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Abstract Rhodolith distribution, morphology, and

cryptofauna have been minimally studied on fringing reefs.

We present the first study to examine both rhodolith dis-

tribution and associated cryptofauna in a tropical fringing

reef, located along the microtidal, wave-dominated north

shore of Moorea, French Polynesia. We find higher abun-

dances of larger, rounder, and more branching rhodoliths in

locations where longer waves impact the fringing reef.

Among 1879 animals extracted and identified from 145

rhodoliths, ophiuroids, polychaetes, decapod crustaceans,

and gastropods are most abundant, with a wide range of

additional taxa contributing to diversity. Large and

branching rhodoliths contain the greatest number and

diversity of cryptofaunal organisms and are the preferred

habitat of rigid-bodied, non-burrowing forms. Overall,

exposure to waves entering the lagoon through passes

appears to be a critical determinant of rhodolith abundance,

morphotype, and in turn cryptofaunal composition in

fringing reef habitats.

Keywords Cryptofauna � Rhodoliths � CCA � Red algae �
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Introduction

Rhodoliths are subspherical balls of marine biogenic cal-

cium carbonate whose distribution and internal cryptofau-

nal biodiversity have received little attention in tropical

reef settings. Existing studies note that wave activity

influences rhodolith abundance and morphology (Bosselini

and Ginsburg 1971; Bosence 1976; Piller and Rasser

1996), and that rhodolith size and complexity positively

affect cryptofaunal diversity (Steller et al. 2003; Foster

et al. 2013). However, relationships between local envi-

ronment, rhodolith abundance, and rhodolith morphology

have been minimally examined on fringing reefs (but see

Weber-van Bosse and Foslie 1904; Pollock 1928; Scoffin

et al. 1985). The relationship between rhodolith charac-

teristics and cryptofaunal diversity has also received lim-

ited attention in tropical settings (but see Northern

Australia: Hutchings and Weate 1977; Hawaii: Brock and

Smith 1983; Brazil: Figueiredo et al. 2007). Our study of

rhodoliths on the fringing reef tops of Moorea, French

Polynesia addresses these limitations.

Rhodoliths form through the accretion of calcifying

coralline red algae around coral or rock nuclei subject to

intermittent movement by waves, currents, or bioturbation

(Marrack 1999; Foster et al. 2013). As rhodoliths rotate,

layers of coralline algae accumulate sequentially around

the nuclei (Bosence 1983). Rhodoliths typically grow

between 0.5 and 1.5 mm per year, to a reported maximum

of 2.7 mm per year (Frantz et al. 2000; Blake and Maggs

2003; Amado-Filho et al. 2012; Darrenougue et al. 2013).

Growth can continue for decades or longer as rhodoliths

roll on the benthic substrate (Foster 2002). Variation in

rhodolith abundance, morphotype, size, and shape likely

relate to environmental factors such as wave energy that

influence rotation (Steller and Foster 1995; Piller and
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Rasser 1996), but this relationship remains underexplored,

especially on tropical fringing reefs.

Physically complex environments, including coral reefs

(Knowlton et al. 2010), harbor communities of cryptofau-

nal organisms living in hidden or buried microhabitats

(Enochs 2012). The internal complexity of rhodoliths

similarly supports diverse invertebrate cryptofauna (Nelson

2009), with growth patterns and bioerosion contributing to

often intricate interior void spaces (Basso 2009; Nebelsick

et al. 2011; Nitsch et al. 2015). Void spaces provide shelter

from abrasion and predation (Spieler et al. 2001), attract

detritivores by accumulating detritus (Keegan 1974), and

support larval settlement (Steller et al. 2003; Steller and

Cáceres-Martı́nez 2009). These voids are typically much

larger than sediment pores, yielding more habitable space

and thus substantially higher animal biodiversity than

adjacent sand habitats (Nelson 2009). As a consequence,

researchers have encountered previously undescribed

cryptofaunal species in rhodoliths (Clark 2000), empha-

sizing the importance of studying rhodolith cryptofaunal

communities.

Moorea is a wave-dominated reef system with minimal

tidal range (Hench et al. 2008). Passes in the barrier reef

allow large, long-period ocean waves to enter the lagoon,

creating heterogeneity in wave energy along the shallow

fringing reef. Significantly, waves are the main driver of

rhodolith movement in shallow systems (Marrack 1999).

Consequently, Moorea’s fringing reef rhodoliths provide a

revealing microcosm for the study of interacting physical

and biological processes.

Our study assesses rhodolith abundance, morphology,

and associated cryptofaunal diversity across the north shore

of Moorea to address these important and underexplored

topics. We hypothesize that (1) sites with distinctive wave

energy regimes exhibit differences in rhodolith abundance,

morphotype, volume, and shape; (2) intra-site factors such

as water depth, distance from shore, and substrate type that

interact with wave energy modulate rhodolith abundance

and morphology within a site; and (3) site-related factors

and rhodolith abundance in beds, as well as physical

characteristics of the rhodoliths themselves, influence the

abundance and diversity of associated cryptofauna.

