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Abstract Particle tracking velocimetry methods (PTV)

have a great potential to enhance the spatial resolution

compared to spatial correlation-based methods (PIV). In

addition, they are not biased due to inhomogeneous seeding

concentration or in-plane and out-of-plane gradients so that

the measurement precision can be increased as well. The

possibility to simultaneously measure the velocity with the

temperature, ph-value, or pressure of the flow at the par-

ticle location by means of fluorescent particles is another

advantage of PTV. However, at high seeding concentra-

tions, the reliable particle pairing is challenging, and the

measurement precision decreases rapidly due to overlap-

ping particle images and wrong particle image pairing. In

this paper, it is shown that the particle image information

acquired at four or more time steps greatly enhances a

reliable particle pairing even at high seeding concentra-

tions. Furthermore, it is shown that the accuracy and pre-

cision can be increased by using vector reallocation and

displacement estimation using a fit of the trajectory in the

case of curved particle paths. The improvements increase

the PTV working range as reliable and accurate measure-

ments become possible at seeding concentrations typically

used for PIV measurements.

1 Introduction

1.1 PIV and PTV

Particle image velocimetry (PIV) is a well-established tech-

nique for non-intrusive flow field investigations in transpar-

ent fluids. The velocity is estimated within interrogation

windows by cross-correlating the images of small tracer

particles recorded at time t and t þ Dt. For a robust and

precise cross-correlation analysis, interrogation windows

covering 6–10 particle images are usually required (Raffel

et al. 2007). Therefore, the size of the interrogation windows,

and thus, the spatial resolution depend on the seeding con-

centration and the particle image diameter. For the investi-

gation of flows with relatively weak spatial gradients, the

technique is very reliable and the measurement accuracy is

usually sufficient to estimate spatial derivatives. However,

when flows with strong gradients are investigated, the mea-

surements are biased (Kähler et al. 2012a; Westerweel 2008;

Keane and Adrian 1992). To better resolve strong flow gra-

dients, the optical magnification can be increased, but this

leads to three major problems (Kähler et al. 2006):

1. The particle image density becomes too sparse for

spatial cross-correlation methods.

2. The particle image size increases beyond the optimal

range for spatial cross-correlation analysis.

3. Correlation-based methods may show bias errors due

to a spatial variation in the particle image density.

As PTV does not show the bias error at all (Kähler et al.

2012b), the technique is well suited for accurate flow field

measurements at any magnification provided the seeding

concentration is sufficiently low for a reliable particle

image pairing. At high seeding concentrations, two major

random errors need to be taken into account.
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• Errors related to the determination of the particle

position.

• Errors due to wrong particle image pairing

1.2 Particle image positioning

The first error, associated with the particle image posi-

tioning, is related to the image recording and the detection

algorithms, because with increasing particle image density

or particle image size, the probability of overlapping par-

ticle images increases. In effect, the accuracy in localizing

individual particle images decreases. Maas (1992) has

derived an expression that connects the number of indi-

vidual particle images Np with the number of overlapping

particle images No for circular particle images that are

randomly distributed on a sensor with size A:

No ¼ Np � 1
� �

þ A

Acrit

� e
�ðNp�1Þ�Acrit

A � 1
� �

ð1Þ

Acrit is the critical area in which a particle image starts to

overlap with the boundaries of another particle image.

Please note that frequently used variables are listed in

Table 1. Typically, the boundaries of the particle images

are defined to be at the radial location at which the intensity

has decreased to e-2 of the center value. Thus, the critical

area is Acrit = p D2, since particle images share the same

boundary if the centers have a distance of D. Lei et al.

(2012) have shown that the detection of the particle image

center is still possible even when the particle image overlap

reaches 50 % (L = D/2), which implies that the critical

area reduces to Acrit = p L2, with L being the distance of

particle image centers that can be separated. Figure 1

illustrates the ratio of overlapping particle images as a

function of L for different particle image densities Nppp.

