbu-
lent stress data is crucial for modelling but hard to obtain 
with optical or intrusive methods.
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