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Abstract
Purpose To summarize current knowledge on intracorporeal laser lithotripsy in flexible ureterorenoscopy (fURS), regarding 
basics of laser lithotripsy, technical aspects, stone clearance, lithotripsy strategies, laser technologies, endoscopes, and safety.
Methods A scoping review approach was applied to search literature in PubMed, EMBASE, and Web of Science. Consensus 
was reached through discussions at the Consultation on Kidney Stones held in September 2019 in Copenhagen, Denmark.
Results and conclusions Lasers are widely used for lithotripsy during fURS. The Holmium laser is still the predominant 
technology, and specific settings for dusting and fragmenting have evolved, which has expanded the role of fURS in stone 
management. Pulse modulation can increase stone ablation efficacy, possibly by minimizing stone retropulsion. Thulium 
fibre laser was recently introduced, and this technology may improve laser lithotripsy efficiency. Small fibres give better 
irrigation, accessibility, and efficiency. To achieve optimal results, laser settings should be adjusted for the individual stone. 
There is no consensus whether the fragmentation and basketing strategy is preferable to the dusting strategy for increasing 
stone-free rate. On the contrary, different stone scenarios call for different lithotripsy approaches. Furthermore, for large stone 
burdens, all laser settings and lithotripsy strategies must be applied to achieve optimal results. Technology for removing dust 
from the kidney should be in focus in future research and development. Safety concerns about fURS laser lithotripsy include 
high intrarenal pressures and temperatures, and measures to reduce both those aspects must be taken to avoid complications. 
Technology to control these parameters should be targeted in further studies.
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Introduction

Flexible ureterorenoscopy (fURS) has evolved as one of 
the major modalities for upper urinary tract stone manage-
ment. This development is largely the result of continuing 
advancements in laser technology for intracorporeal litho-
tripsy, which is the focus of this review. Most daily clinical 
practices in the field of kidney stones, including lithotripsy 
techniques, are not supported by randomized trials and meta-
analyses. This is not due to low research activity in this area, 
but rather to difficulties in designing meaningful trials that 
reflect daily clinical practice, because stone disease is so 
diverse. In this context, it is particularly important for prac-
tising experts to share their knowledge on clinical applica-
tions. The concept of the meeting “Consultation on Kidney 
Stones”, on which this review is based, was to create a forum 
for transfer and development of clinical expertise.

Methods

To evaluate lithotripsy in fURS regarding the balance 
between existing evidence, expert opinions, and safety and 
efficacy of new technological improvements, key opinion 
leaders in the field were invited to assess and discuss exist-
ing evidence at the 2-day meeting entitled “Consultation on 
Kidney Stones: Aspects of Intracorporeal Lithotripsy” held 
in Copenhagen, Denmark, in September 2019. The partici-
pating experts were assigned different topics and prepared 
presentations according to scoping reviews using PubMed, 
EMBASE, and Web of Science to search the literature. The 
first day of the meeting was open only to the experts, who 
individually presented their topics, which were then dis-
cussed by the whole group. The presentations were subse-
quently adjusted if necessary. The second day was an open 
meeting at which all presentations were given to an interna-
tional audience, and this was followed by free discussions.

Basics of laser lithotripsy

Laser fibre size

The deflection range of a flexible ureteroscope decreases 
with increased size of the laser fibre inserted [1–3]. The size 
of the fibre also has an inverse effect on irrigation [1, 2]. An 
in vitro study of the ablation efficiency of laser fibres showed 
that large fibres (550 μm) produced wider fissures than small 
fibres (200 μm), but the fissures made by the small fibres 
were deeper [4]. Another investigation found that using a 
larger fibre created more retropulsion of the stone during 

lithotripsy [5]. Comparison of total fragmentation volume 
indicated little difference between fibres except at very low 
pulse energies (0.2 J), at which small fibres were more effi-
cient [4]. These observations suggest that smaller fibres 
provide the following: better irrigation and thus improved 
visibility; better deflection and hence increased accessibility; 
and less retropulsion and thus higher ablation efficiency, and 
also an overall reduction in operating time [2, 6].

