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Abstract Bilayer composites that can show magneto-

birefringence effect were fabricated based on the product

effects of magnetostriction and stress-birefringence. Large

magneto-optical responses were obtained under a magnetic

field lower than 700 Oe at room temperature for the

bilayers. The magneto-optical retardation was observed to

decrease along the direction vertical to the interface, sug-

gesting a non-uniform stress distribution along the thick-

ness direction in the elasto-optical layer. Local action

principle or Saint-Venant’s principle was taken into

account in analysis of the interlayer elastic coupling and

the magneto-birefringence effect. The theory that was

consistent with experiments was obtained.

1 Introduction

Magneto-birefringence (MB) effect has being attracted

sustained attention due to its potential applications in the

fields of magnetism–light conversion and magneto-optical

modulation [1–3]. In 1960s, some semiconductor films

were found to show MB effects, but only at lower tem-

perature (no higher than liquid nitrogen temperature) and

with stronger magnetic field (higher than thousands Oe) [2,

3]. Recently, the MB response obtained in laminate com-

posites with lower magnetic field and at room temperature

makes it possible to get applications of MB effect [4].

Most layered composites play the role through the

interfacial elastic coupling. The stress-inducing layer, such

as the magnetostrictive or electrostrictive layer, usually

brings a force parallel to the interface on the surface of the

elastic layer connected. So far, it tends to think that the

stress induced by the surface force distributes uniformly

along the thickness direction in the elastic layer when

discussing the effect of interlayer elastic coupling [5, 6].

However, this supposition often gives rise to a theory that

does not match experimental results. For example, the

electro-optical retardation observed decreases with

increasing the distance from the beam incident point to the

interface in a laminated composite of electrostriction and

elasto-optical medium. But the theory under the supposi-

tion gives an invariant electro-optical retardation in thick-

ness direction [7]. Obviously, it is necessary to reconsider

the presumption that ‘‘stress distributes uniformly along the

thick direction’’. In fact, according to the principle of local

action, namely, Saint-Venant’s principle [8], under a sur-

face force, the stress in an elastic medium distributes non-

uniformly in the direction perpendicular to the surface.

According to Saint-Venant’s principle ‘‘in elastic bod-

ies, the stress caused by a load distributed on a small area

(or volume) relates only to the resultant force and moment

of the load in the region far from the loading zone’’. When

solving specific problems, if the stresses cared are only at

the area far from the loading zone, under the conditions of

keeping the resultant force and moment invariant, we can

use an equivalent load that distributed uniformly according

to the convenience of computation or experiment. But

more careful consideration must be given near the loading

area. The region near the interface of a laminate composite

is just located near the loading area, therefore, there may

exist non-uniform stress distribution. But, so far, the law of

the stress distribution along the direction vertical to the

action line is unclear, because the Saint-Venant principle

has not been thoroughly proven yet in mathematics, or the
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principle of local action cannot be quantified since the

perfect boundary conditions are difficult to get [9, 10].

However, we found, after making some reasonable

approximation, a complete set of boundary conditions can

be given, and the corresponding stress distribution can be

obtained for planar layered composite materials.

2 Experimental results and discussion

The samples under investigation are layered composites of

magnetostrictive and elasto-optical materials. Elasto-opti-

cal materials are those being capable of displaying stress-

birefringence effects. When polarized light passes through

these materials subjected to a stress, it separates into two

light vectors, which often noted as ordinary (o) and the

extraordinary (e) lights, respectively, traveling at different

velocities. Each of the lights orients parallel to the direction

of principal stresses, but perpendicular to each other,

resulting in two different indices of refraction, which vary

as a function of the stress applied [11, 12].

Polycarbonate (PC) is an easy-gained polymer with high

transparency, optical isotropy and no natural birefringence

without inner stress. It was often used in the study of

photoelasticity due to its strong effect of stress-birefrin-

gence and very small optical and mechanical creep at room

temperature [13, 14].

The phase difference between the transmitted o and e

lights from a birefringence medium is known as retardation

d, which can be expressed as [11, 15]

d ¼ 2pcdr=k; ð1Þ

where r is the difference of principal stresses, d is the

distance that the beam passed through, c is the stress-

optical constant and k is the wave length of the incident

light.