Methods

To evaluate our hypotheses, we compared wavelengths

between sites; measured rhodolith abundance, morphotype,

and physical dimensions along transects; and calculated

rhodolith volume and shape. Using generalized linear

models (GLMs) and multinomial logistic regression

(MLR), we tested the relationship of measured parameters

to site, location within site, water depth, distance from

shore, and substrate type; as well as evaluated the associ-

ation of morphotype, volume, and shape. Finally, we sur-

veyed cryptofauna present in rhodoliths from different

sites; explored these data with principal components anal-

yses (PCA) and multidimensional scaling; and evaluated

how cryptofaunal abundance, family diversity, modes of

life, and individual taxa vary with location, morphotype,

and size. All analyses were conducted in JMP 14.

Selection and description of study sites

We inspected nine sites along the northern shore of

Moorea, selecting three that support rhodoliths. Passes in

the barrier reef expose two sites, Talari and Puutara, but not

the third, Hilton, to larger waves (Fig. 1a). Snorkel surveys

of each site covered a 500 by 100 m area, informing

transect placement for data collection. We characterized

substrate and rhodolith presence along each tran-

sect. Abridged descriptions of our sites appear below, with

detailed descriptions in Online Resource 1.

At Talari Point, northwest of Opunohu Bay (Fig. 1b;

17�2905000 S, 149�5104700 W), a shallow reef flat and

nearshore reef crest faces the Tareu Pass in the barrier reef

across a 25 m deep lagoon. Larger ocean waves commu-

nicate through the pass, impinging on a fringing reef

dominated by crustose algal pavement. Initial surveys

noted rhodolith aggregations on sandy substrate in the

southeastern portion of the study site, and lower rhodolith

densities elsewhere.

East of the Hilton Resort (Fig. 1d, 17�2900500 S;

149�5002500 W), the shallow fringing reef has a ragged

outer edge that drops to a depth of 3 to 4 m in the lagoon.

The barrier reef protects the fringing reef (Monismith et al.

2014); only smaller trade wind generated waves produced

in the lagoon affect the site. Unlike the Talari and Puutara

sites, the Hilton site lacks a discrete rhodolith bed.

At Puutara (Fig. 1f, 17�2805100 S; 149�4800200 W), a

shallow reef flat with a developed crest faces the Irihonu

Pass in the barrier reef across a 15 m deep lagoon. Larger

ocean-derived waves from the pass impinge on a fringing

reef composed of coralline algae and small corals. Sub-

strate shoreward of the fringing reef crest consists of rubble

or sand. The Papeahi River drainage on the western shore

of the site creates a cobble substrate. Initial surveys noted

rhodolith aggregations shoreward of the fringing reef crest

in the northeastern portion of the site.

Wavelength measurements

The ability to do work, such as moving rhodoliths, reflects

wave power, a function of wave height and wave period.

These parameters strongly correlate with wavelength (e.g.,

Sverdrup et al. 1942). Wavelength measurement via
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Google Earth images proved the best available proxy for

comparing wave energy given the limited spatial scale and

thus wave size of the lagoon sites. This allowed simple

comparison of contemporaneous wave activity between

sites. Dates where waves were visible due to low angles of

incident light were chosen for analysis. These included 5

dates for the Talari site and 4 dates each for the Hilton and

Puutara sites. Wavelength on each date for each site was

measured by averaging the distance between five waves

approaching the fringing-reef crest. We calculated wave

base by halving wavelength. Wave base was less than

lagoon depth, confirming that open water wave models

were relevant (see Sverdrup et al. 1942). We determined

whether the Talari and Puutara sites had higher wave-

lengths than the Hilton site via paired, one-tailed t-tests of

wavelengths measured at the same date.

Rhodolith distribution and characteristics

Survey of rhodolith distribution and characteristics

Transects captured variation in benthic habitat and transi-

tions in rhodolith distribution. Three 50 m transects at each

site, oriented perpendicular to shore, provided a standard

set of measurements (Fig. 1b, d, f). Additional, shorter

transects extended standard transects to reach the reef edge

at the Talari and Puutara sites, while 30 m shore-parallel

transects explored salient features at each site (Online

Resource 2 Fig. 1a, c, e ).