Laser fibre tips

Laser fibres can have a standard flat tip or a polished or ball-
shaped tip. The ball-tip fibre is designed to reduce damaging 
friction forces generated within the working channel of the 
ureteroscope. It has been shown that this type of fibre can be 
safely passed through a deflected ureteroscope without caus-
ing liner perforation. The same advantage can be achieved 
by cleaving a standard fibre in such a manner that the coat-
ing protects the scope from the laser core [7]. Flat-tip fibres 
require greater insertion force at all angles and therefore can 
cause the ureteroscope liner to leak if it is deflected 45°or 
more [8].

An in vitro study comparing lithotripsy performance of 
different types of laser fibres found that the standard fibre 
functioned just as well as specially designed fibres [9]. Kro-
nenberg et al. [10] noted that, compared to fibres stripped 
off the coating material, coated fibres achieved significantly 
higher ablation volumes, and there was no difference in 
performance between coated fibres cleaved with metal or 
ceramic scissors. However, Aldoukhi et al. [11] observed 
that single-use fibres and cleaved reusable fibres performed 
better than fibres with tips cut using Mayor scissors. The 
difference in efficiency between stripped and coated fibres 
may be due to the fibre itself being damaged during the strip-
ping off the coating, leading to a dispersion of laser energy 
[10, 11]. Another downside of such stripping is that a fibre 
devoid of its coloured coating is difficult to discern in front 
of the ureteroscope. The above-mentioned factors have not 
been scientifically evaluated in vivo, and individual surgeons 
may have different preferences.

Laser settings

Various laser systems have been developed that offer dif-
ferent laser settings, such as high frequency and long-pulse 
duration. The total power (W) used is equal to the pulse 
energy (J) multiplied by the pulse frequency (Hz). In an 
in vitro study, a combination of low frequency and high 
pulse energy was more effective than the opposite combina-
tion with the same total power level, and pulse energy and 
ablation volume were linearly correlated with the width and 
depth of fissures observed in the stone material [4]. How-
ever, high pulse energy resulted in more stone retropulsion, 
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larger stone fragments, and laser fibre burn-back, all lead-
ing to prolonged operating time [4, 12]. Lowering the pulse 
energy and increasing the frequency give rise to less retro-
pulsion and fibre burn-back, which results in dusting of the 
stone. Regarding the pulse length, preliminary data from an 
in vitro study showed that short pulse settings led to signifi-
cantly higher ablation volumes than long-pulse settings [13], 
whereas long-pulse lithotripsy was associated with less fibre 
burn-back, smaller fragments, and more dust. Other investi-
gations have been unable to demonstrate a significant rela-
tionship between pulse duration and stone ablation [14, 15].

The Moses technology introduces a pulse-shaped modu-
lation that optimizes energy delivery through water to the 
target stone. The Moses platform has two settings: Moses 
contact (MC) mode, for operation at close range (< 2 mm); 
Moses distance (MD) mode, for lithotripsy at a distance 
of 2  mm. In a preclinical study, the Moses technology 
resulted in more efficient laser lithotripsy with significantly 
reduced stone retropulsion [16]. In an automated in vitro 
dusting model, compared to long-pulse lithotripsy, Moses 
holmium:yttrium–aluminum–garnet (Ho:YAG) (Ho:YAG) 
laser technology provided greater ablation of soft stones 
when in contact with the stone surface [17]. In an investiga-
tion using a three-dimensional positioning system, research-
ers examined the impact of laser fibre working distance on 
fragmentation when altering pulse width or modulation [18], 
which showed that holmium laser lithotripsy was signifi-
cantly affected by the fibre tip to stone working distance, 
with the greatest ablation volume obtained with the fibre in 
contact with the stone.