Using L as the smallest inter particle image distance that

can be resolved, this graph allows for the estimation of the

number of vectors that can be gained by a PTV analysis for

a given particle image density. The reliability is dependent

on the SNR, the particle images size, and the error that the

user is willing to accept.

For planar PIV, particle image densities of 0.03 ppp \
Nppp \ 0.05 ppp are recommended, see Raffel et al.

(2007). For D = 2.5 px and Nppp = 0.05 ppp, already

more than 20 % of the particle images overlap. For particle

images with a diameter of 5 pixels, the overlap ratio

reaches 80 %.

For particle tracking algorithms, the particle image

density can be reduced by a factor of 10 to get almost the

same number of vectors compared to PIV measurements,

because a vector is found for each particle image pair

(black curves in Fig. 1). In this case, only 5 % of the

particle images overlap for D = 2.5 px and Nppp = 0.005.

For some applications, this is a big advantage since the

contamination of the facility is reduced by the same factor.

However, it is generally of interest to accurately measure

small scale flow features which cannot yet be resolved by

using PTV. Therefore, PTV measurements at high seeding

concentrations would be desirable for many flow investi-

gations. In order to increase the reliability of PTV for

larger particle image densities, a multi-frame PTV tech-

nique is proposed to enhance the robustness and accuracy

of the particle image pairing.

1.3 Particle image pairing

The simplest case to match corresponding particle images

is a nearest neighbor PTV algorithm (Malik et al. 1993).

Since the approach only works for very low particle image

densities, artificial neural networks or relaxation methods

can be used to minimize a local or global cost function

(Pereira et al. 2006) to allow for higher seeding concen-

trations. Alternatively, Okamoto et al. (1995) presented a

Table 1 Frequently used variables

Quantity Symbol Unit

Time, time interval t; Dt s

Coordinates X, Y, Z or

x, y, z
px or lm

Velocities u, v, w lm/s

Particle image displacements DX;DY ;DZ px

Tangential and radial displacements Dtan;Drad px

Mean particle image distance DX0 px

Maximum particle image

displacement

DXmax px

DX0=DXmax p

Number of possible vectors Npossible

Number of exact vectors Nexact

Number of detected vectors Ndetected

Particle image density Nppp = Np/A part. per

px

Number of particles images Np

Number of overlapping particles

images

No

Detected vectors / possible vectors R1

Exact vectors / detected vectors R2

Digital particle image diameter D px

Distance between particle image

centers

L px

Image area A = Nx 9 Ny px

Image width, image height Nx, Ny px

Fit function fx, fy, fz

Uncertainty r px

Error � px

Radius r px
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spring force model, where particle pairs were identified by

searching for the smallest spring force calculated over

particles in a certain neighborhood. Probabilistic approa-

ches that take the motion of neighboring particles into

account show a very high vector yield at higher particle

image densities although on the expense of spatial resolu-

tion as the motion of neighboring particles must be corre-

lated. Another method to improve the detection of

corresponding particle pairs is the use of a predictor. This

predictor can significantly decrease the search area in the

second frame and thus improve the match probability of

particles. In general, such predictors can be based on the-

oretically known velocity distributions or experimentally

obtained PIV evaluations (Cardwell et al. 2011; Cowen

and Monismith 1997; Keane et al. 1995; Takehara et al.

2000).

Recently, Brevis et al. (2011) combined a predictor

obtained by PIV with a relaxation PTV algorithm to further

enhance the performance. However, in comparison with

PIV, the gain in resolution is only minor and does not

justify the effort in many cases. A fully PTV-based algo-

rithm was presented by Ohmi and Li (2000), where a case

sensitive search radius in the second frame has to be

defined to identify possibly matching particles. This is done

for all particles detected reliably in the first frame. For each

possible match, the algorithm adds the probabilities of

similar neighbor vectors using an iterative approach. The

threshold for the common motion of the neighboring par-

ticles is another parameter that needs to be specified. This

two-frame method showed superior results even for high

seeding concentrations.