For all transects, water depth was measured every meter;

percent coverage of four substrate types—smooth carbon-

ate rock, loose sand, live coral, and pebbles or larger coral

rubble—were estimated every 2 m using a 0.25m2 quadrat;

and the abundance, morphotype, and dimensions of rho-

doliths along each transect were assessed every 2 m within

a separate 0.25m2 quadrat. For transects perpendicular to

shore, we placed quadrats every 2 m. For transects parallel

to shore, we placed quadrats every meter to capture tran-

sitions in rhodolith distribution, and every 2–3 m where no

such transitions occurred. We defined rhodoliths as rubble

having C 50% coverage of crustose coralline algae. We

first identified the type of substrate—smooth carbonate

rock, loose sand, live coral, fine pebbles, or coral rubble—

underneath each rhodolith, then categorized each rhodolith

into one of three morphotypes defined by Bosence (1983):

laminar, columnar, or branching (Fig. 2). Following Sneed

and Folk (1958), we measured three orthogonal axes for

each rhodolith: the long (L), intermediate (I), and short

(S) diameters.

Calculation of volume, shape, and rhodolith bed

Using the three orthogonal axes, we calculated rhodolith

volume (Teichert 2014) and categorized each rhodolith into

one of three shape classes: discoidal, ellipsoidal, or

spheroidal (Sneed and Folk 1958). Rhodoliths between

shape classes were classified as mixed. Following Graham

and Midgley (2000), we generated ternary diagrams of

shape from the three axes. We defined quadrats with over

5000 cm3 total rhodolith volume as rhodolith beds. This

excluded the numerous but small coated grains within the

Papeahi River drainage channel, a separate phenomenon

beyond the scope of our study.

Statistical analysis of rhodolith distribution

and characteristics

Using GLMs and MLR, we evaluated whether location

(site, transect) and benthic characteristics (distance from

shore, water depth, substrate) influence rhodolith abun-

dance. Different series of GLMs used site and transect as

location predictors, as disparities in degrees of freedom

precluded combined site-transect models. Initial tests

crossed distance from shore, water depth, and location

(Online Resource 2 Table 1). Shore-parallel transects

lacked distance from shore measurements and were thus

excluded from tests of distance. Predictors that were not

significant based on false discovery rate (FDR) logworth

values and did not compose significant predictor crosses

were sequentially eliminated to generate models for each

analysis. Predictors from resultant models were crossed

with percent substrate cover, where four substrate types

functioned as separate predictors (Online Resource 2

Table 2). All models employed a Poisson distribution and

log link function.

We also tested predictions that location and benthic

characteristics control rhodolith morphotype, volume, and

shape. Categorical variables (morphotype and shape) were

investigated using MLR models, while continuous vari-

ables (volume) were investigated using GLMs. As before,

site and transect were tested in parallel. We crossed dis-

tance from shore, water depth, and location to predict

morphotype, volume, and shape, eliminating factors that

bFig. 1 Map of study sites and initial transects. a Map of Moorea with

study sites marked as squares. b, d, f Expanded images of the Talari,

Hilton, and Puutara study sites, respectively. Numbered solid black

lines represent initial 50 m transects, while dashed lines represent

additional transects less than 30 m long. Red dots mark cryptofauna

collection points. c, e, g Benthic topology and rhodolith community

along initial transects at the Talari, Hilton, and Puutara sites,

respectively. Black lines represent water depth in meters. Black dots

represent rhodolith count in each 0.25 m2 quadrat. Substrate

composition is represented through color. Asterisks mark the

positions of rhodolith beds based on total volume calculations. Site

images are modified from Google Earth
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were not significant based on FDR logworth values (Online

Resource 2 Table 1). We then crossed these models with

the underlying substrate type (Online Resource 2 Table 2).

We excluded the ‘‘mixed’’ category from models predict-

ing shape, as it did not differentiate between dis-

coidal/spheroidal, ellipsoidal/spheroidal, or ellipsoidal/

discoidal intermediates. In GLM models predicting vol-

ume, we log-transformed volume to employ a normal

distribution and identity link function.

To assess relationships between rhodolith morphotype,

volume, and shape, we generated a GLM crossing rhodolith

morphotype and shape to predict rhodolith volume, and

used MLR to compare rhodolith morphotype and shape.

GLMs employed a normal distribution, identity link func-

tion, and log transformation.

Cryptofauna abundance and diversity

Collection of rhodoliths and extraction of cryptofauna

To survey cryptofaunal communities in rhodoliths from

different locations, we selected five collection points across

the three study sites. We chose two points—one inside a

rhodolith bed, and one outside—at both the Talari and

Puutara sites to evaluate effects of beds on cryptofauna,

and one collection point at the Hilton site, which lacked a

bed. We collected 10 rhodoliths of each morphotype using

an expanding spiral search pattern around each collection

point. Because the Hilton site had few branching rhodo-

liths, only three were collected from this site. To ensure

comparable rhodolith volume between sites and morpho-

types, collections were restricted to rhodoliths with a long

diameter between 6 and 10 cm. Individually labelled rho-

doliths isolated in closed bags were maintained in flow-

through seawater until dissection.

