Skip to main content
Log in

Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

YbF3 particles doped with Ho3+ were synthesized by coprecipitation method, from which the ultraviolet and visible emission bands of the Ho3+ and the 480 nm cooperative upconversion emission of Yb3+–Yb3+ are observed under 980 nm excitation. Under the same excitation power, the emission intensity of Ho3+ in coprecipitation method is enhanced by about two times comparing to that in solid-state reaction method. The novel ultraviolet and violet emissions of the Ho3+ are firstly obtained which are centered at 360 (5G25I8),391 (3K75I8),412 (5G45I8), and 446 nm (5G55I8). The luminescence decay profiles of 545 and 652 nm visible emissions were obtained with a 980 nm pulsed laser. The excitation power dependence of the emission intensity was also measured and intensity saturation was observed. Based on the level structures of Ho3+, two- and three-photon processes are suggested to perform populations of 5S2 and 5G3 (Ho3+) levels, respectively. The dominant upconversion mechanism may be attributed to a cooperative sensitization process of two excited states of Yb3+ and energy transfers from Yb3+ to Ho3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.O. Man, E.Y.B. Pun, P.S. Chung, Appl. Phys. Lett. 77, 483 (2000)

    Article  ADS  Google Scholar 

  2. A.S. Oliveira, M.T. de Araujo, A.S. Gouveia-Neto, A.S.B. Sombra, J.A.M. Neto, N. Aranha, J. Appl. Phys. 83, 604 (1998)

    Article  ADS  Google Scholar 

  3. L.H. Huang, X.J. Wang, H. Lin, X.R. Liu, J. Alloys Compd. 316, 256 (2001)

    Article  Google Scholar 

  4. M. Laroche, M. Bettinelli, S. Girard, R. Moncoge, Chem. Phys. Lett. 11, 167 (1993)

    Google Scholar 

  5. G.S. Yi, G.M. Chow, Chem. Mater. 19, 341 (2007)

    Article  Google Scholar 

  6. D.M. Wang, Y.S. Xia, V.N. Makhov, N.M. Khaidukov, J.C. Krupa, J. Alloys Compd. 361, 294 (2003)

    Article  Google Scholar 

  7. A.S. Gouveia-Neto, E.B. da Costa, P.V. dos Santos, L.A. Bueno, S.J.L. Ribeiro, J. Appl. Phys. 94, 5678 (2003)

    Article  ADS  Google Scholar 

  8. H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, C.H. Yan, J. Am. Chem. Soc. 128, 6426 (2006)

    Article  Google Scholar 

  9. D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, J.E. Townsend, A.A.C. Tropper, Opt. Commun. 78, 187 (1990)

    Article  ADS  Google Scholar 

  10. Y.M. Hua, Q. Li, Y.L. Chen, Y.X. Chen, Opt. Commun. 88, 441 (1992)

    Article  ADS  Google Scholar 

  11. A.S. Oliveira, M.T. de Araujo, A.S. Gouveia-Neto, A.S.B. Sombra, J.A. Medeiros Neto, Y. Messaddeq, Appl. Phys. Lett. 72, 753 (1998)

    Article  ADS  Google Scholar 

  12. D.M. Baney, G. Rankin, K.W. Chang, Appl. Phys. Lett. 69, 1662 (1996)

    Article  ADS  Google Scholar 

  13. X.F. Wang, Y.Y. Bu, S.G. Xiao, J.K. Yang, J.W. Ding, Mater. Lett. 62, 3865 (2008)

    Article  Google Scholar 

  14. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Chem. Mater. 16, 1244 (2004)

    Article  Google Scholar 

  15. J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Kramer, H.U. Gudel, J. Lumin. 117, 1 (2006)

    Article  Google Scholar 

  16. G.Y. Chen, Y. Liu, Y.G. Zhang, G. Somesfalean, Z.G. Zhang, Appl. Phys. Lett. 91, 133103 (2007)

    Article  ADS  Google Scholar 

  17. J.C. Boyer, L.A. Cuccia, J.A. Capobianco, Nano Lett. 7, 847 (2007)

    Article  Google Scholar 

  18. X.L. Zou, H.J. Toratani, J. Non-Cryst. Solids 181, 87 (1995)

    Article  ADS  Google Scholar 

  19. L. Feng, J. Wang, Q. Tang, L.F. Liang, H.B. Liang, Q. Su, J. Lumin. 124, 187 (2007)

    Article  Google Scholar 

  20. P.V. Dos Santos, M.V.D. Vermelho, E.A. Gouveia, M.T. de Araújo, A.S. Gouveia-Neto, J. Chem. Phys. 116, 6772 (2002)

    Article  ADS  Google Scholar 

  21. L.M. Yang, H.W. Song, L.X. Yu, Z.G. Liu, S.Z. Lu, J. Lumin. 116, 101 (2006)

    Article  Google Scholar 

  22. A.S. Gouveia-Neto, E.B. da Costa, L.A. Bueno, S.J.L. Ribeiro, J. Lumin. 110, 79 (2004)

    Article  Google Scholar 

  23. A. Bednarkiewicz, W. Strek, J. Phys. D Appl. Phys. 35, 2503 (2002)

    Article  ADS  Google Scholar 

  24. D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, Appl. Phys. Lett. 91, 051920 (2007)

    Article  ADS  Google Scholar 

  25. M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, M.P. Hehlen, Phys. Rev. B 16, 3337 (2000)

    Article  ADS  Google Scholar 

  26. X. Qin, T. Yokomori, Y. Ju, Appl. Phys. Lett. 90, 073104 (2007)

    Article  ADS  Google Scholar 

  27. G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, S. Lu, Opt. Commun. 242, 215 (2004)

    Article  ADS  Google Scholar 

  28. J. Qiu, M. Shojiya, Y. Kawamoto, J. Appl. Phys. 86, 909 (1999)

    Article  ADS  Google Scholar 

  29. K. Rotereau, P.H. Daniel, J.Y. Gesland, J. Phys. Chem. Solids 59, 969 (1998)

    Article  ADS  Google Scholar 

  30. X.F. Wang, S.G. Xiao, X.L. Yang, J.W. Ding, J. Mater. Sci. 43, 1354 (2008)

    Article  Google Scholar 

  31. G.S. Maciel, A. Biswas, R. Kapoor, P.N. Prasad, Appl. Phys. Lett. 76, 1979 (2000)

    Article  ADS  Google Scholar 

  32. F. Auzel, Chem. Rev. 104, 139 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Bu, Y., Xiao, S. et al. Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method. Appl. Phys. B 93, 801–807 (2008). https://doi.org/10.1007/s00340-008-3246-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3246-5

PACS

Navigation