Skip to main content
Log in

Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To develop practical nomograms for predicting the stone-free rate after shock wave lithotripsy (SWL) in patients with a solitary stone in the proximal ureter.

Methods

Between July 2006 and June 2015, 319 patients with a proximal ureteral stone who underwent preoperative non-contrast enhanced computed tomography (NCCT) and subsequently received SWL were identified. Patients’ age, gender, laterality, stone size, mean and maximum Hounsfield Unit (HU) of the stone, and skin-to-stone distance (SSD) were assessed. The stone-free status was defined as no radiopacity detected on the 3-month follow-up plain radiography or NCCT.

Results

Mean stone size was 10 mm (range 3–20 mm). Mean and maximum HU of the stone ranged from 115 to 1447 (mean 701) and from 265 to 1881 (mean 1062), respectively. The overall stone-free rate was 70%. Multivariate analyses identified stone size (p < 0.001), maximum HU (p < 0.001), and SSD at 90° (p = 0.038) as independent predictive factors for the stone-free status after SWL. Nomograms could be constructed for predicting the probability of stone-free status after SWL corresponding to SSD of 8, 10, and 12 cm using maximum HU and stone size.

Conclusions

This study demonstrated that stone size, maximum HU of the stone, and SSD at 90° are significant predictors of successful SWL outcome in patients with a proximal ureteral stone. We have developed simple and practical nomograms corresponding to three different SSDs for predicting the stone-free rate after SWL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chaussy C, Brendel W, Schmiedt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet 316:1265–1268. doi:10.1016/S0140-6736(80)92335-1

    Article  Google Scholar 

  2. el-Damanhoury H, Scharfe T, Ruth J et al (1991) Extracorporeal shock wave lithotripsy of urinary calculi: experience in treatment of 3278 patients using the Siemens Lithostar and Lithostar Plus. J Urol 145:484–488

    Article  CAS  PubMed  Google Scholar 

  3. Psihramis KE, Jewett MA, Bombardier C et al (1992) Lithostar extracorporeal shock wave lithotripsy: the first 1000 patients. Toronto Lithotripsy Associates. J Urol 147:1006–1009

    Article  CAS  PubMed  Google Scholar 

  4. Mobley TB, Myers DA, Grine WB et al (1993) Low energy lithotripsy with the Lithostar: treatment results with 19,962 renal and ureteral calculi. J Urol 149:1419–1424

    Article  CAS  PubMed  Google Scholar 

  5. Mobley TB, Myers DA, Jenkins JM et al (1994) Effects of stents on lithotripsy of ureteral calculi: treatment results with 18,825 calculi using the Lithostar lithotriptor. J Urol 152:53–56

    Article  CAS  PubMed  Google Scholar 

  6. Assimos D, Krambeck A, Miller NL et al (2016) Surgical management of stones: American Urological Association/Endourological Society Guideline, PART I. J Urol. doi:10.1016/j.juro.2016.05.090

    Google Scholar 

  7. Turk C, Petrik A, Sarica K et al (2015) EAU Guidelines on urolithiasis. Eur Urol 69:475–482. doi:10.1159/000049803

    Article  PubMed  Google Scholar 

  8. Kanao K, Nakashima J, Nakagawa K et al (2006) Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol 176:1453–1457. doi:10.1016/j.juro.2006.06.089

    Article  PubMed  Google Scholar 

  9. Wiesenthal JD, Ghiculete D, Ray AA et al (2011) A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol 186:556–562. doi:10.1016/j.juro.2011.03.109

    Article  PubMed  Google Scholar 

  10. Joseph P, Mandal a K, Singh SK et al (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971. doi:10.1016/S0022-5347(05)65064-1

    Article  PubMed  Google Scholar 

  11. Pareek G, Hedican SP, Lee FT, Nakada SY (2005) Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology 66:941–944. doi:10.1016/j.urology.2005.05.011

    Article  PubMed  Google Scholar 

  12. Shen L, Sun X, Cong X et al (2011) Comparison of efficacy of German and Chinese electromagnetic shock wave lithotripters: Dornier compact S vs Huikang MZ-SWL-V. Urology 78:1240–1243. doi:10.1016/j.urology.2011.04.061