To recover endofauna, we broke rhodoliths into

approximately 1cm3 fragments using hammers and chisels,

removed macroscopic cryptofauna using forceps, and

extracted hidden organisms by submerging rhodolith

fragments in fresh water. Organisms that emerged from

rhodoliths while in collection bags were also recorded.

Specimens were identified to the lowest possible taxo-

nomic level using resources for specific groups, including

Salvat and Rives (1991) for molluscs and Fauchald (1977)

for polychaetes. We confirmed these identifications with

imagery from the UC Berkeley Moorea BIOCODE project

(Meyer 2017) and used the WoRMS (WoRMS Editorial

Board 2020) system of classification to standardize species

taxonomy. Most cryptofaunal organisms were identified to

the genus and species levels, and nearly all were identified

to the family level. However, we excluded sponges from

analysis and classified immature cnidarians only to phylum

due to challenges in visual identification.

In addition to taxonomy, we categorized organisms by

body form and motility at the order level, as these traits

appeared to respond similarly to rhodolith morphology

across taxa. Categories of body form included rigid (hard-

shelled or spinose), articulated (hard-bodied but bendable),

and flexible (soft-bodied). Categories of motility included

active non-burrower, motile burrower, and sessile infauna.

Statistical analysis of cryptofauna abundance and diversity

The number of organisms and families in each rhodolith

were used as measures of abundance and diversity,

respectively. Five potential predictors—site, association

with rhodolith bed, rhodolith morphotype, volume, and

shape—were screened in JMP. The FDR logworth of site,

bed association, and shape failed to reach threshold sig-

nificance for both abundance and diversity, eliminating

these predictors from this analysis.

To further assess the relationship between these factors,

we performed PCA using order-rank taxa with more than

10 observations as variables. Dummy variables, displayed

on the PCA but not included in analyzed data, included

rhodolith morphotype, association with rhodolith bed, and

volume, as well as organism abundance, diversity, and

categories of body shape and motility. Multidimensional

scaling was performed with the same taxa to better evaluate

b ca

Fig. 2 Three rhodolith morphotypes examined in study. a Laminar: algal coating lacks major protrusions. b Columnar: bumpy surface has

rounded protuberances and few internal cavities. c Branching: tightly packed protrusions produce complex internal void spaces
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the role of the most abundant groups in shaping relation-

ships between different factors.

To further test relationships between rhodolith charac-

teristics and cryptofauna, we input morphotype and volume

as predictors in two fully-crossed GLMs predicting abun-

dance and diversity. Each GLM employed a Poisson dis-

tribution and log link function. GLMs assessed predictors

of abundance for each phylum, as well as for each order

exceeding 10 individuals. We additionally analyzed cate-

gories of body form and motility, as well as the four most

abundant decapod families, which were not well explored

in the order-level analysis. Each fully-crossed GLM used

rhodolith morphotype, volume, and association with rho-

dolith bed as predictors, and employed a Poisson distri-

bution and log link function. We eliminated non-significant

predictors in order of descending p-value. Additional

GLMs using site as predictor were performed on sipun-

culan orders.

Results

Rhodolith distribution and characteristics

Sites adjacent to barrier reef passes are exposed to longer

wavelengths and thus higher wave power than protected

sites. As a result, waves at the Talari (paired t-test: t = –

5.28, p = 0.007) and Puutara (paired t-test: t = 3.16, p =

0.04) are significantly longer than those at the Hilton site

(Table 1).

The wave-exposed Talari and Puutara sites contain more

rhodoliths (GLM: X2 = 43.51, p\ 0.0001), more branch-

ing morphotypes (MLR: X2 = 10.42, p = 0.03), larger

rhodoliths (GLM: X2 = 208.60, p\ 0.0001), and rounder

rhodoliths (MLR: X2 = 65.04, p\ 0.0001) compared to

the Hilton site (Fig. 3). At these sites, slightly deeper outer

portions of the fringing reef face the wave source from the

pass and experience breaking waves. Thus, increased depth

and distance from shore relate to greater wave energy, and

more wave-exposed locations at the Talari and Puutara

sites support larger (GLM: X2 = 10.31, p = 0.001 for dis-

tance; X2 = 12.05, p = 0.0005 for depth) and more

branching (MLR: X2 = 12.41, p = 0.01 for site-distance

cross; X2 = 31.76, p\ 0.0001 for site-depth cross) rho-

doliths (Fig. 1c, e, g; Online Resource 2 Fig. 1b, d, f).