Unfortunately, the accuracy and the robustness of all

these two-frame methods are limited by the fact that only

two recordings, acquired at t and t þ Dt exist. Thus, only a

first order approximation of the velocity can be estimated.

For correlation-based methods, different approaches have

been recently discussed to overcome this problem. Schar-

nowski and Kähler (2013) developed a method to use

information from neighboring vectors of the same velocity

field, obtained by two-frame PIV, to reduce the errors due

to stream line curvature. Another approach to further

enhance the precision in estimating the flow velocity is

multi-pulse or multi-frame techniques, which were already

discussed in the early days of digital PIV (Adrian (1991)

and references herein). Hain and Kähler (2007) used the

information of multiple frames to minimize the random

errors at each vector location within an instantaneous PIV

vector field by taking vector information from a large time

separation for low velocity regions and short time separa-

tion for high velocity regions. Sciacchitano et al. (2012)

applied an averaging in the correlation planes to increase

the robustness of their pyramid correlation algorithm.

Lately, Lynch and Scarano (2013) presented an approach to

replace and deform the correlation windows according to

the estimation of the trajectory of a fluid parcel. The basic

idea of the multi-frame methods is to make additional use

of the temporal smoothness of the particle image signal.

The same principles can be used to enhance the proba-

bility for correct particle image matching in PTV by

tracking particles over more than two successive frames.

One of the first multi-frame approaches was presented by

Nishino et al. (1989) who used four consecutive frames.
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Fig. 1 Ratio of the number of overlapping particle images No versus the total number of particle images Np for different particle image distances

L and particle image concentrations Nppp in particles per pixel. The right plot shows the region for L B 10 px in logarithmic scale
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The smoothness of a particle trajectory was determined to

evaluate if a particle path was valid or not. Hassan and

Canaan (1991), for example, proposed a nearest neighbor

approach with four different frames with equidistant time

intervals to enhance the results for bubbly flow. Oulette

et al. (2006) used criteria as the minimal acceleration for

the third frame, or minimized change in acceleration for the

fourth frame, where a modified version of the latter criteria

showed the best results. Li et al. (2008) developed a

technique using information of previous five frames to

determine the particle image position in the sixth frame.

Due to the large number of previous frames, their algo-

rithm is very robust to noise and a method was developed

to gap even frames with missing particle information.

Guezennec et al. (1994) applied a penalty function to prove

the path coherence of particle trajectories. Malik et al.

(1993) also developed a four-frame method to detect 3D

particle trajectories in a volume. The velocity estimates

were used to decrease the search radius for the nearest

neighbor search in the next frame, thus served as a pre-

dictor. This concept is schematically shown in Fig. 2.

The algorithm first determines the displacement between

the particle images in frames one and two. The time

interval between frame one and two must be small enough

to allow for nearly 100 % of valid particle links (cmp.

Fig. 3). Next, the predictor is used to decrease the search

area in frame three. This allows a larger time interval and

thus a larger displacement which gives a higher dynamic

velocity range. In addition, the relative error for the dis-

placement will decrease since for valid particle image

pairs, the error associated with PTV is only given by the

uncertainty in the centroid estimation. A predictor can also

be used later in the fourth frame.

The underlying idea of the current approach is therefore

to combine the information from the neighboring particles

with a predictor obtained from the previous image

sequence. The aim of this approach is to enhance the

precision and accuracy of PTV for highly seeded flows in

order to extend both the range of scales that can be resolved

(dynamic spatial range), and the dynamic velocity range of

the PTV technique. Therefore, we use the probability

approach proposed by Ohmi and Li (2000) in combination

with a temporal predictor concept based on Malik et al.

(1993). This method has the advantage that it can be used

for two, four, or even multiple frame particle tracking.