Considering optimal settings for the lithotriptor, different 
stone compositions require different settings to achieve the 
desired effect, and the desired effect may vary in individual 
situations. The recommendation is to start with a test setting 
of low pulse energy and low frequency to initially determine 
how the stone reacts, and thereafter adjust settings accord-
ingly to improve efficiency of the lithotripsy.

Technical aspects of laser lithotripsy 
and stone clearance during fURS

Various methods for laser lithotripsy have been described, 
and combining them can lead to more efficient ablation and 
clearance of stones with different characteristics [19]. The 
techniques described include dusting (dancing/painting), 
chipping, fragmentation, popcorning, dustmenting, and 
popdusting, and all these strategies can be combined in dif-
ferent ways to achieve the desired outcome. Dancing/paint-
ing is done by moving the laser fibre from side to side over 
the surface of the stone, using dusting settings. Chipping 
entails lasering off small pieces from the edges of the stone 
leaving small fragments for spontaneous passage, whereas 

fragmenting involves cutting a stone into larger fragments 
for subsequent basket removal. The fragmentation and bas-
keting strategy use a setting of low frequency (4–10 Hz) 
and high pulse energy (0.6–2.0 J); dusting uses a setting of 
high frequency (15–80 Hz) and low pulse energy (0.2–0.5 J); 
popcorning stones requires settings of moderate-to-high 
frequencies (10–20 [40] Hz) and moderate pulse energy 
(1–1.5 J)[20–23].

Popcorning refers to a non-contact technique in which the 
laser energy whirls around fragments that come in contact 
with the laser and breaks them into smaller pieces. Chawla 
et al. [20] conducted an in vitro investigation of popcorn-
ing with different laser settings and observed that 1.5 J and 
40 Hz produced the greatest mean decrease in stone burden 
per amount of time used; however, such a high-power level 
cannot be recommended in vivo. In that study, settings of 
1.0 J and 20 Hz were most efficient with regard to mean 
stone weight loss per total amount of energy used. Emiliani 
et al. [24] suggested that a good compromise for popcorn-
ing would be using a long pulse of 1.5 J and 20 Hz with 
a 270 μm laser fibre and taking as much time as possible 
(> 4 min) to produce clinically insignificant fragments. In 
another in vitro model, Aldoukhi et al. found that the pop-
corn te

chnique was more effective when the laser fibre was posi-
tioned in contact with the stone as compared to at a distance 
of 2 mm from the stone, and when performed in a small (11 
mm) rather than a larger calyceal model [25]. These in vitro 
studies do not replicate the clinical environment, and, work-
ing in a limited space, surgeons should always aim to choose 
a safe power level based on the irrigation flow applied and 
other factors, including outflow (access sheath) and tempera-
ture of the irrigation fluid.

Humphreys et  al. [26] conducted a non-randomized 
prospective clinical comparative trial considering dusting 
versus fragmenting, and they found no statistically signifi-
cant difference in stone-free rate (SFR) and no difference in 
complication rates between the two patient groups. However, 
although stones were significantly larger in the dusting arm 
(96 vs 63  mm2, p < 0.001) the mean operative time was sig-
nificantly shorter in that group (36 vs 67 min, p < 0.001). 
This agrees with clinical data showing that, for large stones, 
it is easier to control the complete stone burden during dust-
ing, whereas fragmenting may result in fragments moving 
into multiple different calyces in which they must be dealt 
with, potentially prolonging OR time and reducing SFR.