Carbonate rock substrate appears associated with high

wave energy, and more (GLM: X2 = 13.10, p = 0.0003)

large (GLM: X2 = 17.45, p = 0.0006), branching (MLR:

X2 = 45.69, p\ 0.0001 for transect-substrate cross) rho-

doliths appear on rock substrate (Online Resource 2

Table 2). Additional tests support relationships between

morphotype and shape (MLR: X2 = 82.62, p\ 0.0001)

and morphotype and volume (GLM: X2 = 113.36,

p\ 0.0001) (Online Resource 2 Table 3): branching rho-

doliths are largest and most spheroidal, while laminar

rhodoliths are smallest and most ellipsoidal.

Cryptofaunal abundance and diversity

From 1879 organisms recovered from 145 rhodoliths, we

identified 177 distinct taxa across 9 phyla, 19 classes, 38

orders, and 86 families. We identified 98% of individual

organisms to the family level or below. Arthropods

(n = 621), annelids (n = 556), echinoderms (n = 494), and

molluscs (n = 134) were most common.

In our PCA, the first 2 axes have eigenvalues over 2, and

explain 24% and 13% of variation, respectively (Fig. 4).

Axes 3–8 yield similar loadings (eigenvalues between 1.7

Table 1 Wavelength and wave base across study sites

Measurement Year Average Site comparison

Feb 2013 Feb 2016 May 2017 Feb 2018 Aug 2019 Talari-Hilton Puutara-Hilton

Wavelength (m)

Talari 12.17 11.83 6.09 12.50 9.00 10 ± 1 t = - 5.28 p = 0.007 t = 3.16 p = 0.04

Hilton 2.89 2.65 2.79 4.18 – 3.3 ± 0.4

Puutara 12.38 10.47 5.33 – 6.95 9 ± 2

Wave base (m)

Talari 6.9 5.92 3.05 6.25 4.50 5.2 ± 0.6

Hilton 1.45 1.33 1.40 2.09 – 1.6 ± 0.2

Puutara 6.19 5.24 2.67 – 3.48 4.4 ± 0.8

Wavelength was measured from Google Earth images at each site, while wave base was calculated as half the measured wavelength. Months and

years represent the same image dates. Variance is reported as standard error. Dashes (–) mark wavelengths that were unable to be measured. Italic

text marks significant results showing that the Talari and Puutara sites experience longer wavelengths, and thus higher wave energy, than the

Hilton site
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and 1) and are not considered further. Dummy variables

rhodolith size and branching morphotype, as well as

organism abundance and number of families, correlate with

Axis 1. Multidimensional scaling places greater emphasis

on the most abundant taxa, with ophiuroid orders and

decapod crustaceans loading high on a comparable Axis 1

(Online Resource 3 Fig. 1), likely reflecting the wave-

dominated settings with large, branching rhodoliths also

noted in the PCA. PCA Axis 2 separates burrowing, soft-

bodied organisms from more active and hard-bodied

organisms—possibly representing a distinction between

fauna within and on top of or underneath rhodoliths. In

multidimensional scaling, eunicids, the most abundant soft-

bodied burrowing annelids, show strong Axis 2 loading.

This axis also associates with distinctions between

columnar and laminar rhodoliths, and between isolated

rhodoliths and those in rhodolith beds. GLMs below test

the significance of patterns suggested by these ordinations.

Tests of cryptofaunal abundance and diversity

Branching rhodoliths support significantly more individu-

als (GLM: X2 = 47.33, p\ 0.0001) and families (GLM:

X2 = 45.85, p\ 0.0001) than columnar and laminar mor-

photypes (Fig. 5a, b). Regardless of morphotype, larger

rhodoliths contain more organisms (GLM: X2 = 12.54,

p = 0.0004) (Fig. 5c) and families (GLM: X2 = 0.0002,

p = 0.0002) (Fig. 4d) (Online Resource 3 Table 1).

Tests of cryptofaunal body shape and motility

Active, non-burrowing (GLM: X2 = 42.72, p\ 0.0001),

rigid (GLM: X2 = 41.26, p\ 0.0001), and articulated

forms (GLM: X2 = 26.66, p\ 0.0001) strongly associate

with large and branching rhodoliths, consistent with their

need for open space. Both motile and sessile burrowers, as

well as soft-bodied, flexible organisms, exhibit no rela-

tionship with morphotype or size, consistent with their

reduced need for open space (Online Resource 3 Table 2).

Tests of individual taxa

Echinoderms associate with large (GLM: X2 = 11.49,

p = 0.0007) and branching rhodoliths (GLM: X2 = 71.42,

p\ 0.0001) (Fig. 6a) driven by the active, articulated

brittle star orders Ophiacanthida (GLM: X2 = 12.98,

p\ 0.0001 for volume; X2 = 58.67, p = 0.0003 for mor-

photype) and Amphilepidida (GLM: X2 = 48.09,

p\ 0.0001 for morphotype) (Fig. 6b) (Online Resource 3

Table 3).