In the following two sections, the concept will be vali-

dated using synthetic data. Next, the algorithm is used to

evaluate experimental planar time-resolved measurements

of the flow over periodic hills. Finally, 3D data obtained in

a microfluidic experiment are analyzed to show the per-

formance of the approach for volumetric data sets.

2 Four-frame particle tracking velocimetry

2.1 Monte-Carlo simulation

To verify and validate the algorithm, a Monte-Carlo simu-

lation of a uniform flow without gradients was used. Random

particle image positions were simulated using a 256 9 256

pixel space with the number of particle images increasing

from Np = 10–20,000. The mean particle image spacing

ranges from Dx0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NxNy=Np

p
¼ 1:8 to 57 pixel, where

NxNy corresponds to the image size. The particle image

densities range in this case from Np /A = 0.00015–0.3 ppp.

A suitable criterion to compare the performance of PTV

algorithms is the ratio of the mean particle image distance to

the maximum displacement of the particle images

p ¼ Dx0=Dxmax, introduced by Malik et al. (1993). For a

displacement of 2.31 times the mean particle spacing, they

could detect about 90 % of simulated particle image pairs,

R1 = 0.9, using a nearest neighbor algorithm. The yield,

defined as the number of valid vectors divided by the number

of detected vectors, was R2 = 0.97 for their case. On the left

side of Fig. 3, the number of detected vectors divided by the

number of particles, denoted as R1, is shown for:

• a simple nearest neighbor algorithm (NN),

• a nearest neighbor algorithm with weighting functions

(NNW),

• the probability approach for two frames (P2F)

• and the probability approach for four frames using a

predictor (P4F).

For P4F, the time interval between frames 2 and 3 was

five times the time interval of the others. It can be clearly

seen that both nearest neighbor approaches provide a

vector for nearly each particle image as R1 is almost

unaffected by the mean particle image distance. However,

with increasing seeding concentration, that is, smaller

distances between particle images, wrong particle links

result in an underestimation of the displacement. The ratio

R2 drops significantly; for p = 2.31, only 70 % of valid

vectors are determined. If physical knowledge of the flow

is available, the detectability could be increased using
Fig. 2 Schematic of the working principle of the four-frame method.

The circles indicate the search area for the corresponding frames
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weighting factors. Therefore, the distance in the predomi-

nant direction is multiplied by a factor lower than one,

which results in a lower weighting of the distance in that

direction for the determination of the nearest neighbor.

Using that approach, approximately 90 % of valid vectors

can be found at p = 2.31.

The probabilistic algorithm’s performance is superior.

For p C 1, over 90 % of possible vectors were found. In

addition, the ratio of valid vectors is nearly 100 %. The

four-frame algorithm shows an even better performance in

finding the right links in the next frames because it deter-

mines a predictor from the displacement between frames 1

and 2. It also becomes clear from Fig. 3 that in the case of a

uniform flow, nearly every detected vector represents the

right velocity (R2 & 1). At these high particle image

densities, the final limitation of the particle tracking is not

any longer the tracking algorithm but the ability to deter-

mine the particles’ centers reliably (Lei et al. 2012).

2.2 VSJ standard PIV images

Recently developed particle tracking algorithms have been

tested using the PIV standard images of the Visualization

Society of Japan (Okamoto et al. 2000). The series number

301 provides a shear flow simulated using LES. The time-

resolved images have a size of 256 9 256 pixels and

contain about 4,000 particles each, which results in a par-

ticle image density of Nppp = 0.06. The images are

optimized for spatial correlation-based evaluation methods.

The maximum displacement is 10 pixels between two

images, which gives a ratio of mean particle image spacing

to maximum displacement of only p = 0.4.

