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Abstract Type II melanoma-associated antigens (MAGE)
are a subgroup of about a dozen proteins found in various
locations in the genome and expressed in normal tissues,
thus are not related to cancer as the type I MAGE genes.
This gene family exists as a single copy in non-mammals
and monotremata, but found as two copies in metathe-
rians and occur as a diverse group in all eutherians. Our
studies suggest MAGED2 as the ancestor of this subfam-
ily and the most likely evolutionary history of eutherian
type I MAGE genes is hereby proposed based on synteny
conservation, phylogenetic relations, genome location,
homology conservation, and the protein and gene struc-
tures. Type II genes can be divided into two: those with
13 exons (MAGED1, MAGED2, TRO, and MAGED4)
and those with only one exon (MAGEEl, MAGEE?2,
MAGEF1, NSMCE3, MAGEH1, MAGEL?2, and NDN)
with different evolutionary patterns. Our results suggest
a need to change the gene nomenclature to MAGEI (the
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ancestral gene), currently designated as LOC103095671
and LOC100935086, in opossum and Tasmanian devil,
respectively, and MAGE2 (the duplicated one), currently
designated as LOC100617402 and NDNL2, respectively,
to avoid confusion. We reconstructed the phylogenetic
relationships among 23 mammalian species using the com-
bined sequences of MAGED1, MAGED2, MAGEL?2, and
NDN, because of their high divergence, and found high
levels of support, being able to resolve the phylogenetic
relationships among Euarchontoglires, Laurasiatheria,
Afrotheria, and Xenarthra, as an example that small, but
phylogenetically informative sequences, can be very useful
for resolving basal mammalian clades.

Introduction

Melanoma-associated antigens (MAGE) are a family of
genes, consisting of 38 genes and 18 pseudogenes anno-
tated in humans, whose members have been divided into
two big subfamilies: type I and II, based on differences
in tissue-specific expression and gene structure (van der
Bruggen et al. 1991). Type I members are large in number,
with no introns and all located on the X chromosome, in
subtype-specific clusters known as A, B, and C, and they
are mainly expressed in testis and cancer cells (Chomez
et al. 2001). Since the expression of MAGE type I proteins
is associated with malignancy, they are being studied as
targets for cancer vaccine development (Atanackovic et al.
2004), as well as the use of their expression pattern in can-
cer cells for diagnostic or prognostic purposes (Sang et al.
2011).

The second group, known as type Il MAGE genes, has
more heterogeneous structures and are dispersed in differ-
ent locations of the genome. They are expressed in normal
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tissues, with no relation to cancer (Osterlund et al. 2000).
Although the physiological functions of type II MAGE
proteins remain largely uncharacterized (Sang et al. 2011),
they are increasingly important due to their roles in the
regulation of cell cycle progression and cell differentiation.
For example, MAGEDI1, D2, TRO, El1, E2, F1, NSMCE3,
H1, and NDN are involved in the early process of neuro-
genesis, and MAGEL?2 is connected with maintenance of
pluripotency of stem cells (Liu et al. 2012). In addition,
they may function in the ubiquitination cascade mediated
by RING proteins, since they have been identified as bind-
ing partners for both type I and II MAGE proteins (Feng
et al. 2011).

The only region of homology conserved in all of the
members of the family is a stretch of ~200 amino acids
known as MAGE homology domain (MHD), usually
located close to the COOH termini of the proteins, which
has been proposed to interact with p75 neurotrophin or
related receptors in some of the members of the family
(Chomez et al. 2001). However, despite the sequence and
structural similarities of the MHD for the different proteins,
mounting evidence suggests that MHDs are more versatile
and complex than one might expect, and rather than recog-
nizing and binding a common motif, MHDs confer bind-
ing specificity to multiple unique interaction motifs (Doyle
et al. 2010; Lee and Potts 2017).