Arthropods associate with large (GLM: X2 = 18.35,

p\ 0.0001), branching (GLM: X2 = 42.13, p\ 0.0001)
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rhodoliths (Fig. 6a), driven primarily by active, hard-

shelled decapods (GLM: X2 = 26.46, p\ 0.0001 for vol-

ume; X2 = 89.31, p\ 0.0001 for morphotype) (Fig. 6c).

Within Decapoda, rigid, active xanthids (GLM:

X2 = 81.35, p\ 0.0001), alpheids (GLM: X2 = 48.69,

p\ 0.0001), and pagurids (GLM: X2 = 20.16, p\ 0.0001)

associate with branching rhodoliths. Articulated amphipods

as well as burrowing tanaids and stomatopods show little

relationship with branching rhodoliths (Online Resource 3

Table 3).

Polychaetes associate with large rhodoliths (GLM:

X2 = 13.75, p = 0.0002) driven by boring, soft-bodied

eunicids (GLM: X2 = 4.72, p = 0.03). Non-boring, articu-

lated amphinomids (GLM: X2 = 34.78, p\ 0.0001) and

phyllodocids (GLM: X2 = 43.33, p\ 0.0001) associate
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with branching rhodoliths (Fig. 6d). Notably, sedentary,

soft-bodied polychaete groups such as terebellids (GLM:

X2 = 16.76, p\ 0.0001), capitellids (GLM: X2 = 21.64,

p\ 0.0001), and spionids (GLM: X2 = 20.26, p\ 0.0001)

associate with isolated rhodoliths (Online Resource 3

Table 3).

Molluscs associate with large rhodoliths (GLM:

X2 = 14.03, p = 0.0002), driven by Caenogastropoda

(GLM: X2 = 7.62, p = 0.006), Neogastropoda (GLM:

X2 = 8.58, p = 0.003), and Trochida (GLM: X2 = 8.99,

p = 0.003). Overall, molluscs don’t respond to rhodolith

morphotype (Fig. 6e) (Online Resource 3 Table 3).

Sipunculans associate with isolated rhodoliths (GLM:

X2 = 10.30, p = 0.001), driven by Golfingiida (GLM:

X2 = 12.36, p = 0.001) (Online Resource 3 Table 3).

bFig. 5 Number of organisms found in different rhodolith morpho-

types at all sites. Colors represent rhodolith morphotypes in each

panel. a Histogram of organismal abundance in rhodoliths, arranged

by morphotype. b Histogram of number of families in rhodoliths,

arranged by morphotype. c Organismal abundance by rhodolith

volume, analyzed by morphotype. d Familial diversity by rhodolith

volume, analyzed by morphotype. Fit lines follow relationships

between abundance or diversity and rhodolith volume calculated via

GLMs for each morphotype. p-values for these lines are listed here.

Panel c branching, p = 0.005; columnar, p = 0.0005; laminar,

p = 0.11. Panel d branching, p = 0.05; columnar, p\ 0.0001;

laminar: p = 0.31
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Additional tests show that Sipuncula associate with the

Hilton site (GLM: X2 = 17.74, p\ 0.0001).

Discussion

Rhodolith distribution and characteristics

Rhodolith abundance and morphology and local wave

activity

Wave motion encourages rotation and regular growth of

rhodoliths, which create larger, more abundant branching

individuals (Bosselini and Ginsburg 1971; Marrack 1999)

with rounder shapes (Scoffin et al. 1985). On Moorea,

passes in the barrier reef expose opposing fringing reefs to

long-period, high-power waves. As a result, pass-adjacent

sites like Talari and Puutara support high abundances of

large, branching, and spheroidal rhodoliths. Variable wave

energy within these sites supports denser beds of larger,

rounder, and more branching rhodoliths in deeper settings

further from shore where breaking waves increase wave

power.

In contrast, the protected Hilton site (Monismith et al.

2014) only experiences shorter-period waves generated in

the lagoon, and thus contains fewer rhodoliths. The few

rhodoliths present concentrate adjacent to shore where

waves break and wave energy appears highest. The pres-

ence of rhodoliths at the Hilton site, in contrast to their

absence at other protected sites, likely relates to its slightly

higher wave energy, as expected given the large fetch for

wave generation across the lagoon to the east (see Schopf

1980 for discussion of fetch). Differences in wave power

between exposed and protected sites is likely more extreme

than those documented in this study, as the waves we

observed propagating through passes were derived from

open ocean trade wind-generated waves. Substantially

larger waves derived from distant polar storms episodically

impact Moorea in the Northern Hemisphere winter (Hench

et al. 2008; Edmunds et al. 2010). This phenomenon was

not captured in our analysis, but is expected to deliver the

largest waves to the exposed Talari and Puutara sites.

Regular, high-quality imagery soon to be available will

permit a more detailed seasonal assessment of local wave

climates at lagoon study sites.