These images have been used by many other research-

ers, and a detailed analysis and comprehensive collection

of the results throughout the literature can be found in Lei

et al. (2012). Ohmi and Li (2000) applied a particle image

identification algorithm first and were able to detect

approximately 1,000 to 1,300 particles images out of the

total 4,000 particle images per frame. They used these

detected particle images to test the PTV algorithm and

were able to match about 80 % with 98 % (R2 = 0.98) of

exact matches among the detected ones using a frame

interval of one. Since the exact particle image positions are

known, the PTV algorithms can also be tested using the

exact positions for all 4,000 particle images. Unfortunately,

this data are not provided by Ohmi and Li (2000). How-

ever, for modern algorithms, 98 % (Brevis et al. 2011) and

97 % (Lei et al. 2012) of the possible vectors could be

resolved correctly using two successive frames.

Since the first question is whether or not the combina-

tion of the probability matching algorithm with a predictor

can be used to increase the dynamic range, that is, to allow

for larger time differences, the simple nearest neighbor

algorithm (NN), the probabilistic two-frame method (P2F),

and the four-frame method (P4F) were tested for increasing

distances between the frames. In Fig. 4, the ratio of the
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number of detected vectors over the number of possible

vectors (R1) is shown along with the ratio of the number

valid vectors over the number of detected vectors (R2) for

varying frame distances Dt12 and Dt23 for the two -frame

and four-frame algorithm, respectively.

It can be seen that a simple nearest neighbor approach is

already insufficient for Dt ¼ 1. R1 is larger than one, since

the algorithm detects a match for each particle image

although some of them leave the light sheet in the next

frame and new particles appear. The probabilistic approach

using two frames detects about 97 % of particle image

matches and has a reliability of 98 % for Dt12. With

increasing distance, both R1 and R2 drop significantly with

only 20 % exact matches out of 70 % detected vectors. If a

predictor is used the performance using a Dt23 ¼ 1 drops

slightly to 95 %, since vectors are only taken into account

if a trajectory is found for all frames. However, for all

larger time intervals, the performance is superior with

about 70 % of vectors found for Dt23 ¼ 6 which corre-

sponds to a maximal displacement between frames 2 and 3

of 60 pixels. This decay roughly follows an exponential

trend where the ratio of matched vectors for a given sep-

aration Dt23 ¼ nDt12 can be determined by R1ðDt23 ¼ nÞ ¼
R1ðDt12 ¼ 1Þn. This allows for the determination of a trade-

off for the time separation on the basis of a quick two-

frame analysis.

The other benefit of the four-frame method is its great

reliability, since the number of correct matches out of the

detected matches does not drop significantly. Even for

Dt23 ¼ 6, 89 % of the vectors found are correct and only

11 % of the vectors are outliers which can easily be filtered

by outlier detection algorithms suited for PTV data

(Duncan et al. 2010).

3 Vector reallocation and velocity estimation

by the trajectory

3.1 Principles

An inherent limitation of PIV and PTV algorithms using

two frames is the fact that the velocity can only be esti-

mated up to the second order accuracy in time (Wereley

and Meinhart 2001). This approximation is only valid, if

the particle path between the two positions follows a

straight line and the velocity is constant. Often, strong

spatial and temporal gradients are present, and this

assumption is only approximately valid for small dis-

placements. Thus, the time interval between the two frames

must be reduced. Unfortunately, this results in a smaller

displacement and the relative error of the displacement

estimation increases as the absolute uncertainty rDx for the

displacement estimation stays constant. Using multiple

frames, a higher order approximation of the velocity is

possible.

For an illustration of the bias errors, the same particle

path as shown in Fig. 2 is shown in Fig. 5. The time

interval between t1 and t2 is rather short so that non-linear

effects can be neglected. However, the relative error is

large for the small displacement. Using the representations

of the particle position for t1 and t4 gives a larger dis-

placement and helps to reduce the relative error. However,

a bias error �Dx for Dx14 can be clearly seen if the linear

approximation is compared to the integral particle path.

Another error arises for the vector positioning. As can be

seen from the figure, the vector is usually positioned at the

half way between two identified particle positions at t1 and

t4 for a two-frame representation. In this case, a substantial

error �x can appear compared to the positioning on the

trajectory. A reallocation of the vector position onto the

trajectory would decrease this error.