Ureteroscopic lasering of lower pole stones can be chal-
lenging. The anatomy of the lower pole must be considered, 
because a long infundibular length, a narrow infundibular 
width, and a steep infundibulo-pelvic angle may have a neg-
ative impact on stone clearance, especially if more than one 
of these aspects is unfavourable [27–30]. Using a basket/
grasper to move the stone to another location can be a viable 
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alternative that can facilitate lithotripsy, reduce scope dam-
age, and aid fragment passage [31, 32]. Schuster et al. [33] 
compared SFR in patients with lower pole stones treated 
in situ and subjects with relocation of the stone before litho-
tripsy. For stones > 1 cm in size, complete clearance was 
obtained in 100% of cases by relocation versus 29% of cases 
in situ (p = 0.005); the difference between the two groups 
was not significant for stones of < 1 cm. Placing the patient 
in Trendelenburg position during surgery can facilitate stone 
relocation to the upper pole from other sites by creating a 
dependent upper pole; two randomized trials have demon-
strated that this method results in shorter OR time, better 
SFR, less flexible ureteroscope manipulation, and less stone 
migration into the lower pole [34, 35]. If the stone cannot 
be relocated due to size or anatomy, or if lithotripsy in situ 
is preferred, a ball-tip laser fibre can be safely introduced 
through a deflected scope.

The 2020 EAU Urolithiasis Guidelines recommend that 
only baskets made of Nitinol be used for fURS. A range of 
different baskets are available, such as triangular baskets, 
4-wire baskets, smaller baskets for narrow locations, and 
larger baskets for strength. Baskets can also vary regarding 
penetration force, radial dilation force, and opening dynam-
ics, and add different degrees of resistance to scope deflec-
tion [36]. Bach et al. [37] tested various sizes of baskets in 
five different endoscopes and found that, in contrast to laser 
fibres, the size of the basket did not influence the deflection 
of the scope, which made relocation of a stone easier than 
in in situ lithotripsy. However, the size of the basket had an 
inverse effect on irrigation flow. Conversely, Patel et al. [36] 
showed some limitation of deflection, which was greater for 
a 2.2 Fr compared to a 1.5 Fr basket. In practice, these dif-
ferences will vary depending on the type of ureteroscope 
employed and how long it has been in use, and the specific 
basket that is chosen.

Methods for the evacuation of small residual fragments 
include the glue-clot technique and irrigation/suction sys-
tems. In the glue-clot technique, autologous venous blood is 
injected into a calyx, where it agglutinates with stone frag-
ments to form a clot that can be extracted with a basket [38]. 
In a randomized pilot study of 47 patients, an automated irri-
gation/suction pump system was tested and found to reduce 
mean operating time by 35% (p = 0.04) and to increase SFR 
from 69 to 92% (p = 0.048) compared with the standard pres-
surized technique [39].

Comparing clinical outcome of different 
laser lithotripsy strategies

Comparing fragmenting and dusting with regard to clini-
cal outcomes has proven difficult, because the objective 
metrics for such comparison vary. The studies performed 

have differed regarding rates of pre-stenting and staged 
procedures, and ways of reporting complication grades, 
emergency room visits, intensive care admission, hospi-
talization, and re-intervention. Reports concerning fol-
low-up also differ with regard to definitions of stone free, 
imaging modalities, and timing of the follow-up and repeat 
intervention rate. Stone free has been defined as zero 
fragment, < 2 mm, or > 4 mm residual fragment. Imaging 
modality for follow-up varies between computed tomog-
raphy (CT), kidney–ureter–bladder radiograph (KUB), 
ultrasound (US), or fluoroscopy at operation, and a large 
proportion of patients apparently have no follow-up imag-
ing at all [40]. An assessment of administrative data in the 
United States showed that 39% of patients had no imaging 
at 12 months post-surgery[41].

A retrospective study demonstrated that frag-
ments > 4 mm in size were associated with significantly 
higher rates of stone growth leading to complications and 
need for re-intervention, whereas fragments of > 2 mm 
were likely to grow, but were not associated with com-
plications or re-intervention [42]. Another retrospective 
investigation reported that the cumulative repeat surgery 
rate at 5 years after fURS was proportional to the size 
of residual fragments on post-operative CT [43]: with no 
visible residual fragments, fragments < 4 mm, or frag-
ments > 4 mm, the rates were 3.5%, 8.2%, and 46.2%, 
respectively. CT has been reported to have a sensitivity of 
95–100% for residual fragments [44].