PC plates of 5 mm in width were cut into strips of

20 mm in length and 2.75 mm in thickness. Residual stress

that perhaps induced in the primary manufacturing process

in PC samples should be relieved through annealing before

use. For the purpose, all the PC samples were heated to

158 �C, and kept hot for 2 h, then cooled to 140 �C at the

rate of 5 �C/h, and furnace cooled. The stress-birefringence

test performed with the PC strip used reveals the stress-

optical constant c = 70.98 9 10-12/Pa [16].

Rare earth-iron alloy terbium dysprosium iron Tb1-

xDyxFe2-y (Terfenol-D or TDF) is well known for its great

performance in magnetostriction [17–19]. Its magneto-

strictive coefficients can reach 1,500–1,800 ppm under

stress, which is much larger than that without stress due the

so-called ‘‘jump-effect’’ [20]. Commercial TDF strips with

the sizes of 20 9 5 9 2 mm3 were employed as the mag-

netostrictive phase and bonded to PC strip(s) with super

glue to form layered composites, as shown in Fig. 1a. Their

greatest magnetostriction was directed to the length, the

y direction, as shown in Fig. 1b. The TDF in the composite

should be considered to work under stress due to the ret-

roaction from the PC layer.

MB response with the bilayers of TDF/PC was mea-

sured. A laser of 632.8 nm in wave length, a set of polariser

and analyzer, as well as a digital Lux meter (Tondaj LX-

1010B) were used in the experiment. Figure 2 shows the

MB response at different point z in the PC layer for the

TDF/PC composite with the TDF in a thickness of 2 mm,

Fig. 1 The schematic diagram of a bilayer composite of MB effect

(a), and the external load subjected, as well as the internal stress

distribution (b)

Fig. 2 The MB response at different point of the PC layer in the

TDF/PC composite with the TDF in thickness of 2 mm, where x is the

distance from the points to the interface
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where z is the distance from the point measured to the

interface; NELI means the normalized emergent light

intensity, which equals to I2/I2max, where I2 is the emergent

light intensity measured, and I2max is the maximum value

of I2. The size of the PC layer in the composite is

20 9 5 9 6.9 mm3. It is found that, with increasing z, the

(magneto-optical) retardation increases first, and reaches its

maximum value at z = 0.2 mm, then decreases. Second, a

MB response of reverse direction was observed when

z exceeds 5.0 mm, suggesting a bending behavior in the

composite with increasing magnetic field.

Figure 3 shows the MB response at different point of the

PC layer in the TDF/PC bilayer with a layer of TDF of

4 mm in thickness. It is found that the retardation increases

monotonously with increasing magnetic field and decreases

with increasing the distance to the interface. No MB of

reverse direction is observed, meaning that no bending

occurred in the composite with a thick enough layer of

TDF since TDF has a higher bending strength.

According to Fig. 3, we can assess the corresponding

retardations for each curve, respectively. The retardation as

a function of z is shown in Fig. 4, where the points are the

retardations estimated from Fig. 3, and the line is the fitted

curve, which presents a straight line.

3 Theoretical estimation of the MB effect for bilayer

magnet/elasto-optical composite

For a free-body layered structure, assuming that elastic

coupling at the interface was ideal, namely, any flexural

deformations of the layers can be ignored, and the mag-

netostriction of the ferromagnetic phase is along the

direction of the length of the sample, the constitutive

equations for the ferromagnetic phase are given by
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where Hi is the magnetic field, H1 = H and H2 = H3 = 0

in the present case, Sm
i , sm

ij , qm
ij and rm

i (i, j = 1, 2, 3) are the

strains, compliances, piezomagnetic coefficients

(qm
ij ¼ olm

ij

.
oHi and qm

21 = qm
12) and the stresses in

different directions of the ferromagnetic layer,

respectively, lm
ij is the magnetostrictive coefficient, the

superscript ‘‘m’’ means the ferromagnetic phase and the

subscript i (j) = 1, 2, 3 indicates different directions.