    Article  PubMed  Google Scholar 

  13. Logarakis NF, Jewett M a, Luymes J, Honey RJ (2000) Variation in clinical outcome following shock wave lithotripsy. J Urol 163:721–725

    Article  CAS  PubMed  Google Scholar 

  14. Abe T, Akakura K, Kawaguchi M et al (2005) Outcomes of shockwave lithotripsy for upper urinary-tract stones: a large-scale study at a single institution. J Endourol 19:768–773. doi:10.1089/end.2005.19.768

    Article  PubMed  Google Scholar 

  15. Buchholz N-PN, Rhabar MH, Talati J (2002) Is measurement of stone surface area necessary for SWL treatment of nonstaghorn calculi? J Endourol 16:215–220. doi:10.1089/089277902753752151

    Article  PubMed  Google Scholar 

  16. Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY (2009) Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 103:524–528. doi:10.1111/j.1464-410X.2008.08069.x

    Article  PubMed  Google Scholar 

  17. Kacker R, Zhao L, Macejko A et al (2008) Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol 179:1866–1871. doi:10.1016/j.juro.2008.01.038

    Article  PubMed  Google Scholar 

  18. Nakasato T, Morita J, Ogawa Y (2014) Evaluation of Hounsfield units as a predictive factor for the outcome of extracorporeal shock wave lithotripsy and stone composition. Urolithiasis 43:69–75. doi:10.1007/s00240-014-0712-x

    Article  PubMed  Google Scholar 

  19. Perks AE, Schuler TD, Lee J et al (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769. doi:10.1016/j.urology.2008.05.046

    Article  PubMed  Google Scholar 

  20. Marchini GS, Remer EM, Gebreselassie S et al (2013) Stone characteristics on noncontrast computed tomography: establishing definitive patterns to discriminate calcium and uric acid compositions. Urology 82:539–545. doi:10.1016/j.urology.2013.03.092

    Article  PubMed  Google Scholar 

  21. Ng CF, Siu DYW, Wong A et al (2009) Development of a scoring system from noncontrast computerized tomography measurements to improve the selection of upper ureteral stone for extracorporeal shock wave lithotripsy. J Urol 181:1151–1157. doi:10.1016/j.juro.2008.10.161

    Article  PubMed  Google Scholar 

  22. Kim JK, Ha SB, Jeon CH et al (2016) Clinical nomograms to predict stone-free rates after shock-wave lithotripsy†¯: development and internal-validation. PLoS One: 1–12. doi:10.1371/journal.pone.0149333

  23. Park HS, Gong MK, Yoon CY et al (2016) Computed tomography-based novel prediction model for the outcome of shockwave lithotripsy in proximal ureteral stones. J Endourol XX:1–21. doi:10.1089/end.2016.0056

    Google Scholar 

  24. Salinas AS, Lorenzo-Romero J, Segura M et al (1999) Factors determining analgesic and sedative drug requirements during extracorporeal shock wave lithotripsy. Urol Int 63:92–101. doi:10.1159/000030425

    Article  CAS  PubMed  Google Scholar 

  25. Neisius A, Lipkin ME, Rassweiler JJ et al (2015) Shock wave lithotripsy: the new phoenix? World J Urol 33:213–221. doi:10.1007/s00345-014-1369-3

    Article  PubMed  Google Scholar 

Download references

Author contributions

NN: Project development, Data collection, Data analysis, Manuscript writing, KM: Project development, Data collection, Data analysis, Manuscript writing, MM: Data collection, MO: Data collection, Manuscript editing, HK: Data collection, EK: Manuscript editing, AM: Manuscript editing, KM: Manuscript editing, MO: Manuscript editing, Supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Matsumoto.

Ethics declarations

Conflict of interest

None declared.

Funding

There are no funding sources. There are no financial disclosures from any authors.

Human rights

This retrospective study was conducted after receiving approval from the institutional review board.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niwa, N., Matsumoto, K., Miyahara, M. et al. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone. World J Urol 35, 1455–1461 (2017). https://doi.org/10.1007/s00345-017-2014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-017-2014-8

Keywords

Navigation