Eleven studies comparing spontaneous passage and 
fragmentation with active retrieval [45] were identified, 
but most of them could not be compared with each other 
due to differences in imaging modalities and definitions 
of SFR. Only three comparative, non-randomized studies 
of the various disintegration strategies in the treatment of 
renal stones were pinpointed (Table 1) [26, 46, 47]. Two 
of those assessments used CT for follow-up, whereas the 
third used KUB and US. Only one of those three studies 
reported the power settings for dusting and fragmentation, 
respectively.

In a randomized, double-blinded clinical trial comparing 
regular and Moses modes of Ho:YAG laser lithotripsy, Ibra-
him et al. showed that the Moses technology was associated 
with significantly lower fragmentation/pulverization (stone 
dusting) and procedural times, which the authors explained 
by less retropulsion of stones during Moses mode lithotripsy 
[48].

Conclusive evidence for comparing spontaneous passage 
and active retrieval strategies is limited, and it is difficult 
to compare existing studies, because they vary regarding 
disintegration strategy, SFR criteria, and time and modality 
of imaging at follow-up. Moreover, the investigations have 
not systematically reported stone density and composition 
and post-operative complications.
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Endoscopes and laser lithotripsy

Ureteroscopes vary with respect to location of working 
channel (Fig. 1), deflection ability and irrigation flow with 
laser fibre inserted, distance of laser tip from the tip of the 
endoscope, and optical imaging quality and illumination of 
the surgical field. All of the listed features have a poten-
tial impact on laser lithotripsy, although evidence for this 
is based mainly on in vitro studies and expert opinions, and 
very little has been published regarding effects on clinical 
outcome.

The position of the working channel of the endoscope can 
influence irrigation flow and thus create differences in the 
flushing and movement of stone and tissue. The position also 
dictates location of the laser fibre/basket inserted through 
the channel and thereby affects the ability to reach stones in 
certain positions within the kidney [49].

In vitro comparison of single-use and reusable 
f lexible ureteroscopes showed that the latter had 

bettervision characteristics [50]. It appears that scopes 
differ regarding occurrence of light flashes during laser 
lithotripsy, over-illumination of the field, and the speed 
at which light intensity can be regulated. These phenom-
ena may occur due to automatic light intensity regulation 
being affected by laser energy flashes or by stone frag-
ments or dust that is flushed around by irrigation and laser 
pulse pressure waves. The cited in vitro comparison also 
demonstrated that the flow varied between different flex-
ible ureteroscopes equipped with the same type of laser 
fibre [50]. The problem of working channel damage can 
be almost completely overcome by employing single-use 
flexible ureteroscopes.

Table 1  Comparative studies regarding SFR with spontaneous passage vs active retrieval during lithotripsy

SD standard deviation, OR operating room, SFR stone-free rate, CT computed tomography, KUB kidney–ureter–bladder radiograph, US ultra-
sound

Cohort Lee et al. 2016 Humphreys et al. 2018 El-Nahas et al. 2019

Spontaneous Retrieval Spontaneous Retrieval Spontaneous Retrieval

Study design Retrospective Retrospective Prospective Prospective Retrospective Retrospective
Study period 2010–2015 2010–2015 2013–2016 2013–2016 2015–2017 2015–2017
Cases, n 76 172 68 82 51 56
Mean stone size (SD) 11 mm (± 5.2) 11 mm (± 4.8) 11 mm (± 4.3) 8.8 mm (± 3.5) NS NS
Laser power (setting) NS NS 30–100 W (NS) 30–100 W (NS) 20–60 W (0.3 J/20 Hz) 20–60 W (1.0 J/10 Hz)
OR time 82 min 83 min 36 min 67 min 76 min 91 min
Stenting rate 100% 100% 100% 100% 100% 100%
Complications 11%* 11%* 13.2%* 19.5%** 8%* 9%**
Definition of SFR < 3 mm < 3 mm No fragment No fragment No fragment and < 4 mm No fragment and < 4 mm
Imaging used CT CT KUB, US KUB, US CT CT
Imaging timing 4 weeks 4 weeks 4–6 weeks 4–6 weeks 2 months 2 months
Stone free rate 87% 89% 58% 74% 59% and 86% 79% and 89%

Fig. 1  Different positions of working channel depending on manufacturer and model of ureteroscope
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Safety aspects of laser lithotripsy 
during fURS

Direct contact of the laser can cause local burns on the 
urothelium. Furthermore, high-flow irrigation for optimal 
visualization and cooling leads to increased intraluminal 
pressure, although such irrigation is necessary.

