Skip to main content
Log in

Primary species recognition and phylogeny of Chondrus (Gigartinales, Rhodophyta) using 18S rDNA sequence data

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The nuclear-encoded small subunit ribosomal RNA gene (18S rDNA) of 16 isolates of Chondrus from 8 countries were sequenced. A total of 1796 nucleotides were obtained and aligned with the phylogenetic analysis conducted. The results suggest that the entity from Dalian, China, regarded as C. sp1 is C. pinnulatus. The C. sp2 previously depicted as C. vendoi or Mazzaella japonica may belong to genus Chondrus. So, 4 Chondrus species, i.e. C. ocellatus, C. nipponicus, C. armatus, and C. pinnulatus are distributed in China. However, the entity from Connemara, Ireland, named C. crispus, is not a Chondrus species but that of Mastocarpus stellatus, although it is morphologically similar to C. crispus. Phylogenetic analysis based on complete 18S rDNA sequence data shows that genus Chondrus includes 3 main lineages: the Northern Pacific lineage, containing C. ocellatus, C. yendoi, and C. nipponicus, C. armatus, and C. pinnulatus form the sub-North Pacific lineage; and the Northern Atlantic Ocean lineage, comprising samples of C. crispus from Canada, Portugal, Ireland, Germany and France. The phylogenetic relationships indicate that genus Chondrus might have a North Pacific ancestral origin, radiated to North Atlantic area, and then formed the species C. crispus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman, 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Barley, J. C. and D. W. Freshwater, 1997. Molecular systematics of the Gelidiales: inferences from separate and combined analyses of plastid rbcL and nuclear SSU gene sequences. Eur. J. Phycol. 32: 343–352.

    Google Scholar 

  • Broom, J. E., W. A. Jones, D. E. Hill, G. A. Knight and W. A. Nelson, 1999. Species recognition in New Zealand Porphyra using 18S rDNA sequencing. J. Appl. Phycol. 11: 421–428.

    Article  Google Scholar 

  • Buchheim, M. A., J. A. Buchheim, T. Carlson and P. Kugrens, 2002. Phylogeny of Lobocharacium (Chlorophyceae) and allies: a study of 18S rDNA and 26S rDNA data. J. Phycol. 38: 376–383.

    Article  Google Scholar 

  • Chen, L. C. M. and A. R. A. Taylor, 1980. Investigation of distinct strains of Chondrus crispus Stackh. I. Field and laboratory observations. Bot. Mar. 23: 435–440.

    Google Scholar 

  • Fawley, M. W., Y. Yun and M. B. Qin, 2000. Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the Prasinophyceae (Chlorophyta). J. Phycol. 36: 387–393.

    Article  Google Scholar 

  • Felsenstein, J., 1995. PHYLIP (Phylogeny Inference Package), Version 3.57c, Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.

    Google Scholar 

  • Goff, L. J. and D.A. Moon, 1993. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J. Phycol. 29: 381–384.

    Article  Google Scholar 

  • Goff, L. J., D. A. Moon and A. W. Coleman, 1994. Molecular delineation of species and species relationships in the red algal agarophytes Gracilariopsis and Gracilaria (Gracilariales). J. Phycol. 30: 521–537.

    Article  Google Scholar 

  • Gutierrez, L. M. and C. Fernandez, 1992. Water motion and morphology of Chondrus crispus (Rhodophyta). J. Phycol. 28: 156–162.

    Article  Google Scholar 

  • Harvey, A. S., S. T. Broadwater, W. J. Woelherling and P. J. Mitrovshi, 2003. Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and sesurrection of the Hapalidlaceae for the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. J. Phycol. 39: 988–998.

    Google Scholar 

  • Hills, D. M. and M. T. Dixon, 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66: 411–453.

    Article  Google Scholar 

  • Hu, Z. M., X. Q. Zeng, A. H. Wang, C. J. Shi and D. L. Duan, 2004. An efficient method for DNA isolation from red algae. J. Appl. Phycol. 16: 116–122.

    Google Scholar 

  • Krienitz, L., I. Ustinova, T. Friedl and V. A. R. Huss, 2001, Traditional generic concepts versus 18S rRNA gene phylogeny in the green algal family Selenastraceae (Chlorophyceae, Chlorophyta). J. Phycol. 37: 852–856.

    Article  Google Scholar 

  • Kumar, S., K. Tamura, I. B. Jakobsen and M. Nei, 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245.

    Article  Google Scholar 

  • Luan, R. X. and S. M. Zhang, 1998. Studies on the genus Chondrus (Gigartinaceae) from Dalian, China. Acta Phytotaxonomica Sinica 36: 268–272 (in Chinese).

    Google Scholar 

  • Marston, M. and M. Villalard-Bohnsach, 2002. Genetic variability and potential sources of Grateloupia doryphora (Halymeniaceae, Rhodophyta), an invasive species in Rhode Island waters (USA). J. Phycol. 38: 649–658.

    Article  Google Scholar 

  • Mathieson, A. C. and R. L. Burns, 1975. Ecological studies of economic red algae. V. Growth and reproduction of natural and harvested populations of Chondrus crispus Stackhouse in New Hampshire. J. Exp. Mar. Biol. Ecol. 17: 137–156.

    Article  Google Scholar 

  • Prince, J. S., 1971. An Ecological Study of the Marine Alga Chondrus crispus in the Waters of Plymouth, Massachusetts, Ph.D. thesis, Cornell University, Ithaca, New York, pp. 193.

    Google Scholar 

  • Sluiman, H. j. and C. Guihal, 1999. Phylogenetic position of Chaetosphaeridium (Chlorophyta), a basal lineage in the Charophyceae inferred from 18S rDNA sequences. J. Phycol. 35: 395–402.

    Article  Google Scholar 

  • Su, Q., R. X. Luan, L. J. An and Y. G. Zu, 2002. Taxonomic studies of Chondrus, China on the basis of morphology and rbcL evidences. Bulletin of Bot. Res. 22: 10–18 (in Chinese).

    Google Scholar 

  • Thomas, M., 1938. Der FormenKreis von Chondrus crispus und seine ökologische Bedingtheit. Hedwigia 77: 137–210.

    Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougm and D. G. Higgins, 1997. The Clustal X windows inferface: flexible strategies for multiple sequence alignment aided by quality analysis toos. Nucl. Acids. Res. 24: 4876–4882.

    Article  Google Scholar 

  • Tseng, C. K., 1962. Common Seaweeds in China. Science Press, Beijing.

    Google Scholar 

  • Van de Peer, Y. and R. De Wachter, 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J. Mol. Evol. 45: 619–630.

    Article  Google Scholar 

  • Xia, B. M. and J. F. Zhang, 1999. Common Seaweeds in China. Science Press, Beijing, pp 15–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Delin  (段德麟).

Additional information

Supported by Shandong Agriculture Seedstocks Project, and Knowledge Innovation Program of Chinese Academy of Sciences (kscx2-yw-n-47-02) and the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Zena, X., Critchley, A.T. et al. Primary species recognition and phylogeny of Chondrus (Gigartinales, Rhodophyta) using 18S rDNA sequence data. Chin. J. Ocean. Limnol. 25, 174–183 (2007). https://doi.org/10.1007/s00343-007-0174-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-007-0174-x

Key words

Navigation