Due to the importance of type I genes in cancer, stud-
ies have investigated the evolutionary relationship within
this group (Katsura and Satta 2011), but the relation-
ships among type II genes and their evolutionary patterns
of duplication and diversification remain unclear, even
though these genes have important functions in the cell.
Some studies have suggested that since MAGED genes
(TRO, MAGED1, MAGED2, and MAGED4) in eutheri-
ans have multiple exons like the non-eutherian condition,
they should represent the ancestral gene (Chomez et al.
2001; Katsura and Satta 2011). Other studies have sug-
gested that NSMCE3 is more functionally related to the
ancestral MAGE (Lee and Potts 2017). A proteomics study
identified NSMCE3 as the human ortholog of yeast NSE3
and determined NSMCE3 and its cognate RING ligase,
NSEL, to be essential components of the human SMC5/6
complex (Taylor et al. 2008). In addition, NSMCE3 shows
highest sequence identity to the Drosophila MAGE protein
(Nishimura et al. 2007). Moreover, the chicken MAGE pro-
tein and human NSMCES3 interact with E2F1 and the p75
neurotrophin receptor (Lépez-Sinchez et al. 2007). There-
fore, while genomic architecture points to MAGED genes,
functional studies suggest that NSMCE3 may be most
related to the ancestral MAGE (Lee and Potts 2017).

In this study, we carried out detailed phylogenetic analy-
ses of the eutherian MAGE type II genes, comparing them
with the MAGE genes in non-eutherian vertebrates to try to
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infer the evolutionary history of the members of this sub-
family. In addition, due to their rapid diversification and
duplication events early in eutherian evolution, we assess
the use of these genes as evolutionary markers to under-
stand early eutherian diversification.

Materials and methods
Sequence retrieval and analysis

Protein sequence IDs of MAGE type II genes of Homo
sapiens (human, taxon ID: 9606), Macaca mulatta (rhesus
monkey, taxon ID: 9544), Pongo abelii (Sumatran orangu-
tan, taxon ID: 9601), Callithrix jacchus (marmoset, taxon
ID: 9483), Mus musculus (mouse, taxon ID: 10090), Rat-
tus norvegicus (rat, taxon ID: 10116), Marmota marmota
(marmot, taxon ID: 9993), Oryctolagus cuniculus (rabbit,
taxon ID: 9986), Bos taurus (cattle, taxon ID: 9913), Ovis
aries (sheep, taxon ID: 9940), Lipotes vexillifer (river dol-
phin, taxon ID: 118797), Sus scrofa (pig, taxon ID: 9823),
Vicugna pacos (alpaca, taxon ID: 30538), Pteropus alecto
(black flying fox, taxon ID: 9402), Equus asinus (donkey,
taxon ID: 9793), Equus caballus (horse, taxon ID: 9796),
Ceratotherium simum simum (white rhinoceros, taxon
ID: 73337), canis lupus familiaris (dog, taxon ID: 9615),
Ailuropoda melanoleuca (panda bear, taxon ID: 9646),
Acinonyx jubatus (cheetah, taxon ID: 32536), Trichechus
manatus latirostris (Florida manatee, taxon ID: 127582),
Dasypus novemcinctus (nine-banded armadillo, taxon ID:
9361), and Loxodonta africana (elephant, taxon ID: 9785)
retrieved for analyses are shown in Table 1. In addition,
we used MAGE protein sequences for Sarcophilus harrisii
(Tasmanian devil, MAGE1: XP_003775163.1 and MAGE?2:
XP_003771463.2, taxon ID: 9305), Monodelphis domes-
tica (opossum, MAGE1: XP_007507813.1 and MAGE2:
XP_003342056, taxon ID: 13616), Ornithorhynchus
anatinus, (platypus, XP_001510511.2, taxon ID: 9258),
Anolis carolinensis (green anole, XP_003215786.1, taxon
ID: 28377), Gallus gallus (chicken, NP_001098534.1,
taxon ID: 9031), Tangara guttata (speckled tanager,
NP_001232572.1, taxon ID: 256443), Xenopus tropicalis
(western clawed frog, NP_001016930.1, taxon ID: 8364),
Gekko japonicus (Japanese gecko, XP_015279741.1, taxon
ID: 146911), and Python bivittatus (Burmese python,
XP_007422261.1, taxon ID: 176946) in the analyses.
Protein sequences were analyzed using ScanProsite, a
database of protein domains, families, and functional sites
(Sigrist et al. 2010) at the ExPASy bioinformatics resource
portal developed by the Swiss Institute of Bioinformat-
ics. Sequence logo of the MHD region was built using
WebLogo (Crooks et al. 2004), which shows a graphi-
cal representation of the amino acid conservation among
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the proteins containing this domain in the UniProtKB/
Swiss-Prot databases. The map of the region containing
the MAGE gene in the green anole and platypus, as well
as the region containing the MAGED?2 and TRO genes in
human, mouse, cattle, dog, horse, and pig was constructed
using the gene structure and location from the MapView at
NCBI.