In Moorea, small tidal amplitude (Luther and Wunsch

1975) limits wave influence to a shallow depth band on the

fringing reef. In other tropical fringing reefs, rhodolith

presence likely also depends on other wave-related factors,

including tidal amplitude and fetch across the lagoon.

While passes in the barrier reef appear critical to the

generation of large rhodolith aggregations in Moorea, they

may not be the primary factor controlling rhodolith

distribution on fringing reefs with different geomorphol-

ogy, tides, or winds.

Additional considerations

Both ellipsoidal (Bosence 1976, 1983; Basso et al. 2009)

and branching rhodoliths (Marrack 1999; Scoffin et al.

1985) roll more easily than other morphologies, and thus

should occur at sites with lower wave energy. Consistent

with this, we find ellipsoidal rhodoliths most frequently at

our lowest wave energy site. However, we find branching

rhodoliths at our higher wave energy sites, contrasting with

other studies placing them more intermediately on their

wave activity spectrums (Piller and Rasser 1996; Carag-

nano et al. 2016). These discrepancies suggest that existing

studies have examined different suites of wave energy in

different local contexts, and that rhodolith properties may

have intermediate optima relative to wave energy. Below

such an optimum, movement is insufficient to form a

particular rhodolith type (Foster 2002), while above it

transport out of the environment or breakage will eliminate

that rhodolith type (Melbourne et al. 2020). Similarly,

sufficient energy may be needed to clear rhodoliths of

sediment, while greater movement may transport rhodo-

liths into environments where they are subject to burial

(Jeong et al. 2020). As such, wave energy optima may

reconcile the alternating attribution of rhodolith presence to

both higher (e.g., Marrack 1999; Agnesi et al. 2020) and

lower wave energy settings (e.g., Bosence 1976; Piller and

Rasser 1996).

We are confident in the relative interpretation of wave

climate employed in our analyses, but more detailed

quantification of wave energy will require additional

repeated measures. Given the small scale of the waves we

analyzed, high resolution images were needed to resolve

wavelength. However, only a limited number of images of

sufficient quality were available to us. Larger waves per-

tinent to open ocean wave climate are easier to reconstruct

(e.g., SAR: Jackson and Apel 2004); thus, studies at larger

scales in deeper water settings (Italy: Agnesi et al. 2020;

Ireland: Joshi and Farrell 2020) provide more quantitative

reconstructions of rhodolith environment.

Although wave exposure strongly influences rhodolith

morphology (Steller et al. 1993), specific algal taxa are also

associated with particular rhodolith morphotypes (Bosence

1983; Basso et al. 2009). In Tahiti, Hydrolithon reinboldii

is the dominant species in rhodolith beds, with Sporolithon

ptychoides, Mesophyllum funafutiense, Melyvonnea eru-

bescens, Porolithon onkodes, Neogoniolithon brassi-

caflorida, Lithophyllum kotschyanum, and H. rupestre also

contributing to rhodolith formation (Nelson et al. 2017).

However, we did not identify rhodolith-forming species in

our study, and the species relevant to our sites in Moorea
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are yet unknown. Clearly, further research on the physical

and biological controls of rhodolith morphology are

merited.

Cryptofaunal abundance and diversity

Cryptofaunal communities and local wave activity

Wave activity indirectly influences cryptofaunal commu-

nities by controlling rhodolith abundance and morphology.

Rhodolith abundance, size, and branching morphotype

associate with wave exposure. Large and branching rho-

doliths contain the most cryptofauna, presumably as a

consequence of their higher internal complexity (Berlandi

et al. 2012; Belanger 2020; Mendez Trejo et al. 2020).

Thus, on fringing reefs, wave-exposed areas with higher

abundances of large, branching rhodoliths contain more

abundant and diverse cryptofauna. However, aspects of

wave energy other than those affecting the rhodolith

complexity may influence community composition (Pey-

rot-Clausade 1980; Blamey and Branch 2009) through

enhanced recruitment (Reidenbach et al. 2009) or growth

(McQuaid and Lindsay 2007). These aspects may also

contribute to the observed patterns of abundance and

diversity, and thus require further study.

Another relevant aspect of wave energy is physical

disturbance. We expected cryptofaunal abundance and

diversity to increase in beds due to their larger available

habitat area (see MacArthur and Wilson 1963). However,

we find that being within a rhodolith bed has no effect on

the abundance and diversity within individual rhodoliths.

Disturbance in wave-swept beds may be strong enough to

counteract benefits from increased habitat area (see Sousa

1979 and Hinojosa-Arango et al. 2013 for discussion of

intermediate disturbance). Alternatively, disturbance could

affect taxa with specific modes of life (Hinojosa-Arango

et al. 2009). Burrowing and filter feeding forms like

sipunculans, terebellids, spinoids, and capitellids nega-

tively associate with beds. Rhodoliths within beds may

move more frequently than isolated rhodoliths; this higher

disturbance in beds could hinder sessile filter feeding or

detritivorous forms, as could the greater association of

decapod predators with branching rhodoliths typically

found in beds. Further research on the physical and eco-

logical controls of rhodolith cryptofaunal diversity are

merited.