While, the stress–strain equations in the elasticoptical

phase can be written as:
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where E, l and re
i are Young’s modulus, Poisson’s ratio

and stress of elastic-optical phase, respectively, the

superscript ‘‘e’’ means the elasto-optical phase. For ideal

interfacial coupling, there are following boundary

conditions re
3 ¼ rm

3 ¼ 0, Se
1 ¼ Sm

1 , Se
2 ¼ kSm

2 , re
1 1� vð Þ �

rm
1 v ¼ 0 and re

2 1� vð Þ � rm
2 v ¼ 0, where m ¼

vm= ve þ vmð Þ and 1-v are the volume fractions of the

ferromagnet and elasto-optical phases, respectively. In

addition, there are following relations sm
11 ¼ sm

22 and sm
12 ¼

sm
21 for an isotropy elasto-optical layer. Combining Eqs. 2

and 3 leads to

Fig. 3 The MB response at different point of the PC layer in the

TDF/PC composite with the TDF in thickness of 4 mm, where x is the

distance from the points to the interface

Fig. 4 The retardation as a function of the distance to the interface in

the PC layer of a TDF/PC composite with the PC layer in size of

20 9 5 9 6.9 mm3
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re
1 ¼

1� Es11m0ð Þq11 þ lþ Es12m0ð Þq21

1� Es11m0ð Þ2� lþ Es12m0ð Þ2
EH

re
2 ¼

lþ Es12m0ð Þq11 þ 1� Es11m0ð Þq21

1� Es11m0ð Þ2� lþ Es12m0ð Þ2
EH,

ð4Þ

where s11 ¼ sm
11, s12 ¼ sm

12 , q11 ¼ qm
11, q21 ¼ qm

21,

m0 ¼ ð1� mÞ=m. Since piezomagnetic coefficient q11 is often

much greater than q21 for a ferromagnet, we can prove that

re
1 [ [ re

2 from Eq. 4. Thus, re
2 can be ignored, and re

1 is

just the stress acted on and parallel to the surface of the PC

layer.

Assuming (1) ideal elastic coupling forms in the inter-

layer of a tabulate bilayer composite, (2) the elastic med-

ium layer only bears a tensile stress of single side re
1 that is

at and parallel to the interface, that is the y direction, (3)

the tensile stress generates deformations Ddi and Ddf in y

direction at the interface and free surface, respectively, for

the elastic layer. Thus, based on the considerations above,

the stress and strain in the elastic layer can be considered as

a plane problem. According to the elasticity, if all body

forces are zero, we have

rz ¼
o2u
oy2

; ry ¼
o2u
oz2

; szy ¼ �
o2u
ozoy

; ð5Þ

where u is the stress function for the plane. Meanwhile, the

stress function should also meet the biharmonic equation as

below

r4u ¼ o2

oz2
þ o2

oy2

� �
o2

oz2
þ o2

oy2

� �
u ¼ 0: ð6Þ

Considering that the external load directs only to the y

direction, the tensile stress in thick direction z can be

neglected, namely, rz ¼ o2u=oy2 ¼ 0:

For the flat elastic medium and the stress subjected as

shown in Fig. 1b, we can list the corresponding boundary

conditions as below

ðvÞz¼0;y¼d2=2 ¼ Ddi; ð7Þ

ðvÞz¼d3;y¼d2=2 ¼ Ddf ; ð8Þ

where v and y are the displacements in y and z directions,

respectively, Ddi and Ddf are the strains of PC at interface

and free surface, respectively.