A comparison of the genomic sequence of human
MAGED4 and MAGED4B genes was carried out using
mVISTA program suite (Dubchak and Ryaboy 2006, http://
genome.lbl.gov/vista/index.shtml) by the alignment of the
region NC_000023.10:51723109-52069309 in the sense
orientation with its antisense sequence. The composition
of the repetitive elements in this region was determined
using RepeatMasker (A.F.A. Smit, R. Hubley & P. Green,
unpublished data. Current Version: open-3.3.0, http://www.
repeatmasker.org).

Phylogenetic analysis

Phylogenetic analyses were carried out using three
approaches. First, the maximum likelihood method was
used based on the JTT matrix-based model (Jones et al.
1992) using MEGAG6 (Tamura et al. 2013). Initial tree(s)
for the heuristic search were obtained by applying the
neighbor-joining method to a matrix of pairwise distances
estimated using a JTT model. A discrete gamma distribu-
tion was used to model evolutionary rate differences among
sites. Second, the maximum likelihood method was used
with a 4-matrix model (LG4X) using PhyML software
(Phylogenetic Maximum Likelihood, version 3.0, Guin-
don et al. 2010), where sites are categorized depending on
their evolutionary rate, and different replacement matrices
were used for each site category of the gamma distribution
assumption (Le et al. 2008). Third, a Bayesian phylogenetic
analysis was conducted using Mr.Bayes, v 3.2.1 (Ronquist
et al. 2012), implementing the mixed model setting to esti-
mate the amino acid rate change using different models of
fixed rate matrices.

We studied the evolutionary patterns of the human pro-
teins using the protein sequences of the MHD (because the
rest of the protein sequence showed poor conservation) for
all the members of the type II genes, except for MAGEH1
because it contains only a partial domain, and the frog and
platypus MAGE as outgroups. Additionally, we studied the
evolution of MHD for all jawed vertebrates (Gnathosto-
mata) with annotated sequences and the human MAGED2
for eutherian mammals. Finally, we reconstructed the
phylogenetic relationships among 23 mammalian spe-
cies using the combined complete protein sequences of
MAGEDI1, MAGED2, MAGEL2, and NDN. These were
selected because they were present in all the species and
their protein sequences have been annotated. Additionally,
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MAGEL?2 and NDN show the highest divergence among all
type II MAGE proteins, being highly informative to help
define the evolutionary pattern of the mammalian clades.

Results

The structure of MAGE proteins in frog, lizard, chicken,
platypus, opossum, and Tasmanian devil was similar,
but the structure of MAGE genes in humans shows great
variation and larger sequences for most of the mem-
bers (Fig. 1a). The logo of the MAGE homology domain
(MHD) shows that many of the amino acids are highly con-
served (Fig. 1b), even though the sequence of the rest of the
protein have changed significantly in different members of
the family in eutherians.

The genomic region containing the lizard MAGE gene
has been conserved in mammals, although an inversion has
rearranged the order of the genes (Fig. 2). In eutherians,
this region contains MAGED2 and TRO and these genes
were involved in small inversions in cattle, while in dog the
genes MAGED?2 and ITIHSL are inverted and the last was
duplicated into ITIH6. The size of the region in the lizard
and platypus is similar, but it is twice the size in eutherians.
There are significant differences in the size of the introns in
the genes of this region among all the species. The localiza-
tion of MAGED?2 and TRO in the conserved region con-
taining the ancestral MAGE gene suggests that one of these
two genes is the candidate ancestor for all the eutherian
MAGE genes.