3.2 Fitting the particle trajectory

In order to quantify the benefits from the above mentioned

vector reallocation and displacement estimation by the

particle trajectory, the flow field of a Lamb–Oseen vortex

was analyzed. Due to the circular stream lines of this flow

field, the effect is maximized. The maximum tangential

displacement was chosen to be Dtan ¼ 5:5 pixel at a radial

position of r = 31.7 pixel between t2 and t3.

In Fig. 6, the difference from the analytical solution for

the tangential and radial displacement distributions is

shown for the case without any noise or uncertainty related

to the particle positions. Therefore, the errors are purely
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systematic. The red circles represent the simple central

differences between t2 and t3. As expected, the tangential

displacement is underestimated. This underestimation due

to the curvature of the particle path reaches 0.034 pixel at

the maximum. However, the error related to the radial

displacement is much stronger and reaches 0.45 pixel.

For the four-frame method, the particle positions in

x and y were fitted by a second and third order polynomial

function fX = X(t), fY = Y(t). For 3D data, the same pro-

cedure is used for z with fZ = Z(t) as can be seen in Sect.

4.2. The fitting is based on a least-square regression and

was implemented using the fit functionality of Matlab. All

data points have the same weight in the present imple-

mentation. However, if one considers that some data points

are affected by larger errors a lower weight is beneficial.

The time separation can also influence the result of the

polynomial fit. In general it is favorable to have the time

separation as large as possible between frame two and three

to decrease the relative error and increase the dynamic

velocity range. However, the distance is limited by the out-

of-plane loss of particles for 2D measurements and the

trajectorie’s curvature.

Two different methods were used for the displacement

estimation. First, the displacement was estimated by the

gradient of the fitted polynomials at the time instant

t = t2 ? (t3 - t2)/2. This method is indicated by ’grad’ in

the figure. The second method uses the numerical inte-

gration of the trajectory to get the path length and is

indicated by ’int’.

The best match is achieved for the third order polyno-

mial since this fit can exactly describe the circular trajec-

tories of the particles. Almost no errors appear for the

gradient-based displacement estimation in the tangential

and radial directions. However, using the integration

method, the tangential displacement is underestimated by

about 0.013 pixel, whereas the radial component does not

show significant errors. Using a second order polynomial

fit results in an error of 0.017 pixel for the tangential dis-

placement, and a negligible error for the radial displace-

ment using both the integration and the gradient method.

However, in reality, an uncertainty is related to the

particle positions. Since a third order polynomial that fits

all positions exactly will be found, if four particle image

positions are considered, the displacement estimate using

Fig. 5 Schematic

representation of the benefits of

the four-frame method using a

polynomial fit function for the

particle trajectory. Instead of

using the first order

approximation DX12 or DX14 the

vector length is estimated by the

integral path length
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added noise show the bias errors
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such a fit would result in larger random errors. This can be

seen in Fig. 7, where the distribution of the displacement

errors are shown for particle image positions associated

with a Gaussian-distributed error with a standard deviation

of 0.02 pixels. These error levels can easily be reached for

elaborate particle detection algorithms and high-quality

imaging (Kähler et al. 2012b). The distribution represents

the random errors superimposed on the bias errors and thus

the total errors as they appear in a real measurement. Since

the random error for the tangential velocity is much larger

than the bias errors in the present example, the distributions

are almost symmetrical around zero. The widest distribu-

tion can be seen for the third order polynomial gradient

method, as expected. The integration method seems to

decrease the random errors as the distribution is much

smaller. However, this method still shows errors in the

same order of magnitude as the central difference scheme.

For the second order polynomial, integration and gradient

estimation perform equally well. Here, the smoothing that

is inherent to the second order fit is beneficial for the dis-

placement estimation. In comparison with the gradient

method, the integration of the path length tends to decrease

random errors.

On the left hand side, the error for the radial velocity

also shows much less scatter for the integration method.