Cryptofaunal communities and structural complexity

On Moorean fringing reefs, morphotype is the primary

factor shaping rhodolith cryptofaunal communities. Active,

rigid-bodied animals associate with internally spacious

branching rhodoliths, while flexible taxa that can traverse

restricted spaces and boring taxa that can generate habitat

space do not associate with a particular morphotype. The

relationship between active taxa and branching rhodoliths

parallels recent observations from New Zealand (Mendez

Trejo et al. 2020). However, literature discussing how

invertebrates utilize interstitial space is limited, and focu-

ses primarily on body size (e.g., Anderson and Meadows

1978; Warwick 1984; Pipan and Culver 2017) or fresh-

water systems (e.g., Gayraud and Philippe 2001; Lamour-

oux et al. 2004; Tomanova and Usseglio-Polatera 2007).

The relationship between boring ability and existing space

is similarly understudied (but see Hutchings 1981; Moran

and Reaka 1988).

Branching rhodoliths provide complexity at limited

scales, with spaces generally not exceeding a few cen-

timeters. This is significant for organisms that mature to

larger sizes, as they eventually outgrow rhodolith void

spaces. For example, brittle stars occupy different habitats

as they grow (Hendler and Littman 1986). This may

explain observations of differing ophiuroid abundances in

rhodoliths sampled at the same site over different years

(Steller et al. 2003; Hinojosa-Arango and Riosmena-Ro-

driguez 2004). Observations of interannual variation in

other taxa may relate to similar processes (McConnico

et al. 2017). Pulses of recruitment may pass through rho-

dolith beds that accommodate organisms only at appro-

priate ontogenetic sizes. Subsequently, larger individuals

might inhabit adjacent reef habitats with larger void spaces.

Thus, rhodolith beds likely facilitate aspects of recruitment

and maturation, particularly in relation to adjacent reef

habitats (see Oterro Ferrer et al. 2018).

Rhodoliths may contribute to further explorations of

porosity, connectivity, and diversity. The relationship

between structural complexity and diversity has been

extensively studied in coral reef fish (e.g., Roberts and

Ormond 1987; Komyakova et al. 2013; Darling et al. 2017),

but could be further developed in other contexts, particularly

interstitial settings. Rhodoliths provide repeated natural

sampling units with variable internal space that can be used

to examine interplays between settlement, feeding, and

water flow in these environments. This would permit further

interrogation of biodiverse but understudied interstitial reef

communities. Rhodoliths could also be compared to other

complex substrates like coral rubble (e.g., Enochs et al.

2011) or Autonomous Reef Monitoring Structures (ARMS)

(e.g., Baronio and Bucher 2008; Carvalho et al. 2019) to

explore variable complexity at larger scales.

Tropical evenness

In contrast to studies in higher-latitude regions, we find a

more even distribution of phyla, with Arthropoda, Annel-

ida, Echinodermata, and Mollusca constituting 33, 30, 26,
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and 7% of total individuals, respectively. Single phyla

dominate mid- to high-latitude rhodoliths (Alaska: Konar

et al. 2006; New Zealand: Harvey and Bird 2008; South

Australia: Nelson et al. 2012; California: Robinson 2015),

while subtropical observations are intermediate in evenness

(Mexico: Steller et al. 2003). This may reflect general

latitudinal trends in diversity, which can be influenced by

structural complexity (Bracewell et al. 2018). Further

examination of rhodolith cryptofauna may support these

trends, but comparison between studies is limited by dif-

ferences in environmental context and sampling method-

ology. Thus, standardization of approaches would

substantially benefit comparative studies.

Summary

We provide one of the few studies of rhodoliths on tropical

fringing reefs, and the first such study to consider the

morphology and cryptofauna of rhodoliths in detail. In

Moorea, a wave-dominated reef system, the abundance of

morphology of fringing reef rhodoliths are associated with

sites exposed to ocean waves penetrating the lagoon. At

these sites, locations where larger waves impact the outer

edge of the fringing reef support dense aggregations of

larger, rounder, and more branching rhodoliths. Branching

morphotype and large rhodolith size strongly associate

with cryptofaunal abundance and diversity. In particular,

hard-bodied and motile, non-burrowing organisms are

associated with the complex architecture provided by

branching forms. Wave energy appears to indirectly oper-

ate on rhodolith cryptofauna through higher proportions of

large, branching rhodoliths. Thus, wave energy appears to

be an important attribute constraining the distribution of

rhodoliths and associated fringing reef cryptofauna.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00338-

021-02214-7.
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