It should also be noted that incorrect handling of lasers 
may damage the ureteroscope and even harm the surgeon 
and OR personnel. A safety distance between the tip of 
the fibre and the tip of the scope should be maintained to 
minimize the risk of damaging endoscopes. Talso et al. 
[51] observed that the length of the fibre projecting from 
ureteroscopes was 1–2 mm at first appearance in the cam-
era image, whereas it was 3–4 mm when reaching one-
fourth of the screen, and in that position, the laser bubble 
was never in contact with the tip of the ureteroscope and 
was therefore protected from damage.

The incidence of ureteral perforation during ureter-
orenoscopy has been reported to be 0.4–6.3%, and the 
risk factors identified included size of ureteroscope, pro-
longed operation time, surgeon’s lack of experience, stone 
characteristics, lack of pre-stenting, and high laser energy 
[52, 53]. Possible complications of perforation are extrava-
sation, haematoma, sepsis, pain, obstruction, stricture, 
and loss of kidney function [52–55]. Use of laser during 
intracorporeal lithotripsy has been observed to be an inde-
pendent risk factor, with a 3.6% risk of Post-ureteroscopic 
Lesion Scale (PULS; [56] grade 1 lesions and 3.1% risk 
of PULS grade 2 lesions. To avoid ureteral perforation, it 
is recommended that optimal visualization be secured by 
irrigation and that a safety distance of at least 1 mm be 
maintained between laser tip and urothelium.

During laser lithotripsy, visualization can be impaired 
by stone dust and debris. Increasing irrigation to solve 
this problem unequivocally raises the intrarenal pressure, 
potentially leading to tubular, venous, and lymphatic 
backflow. Baseline intrarenal pressure is approximately 
10 mmHg, and the threshold for backflow is 30–35 mmHg. 
Intrarenal pressure levels during fURS and holmium laser 
usage have been noted to be as high as 50–350 mmHg 
[57, 58]. Intrarenal pressures above 30 mmHg for more 
than 10 min have been shown to significantly increase the 
incidence of septicaemia in percutaneous nephrolithotomy 
[59]. Although several studies have suggested that com-
plications such as sepsis and post-operative pain leading 
to longer hospitalization are related to high intrarenal 
pressure, no definitive causal data exist [60–63]. Intra-
renal pressure during fURS may be reduced by the use 
of a ureteral access sheath (UAS) [64]. If a UAS is to be 
applied, it must have a larger diameter than the scope, 
which make the UAS a double-edged sword: on one hand, 

it reduces intrarenal pressure and potential septic compli-
cations, and on the other hand, it may increase the risk of 
strain-induced lesions to the ureter [65]. Therefore, it is 
important to use the smallest UAS compatible with the 
ureteroscope chosen to ensure both safe placement with-
out significant friction and sufficient outflow, and thereby 
achieve both low intrarenal pressure and sufficient flow for 
visualization during lithotripsy [66].