Since experimental data always show uncertainties, it can

be concluded that the second order polynomial provides

the best trade-off in avoiding bias errors due to the cur-

vature of the trajectory and random errors due to the

uncertainty in the particle image position detection.

Therefore, this method is chosen to evaluate the experi-

mental data in Sect. 4.

3.3 VSJ standard PIV images

In Sect. 2.2, it was shown that even for large separation

between the frames, the algorithm works quite well on the

VSJ standard images. Although the true velocity for the

images is not known, the benefit of the vector reallocation

can be tested since the exact particle image positions are

known for all frames. In Fig. 8, the standard deviation and

the mean of the absolute difference between the exact

position and the vector position, determined by the second

order polynomial fit and the first order approximation, are

given for different time separations between frames 2 and

3. It can be seen that the error increases strongly with

increasing time separation for the first order approximation.

The first order approximation results in a mean error of

0.02 pixel for Dt23 ¼ 2, which is four times larger than the

error for the second order fit. For Dt23 ¼ 6, the 0.16 pixel

mean error for the first order approximation is already six

times larger than the error for the second order fit. How-

ever, also the systematic error using the second order

polynomial fit increases moderately. Since the systematic

error is low in comparison with the random error as was

shown in the previous section, it is still beneficial to have

large time separations to decrease the relative velocity

error.
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with a Gaussian distribution and standard deviation of 0.02 pixels
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4 Experimental validation

4.1 2D flow over periodic hills

The flow over periodic hills is a common test case for the

validation of numerical flow simulations (see ERCOFTAC

test case Nr. 81). The numerical prediction is quite diffi-

cult, since flow separation and reattachment are not fixed in

space and time due to the smooth geometry (Fröhlich et al.

2005). Furthermore, the separated and fully three-dimen-

sional flow from the previous hill impinges the next hill

which results in very complex flow features including

turbulent splashing, Taylor-Görtler vortices, and a very

thin shear layer in the wake flow with developing Kelvin-

Helmholtz instabilities. The experiments were performed

in a water tunnel at TU Munich. The height h of the hills

was 50 mm, and the spacing between them was 9h. A

detailed description of the setup can be found in Rapp and

Manhart (2011).

Figure 9 shows the velocity vectors for one time

instant downstream of the hill top. Black vectors are the

result of the two-frame algorithm without trajectory fitting,

and green vectors indicate the results of the four-frame

method with Dt23 ¼ 2Dt12. In the region of the relatively

fast outer flow with straight trajectories and the slow

reverse flow, both approaches perform well. However, in

the downstream shear layer, where Kelvin-Helmholtz

vortex-like structures can be observed, less particle images

were matched in all four frames, so that mainly black

vectors are visible.

For the current investigation, only 10 images were

evaluated. The number of particle images per frame is

approximately 1,400. With the central differences using

two frames, approximately 970 vectors were found. In

comparison with the synthetic data, where almost all par-

ticle images could be paired, here the detectability is only

70 %. The main reason is the out-of-plane movement of

some particles due to the three-dimensional nature of the

flow. The number of vectors is further decreased using the

four-frame method as illustrated in Fig. 9. For the equi-

distant temporal sampling, 500 vectors were found which

correspond to a detectability of 40 %. Using larger time

intervals between frames 2 and 3, the loss of trajectories

increases and the ratio R1 in Fig. 10 decreases. For a time

separation Dt23 ¼ 4Dt12, only 20 % of the particles image

pairs can be found over all four frames, which is again

mainly caused by three-dimensional motion in that region.

Therefore, a time separation Dt23 ¼ 2Dt12 is considered to

be the best compromise for that flow.

A beneficial effect of taking four frames and trajectory

fitting is the fact that peak locking is decreased. In Fig. 11,
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peak locking can be clearly seen for the two-frame method

for the vector position as well as for the displacement. As

the experiment was inherently setup for PIV and the par-

ticle images are small due to the large pixel size of the

CMOS sensor, this is expected (Cierpka and Kähler

2012a). The reduction of the peak locking effect in the case

of the multi-frame technique is clearly visible. Although

each position is attributed to peak locking errors, the total

error is smoothed out for the final displacement estimation.