That the principal stress in z direction equals to zero

leads to

1

d3

Zd3

0

Ry þ Tzy

� �
y¼d2=2

dzþ d2

2
re

1 ¼ 0; ð9Þ

That the principal stress in y direction equals to zero

results in

2

d2

Zd2=2

0

Tyz

� �
z¼d3

dy ¼ 0; ð10Þ

And that principal moment equals to zero yields,

1

d3

Z0

d3

d3 � zð Þ Ry þ Tzy

� �
y¼d2=2

dzþ 2

d2

Zd2=2

0

y Tyz

� �
y¼d3

dy

þ d2

2
d3r

e
1 ¼ 0; ð11Þ

where Ry ¼ 1
y

Ry
0

rydy, Tzy ¼ 1
y

Ry
0

szydy and Tyz ¼ 1
z

Rz
0

syzdz are

the sum of the tensile and shear stresses in y and z

directions, respectively. In addition, that shear stress is zero

at the free surface gives,

szy

� �
z¼d3
¼ 0; ð12Þ

According to Saint-Venant principle, the sphere of

influence of a local load is limited [8, 9]. Assuming the

scope of the influence in z direction is h, then all the stress

is zero when z C h, thus,

ry

� �
z¼h
¼ 0; ð13Þ

Combining Eqs. 4–13 leads to

ry ¼
8
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3

EDdf

d2
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2
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y� d2

4
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6
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þ 3d2re

1

d3
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3
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3
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;

ð14Þ

where Ddf ¼ d2Glm
11

2E�G
� d2

2
re

1
ð10E�GÞ

2Eð2E�GÞ , and re
1 can be obtained

from Eq. 4.

It can be seen from the results above, (1) the tensile and

shear stresses vary in direction z follow a linear and a point

conic functions, respectively, (2) both stresses relate not

only to the external load but also to the nature of the

materials involved. Since the magneto-optical retardation,

which is proportional to the stress loaded (see Eq. 1), lin-

early decayed in the thickness direction of the PC layer, as

shown in Fig. 4, we can reach the conclusion that the

tensile stress is the principle stress acted on PC layer. Thus,

according to Eq. 1, the magneto-optical retardation can be

rewritten as

d ¼ 2pcd1

k
8

d2
3

EDdf

d2

þ 5d2

2
re

1

� �
y� d2

4
� d3

6

� �
þ 3d2re

1

d3

� �
2d3 � 3zð Þ;

ð15Þ

Setting the polarization direction of both polarizers

perpendicular to each other and the laser beam passes
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through the middle point in y direction (y = 0) for the PC

layer, we consequently obtain the normalized intensity of

emergent light as below

NELI ¼ sin2 d
2

� �

¼ sin2 pcd1

kd2
3

4EDdf

d2

d2

2
þ d3

3

� �
þ d2r

e
1 5d2 þ

d3

3

� �� �
3z� 2d3ð Þ

� 	
:

ð16Þ

Equation 16 indicates that the emergent light intensity

not only relies on applied field, the physical parameters of

the materials involved and the wave length of the incident

light, but also on the geometrical sizes of the composite,

suggesting that the MB effect in layered composites is

highly size-sensitive. From Eq. 16, we can work out the

curves of BR response with laser beam incidence at

different point z, as shown in Fig. 5. All the parameters

used in the calculation are d1 9 d2 9 d3 = 6.3 9

20 9 6.9 mm3, c = 70.98 9 10-12/Pa, k = 632.8 nm,

E = 2,430 9 106 N/m2, G = E/2(1 ? l), l = 0.38,

s11 = 125 9 10-12 m2/N and s12 = -17 9 10-12 m2/N,

respectively. Comparing Fig. 5 with Fig. 3, we find that the

retardation for both groups of curves corresponding to the

same incident point z is basically the same except some

difference in initial phase, which always exists for a

practical PC layer due to the possible remanent stress

produced in the process of preparation. Thus, Fig. 5

suggests that the theoretical analysis above is reasonable

considering that it is difficult to set a suitable initial phase

in theoretical derivation.

4 Conclusion

Layered composites of ferromagnet and elasto-optical

material can show a magneto-birefringence (MB) effect that

can work at room temperature and lower magnetic field.

These characters make the layered MB composites be

superior to the magneto-optical semiconductors found so

far. The MB effect in a bilayer composite is highly size-

sensitive and position-sensitive since the elasto-optical

layer was acted by a unilateral mechanical stress. The stress

in the direction parallel to the interface linearly decreases,

so the magneto-optical retardation also linearly declines

along the thickness direction of the elasto-optical layer.
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