High intrarenal temperatures have been observed dur-
ing laser lithotripsy, especially at high total power settings 
(> 30 W) [67]. High temperatures can lead to thermal abla-
tion of kidney tissue, resulting in permanent kidney dam-
age. Overall, such tissue damage is dependent on tempera-
ture, time, and blood flow [68]. In the ureter, the threshold 
for tissue damage has been shown to be around 43 °C for 
120 min, which is equivalent to approximately 50 °C for 
56 s or 56 °C for 0.9 s [69–71]. In an in vitro model, Wollin 
et al. achieved temperatures of > 43 °C at all laser settings 
within 1 min without irrigation, and the maximum temper-
ature reached was 100 °C at fragmentation settings [69]. 
Aldoukhi et al. recorded temperatures in a pig kidney during 
high-power holmium laser lithotripsy at 0.5 J and 80 Hz and 
different irrigation flows, and found that only high irrigation 
flow (38–40 ml/min) could keep the caliceal temperature 
at ≤ 43 °C [72]. To reduce heating, it is important to have 
secured continuous flow irrigation and consider use of room 
temperature or even cooled irrigation fluid. Lasering should 
be carried out intermittently to allow cooling in low-flow 
areas.

Comparison of different laser technologies 
for intracorporeal lithotripsy

The past and current standard for laser lithotripsy is the 
Ho:YAG laser, which has revolutionized retrograde stone 
management. Introduction of high-power Ho:YAG laser 
systems that utilize laser settings of high frequency and 
low pulse energy (HiFr-LoPE), varying pulse lengths, and 
Moses technology for reduction of retropulsion and improve-
ment of fragmentation have expanded the surgeon’s ability 
to ablate urinary tract stones and thereby opened a new era 
for the dusting technique. Reducing the need for fragment 
retrieval and the potential hazards of this technique (UAS 
usage and multiple scope passages) may be advantageous 
[73]. Recently, a new laser technology for stone management 
has emerged—the thulium fibre laser (TFL). The TFL emits 
light with a wavelength of 1940 nm, compared to 2100 nm 
with Ho:YAG [74–79]. Comparing laser setting options, 
TFL offers frequencies of 5–2200 Hz, pulse energies of 
0.025–6 J, and pulse durations of 200–12,000 microsec [76, 
80–83], whereas Ho:YAG offers 5–100 Hz, 0.2–6 J, and 
50–1300 microsec [81, 84]. These qualities of the TFL laser 
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give this technology the potential to produce 3–4 times more 
dust compared to high-power Ho-YAG lasers [78, 85, 86]. 
Furthermore, due to the novel laser beam generation by laser 
diodes in TFL, smaller fibres (50 µm) can be utilized, which 
may result in higher energy intensity at the tip of the fibre, 
better scope deflection, and better irrigation, all of which 
can potentially increase stone ablation volume at compara-
ble settings [74, 80, 81]. Initial reports of TFL performance 
in the clinical setting are promising but still limited [87], 
and further evaluation, including consideration of safety 
aspects (temperature) and ability of the laser to embrace all 
lithotripsy strategies, will be necessary to define the role of 
TFL. To date, no clinical comparative studies of holmium 
and thulium fibre lasers have been conducted. Nevertheless, 
both the HiFr-LoPE Ho:YAG and the new TFL technology 
show promise in expanding the role of flexible ureteroscopic 
stone management by approaching larger stones and more 
complex stone scenarios.

Conclusions

Lasers have revolutionized the scenario of intracorporeal 
lithotripsy during fURS. Ho:YAG is still the predominant 
laser for stone management, and, with this technology, spe-
cific settings for dusting and fragmenting have evolved, 
which have expanded the role of fURS in endoscopic stone 
management. Recently, the TFL was introduced, and this 
new laser source may prove to further increase the efficiency 
of laser lithotripsy. There is still debate as to whether the 
fragmentation and basketing strategy are preferable to the 
dusting strategy for increasing SFR. However, one does not 
exclude the other, because different stone scenarios call for 
different lithotripsy approaches, and, for large stone bur-
dens, all laser lithotripsy settings (dusting, fragmenting, 
and popcorning) may often be necessary for optimizing the 
final result. Technology for removing dust from the kid-
ney should be a focus for future research and development. 
Safety aspects of fURS laser lithotripsy include high intra-
renal pressures and temperatures. Inasmuch as measures to 
reduce both pressure and temperature are mandatory to avoid 
sepsis, bleeding, and nephron loss, technology to control 
these parameters should be targeted in further investigations.
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