4.2 3D microvortex

The previous section shows that the out-of-plane loss of the

particle image pairs in planar measurements limits the

performance of the multi-frame evaluation technique in the

case of complex 3D flows. As this effect can be completely

eliminated by using volumetric recording techniques, such

as Astigmatism PTV (APTV), Tomographic PTV, or V3V,

for instance, the three-dimensional nature of an electro-

thermal vortex was investigated using (APTV). This tech-

nique enables a fully three-dimensional determination of

particle positions within a volume using a single camera

(Cierpka et al. 2010). The micro vortex was observed using

time-resolved image recording over 140 s in total. For the

experimental setup and results, the interested reader is

referred to Kumar et al. (2011). Here, only the differences

using the various methods for the velocity estimation is of

interest. In Fig. 12, some trajectories are shown to give an

impression of the vortical motion. The color corresponds to

the velocity in the direction of observation (z-direction). In

Fig. 13, a two-dimensional representation of a trajectory

illustrates the effect of the different evaluation methods.

The gray squares indicate the particle positions used to

estimate the velocities. The red vectors correspond to the

use of conventional central differences for particle

positions at t1 and t4. The displacement between both time

instants is very large which is beneficial for the reduction

of the relative measurement error. However, for the posi-

tion of the red vectors, a large error is visible due to the

curvature of the trajectory, see upper left region of the plot

where the vectors are positioned further away from the

original particle locations. Using central differences

between t2 and t3 results in better estimations for the vector

position. However, the relative error for the velocity would

be larger. Due to the experimental uncertainty in the esti-

mation of the particle position, the velocities are often

overestimated and reveal a larger scatter compared to the
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values using t1 and t4. The values for the second order

polynomial fit are shown in green. Comparing the symbols

for the raw particle positions with the vector positions in

Fig. 13, it becomes evident that the error is much lower as

for the 2Ft1-4 case (mean/max difference 0.18/5.90 lm),

but also lower as for the 2Ft2-3 case (mean difference

0.02/0.66 lm). From the velocity plot, it can be concluded

that the large fluctuations are damped due to smoothing of

the position uncertainty, but not as much as for the 2Ft1–4

case. This is important for the calculation of the accelera-

tion along the trajectories.

5 Conclusion and outlook

The PTV algorithm proposed by Ohmi and Li (2000) was

extended for the analysis of multi-frame particle image

sequences. The motivation of the investigation was to

enhance the robustness and accuracy of PTV at high par-

ticle image densities. This allows for the enhancement of

the spatial resolution and the range of scales that can be

resolved with the technique. The accuracy was improved

by using vector reallocation and higher order velocity

estimation based on trajectory fitting. The enhancement of

the robustness was achieved by combining a weak spatial

homogeneity predictor with a coherent temporal predictor

approach. The method was validated numerically for 2D

and experimentally for 2D and 3D particle distributions.

The analysis shows that the main benefits of the multi-

frame PTV evaluation technique are as follows:

• the reliable determination of a predictor which allows

for higher seeding concentrations and larger

displacements,

• the more accurate velocity determination by fitting the

particle path,

• the decrease of the positioning error by vector reallo-

cation in case of curved path lines,

• the exclusion of wrongly detected particle image

positions, and

• the determination of Lagrangian velocities and

accelerations.

In the case of planar 2D measurements, the main limi-

tation of the approach is the out-of-plane loss of particle

image pairs. In the case of volumetric 3D recording tech-

niques, this limitation can be completely avoided. There-

fore, the multi-frame PTV technique is particularly suited

for the analysis of 3D particle image fields, recorded with

techniques outlined in Scarano (2013); Cierpka and Kähler

(2012b).
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