Very similar topologies were showed by all three phy-
logenetic analyses (Figs. 3, 5, 6), but there were some
differences in the trees. In most cases, the Bayesian
trees showed smaller substitutions per site and larger for
LG4X. Also, ML trees tended to have lower branch sup-
port, while the supports for Bayesian and LG4X branches
were mostly similar. Two different groups of type II
genes of the MAGE family can be established from
the structure of the genes, with one group showing 13
exons (MAGEDI1, MAGED2, TRO, and MAGED4), like
the ancestral MAGE, and the other with only one exon
(MAGEE1, MAGEE2, MAGEF1, NSMCE3, MAGEHI,
MAGEL2, and NDN). The phylogenetic relationships
of the MAGE domain reveal different evolutionary pat-
terns between these two groups of proteins (Fig. 3),
with the 13-exon group being clearly monophyletic and
of lower divergence compared to the other genes. All
the trees showed that MAGED?2 protein was ancestral
to the 13-exon group and TRO as being more derived
than MAGED2. Also, NDN and MAGEL2 from the
group of genes with only one exon, were the closest to
the ancestral MAGE protein, and were probably derived
early in eutherian diversification. The group of 1-exon
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proteins shows higher divergence than the 13-exon pro-
teins (Fig. 4), and they have probably gone through rapid
duplication and diversification events during early euthe-
rian evolution.

The phylogenetic pattern of the MAGE proteins in
tetrapoda (Fig. 5) can be followed from the theoretical
ancestor of frogs to all diapsids (lizards, snakes, croco-
diles, and birds) and mammals. However, in the opossum
and the Tasmanian devil, a second MAGE gene is present
with high conservation of both genes in both species. The
eutherian homologous region, where the opossum MAGE2
gene is located, does not show conservation to any of the
eutherian MAGE genes, and the phylogenetic trees suggest
that the duplication event in metatherian occurred after the
split from the common ancestor to eutherian. The ances-
tral genes in these species are located on the X chromo-
some, while the derived gene is located on chromosome 8
in opossum and not yet localized in the Tasmanian devil.

—T— GLLR~ 1249 2
Human NDN 321aa

Further, MAGE2 was most likely duplicated by retrotrans-
position, since it has no introns, differing from MAGEI
which has 10 exons.

The phylogenetic analyses of all the MAGE type II
genes in human, rhesus monkey, mouse, rat, cattle, pig,
dog, horse, and elephant follow a similar evolution-
ary pattern with few exceptions (Fig. 4). For example,
MAGEFI is present in mouse and rat as pseudogenes.
Also, MAGED4 protein is not present in either species,
but a BLAST search using the human mRNA sequences
localizes a region containing segments that combined
have 71.4% identity in a 1614 bp sequence in the mouse,
about 90 kb apart from MAGEDI, and 67.4% identity in
a 1039 bp sequence in the rat, about 120 kb apart from
MAGEDI, showing the loss of this gene in rodents. In
humans, MAGED1 and MAGED4 are about 400 kb
apart from each other. Alternatively, MAGEE1 protein
is only present in primates and rodents. It is evident
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Fig. 2 Genomic region containing the ancestral MAGE gene. Maps
of the regions containing the MAGE gene in the green anole (Ano-
lis) and platypus, compared to the regions containing MAGED2 and
TRO in mouse, human, dog, horse, pig, and cattle. Physical distances
(Mb) are drawn to scale in the eutherian mammals, but in the green
anole and platypus are drawn in a different scale. The mouse genome

that MAGED1, MAGED2, MAGED4, and NDN are the
least divergent of all the proteins (Fig. 4), even though
all of these genes but NDN are located on the X chromo-
some. On the other hand, TRO, MAGEL2, MAGEF1, and
MAGEEI] are the most divergent.

The phylogenetic trees of the eutherian species built
using the MHD sequences of MAGEDI1, MAGED2,
MAGEL2, and NDN proteins show that most branches
have very high levels of support (Fig. 6), with good differ-
entiation among the basal groups used. Carnivora and Per-
issodactyla form a single cluster, as well as Cetartiodactyla
and Chiroptera (P. alecto) which also form a cluster, which
agrees with Laurasiatheria, previously reported to contain
these groups. Elephant and manatee cluster together next
to armadillo. Rodents and Lagomorpha cluster together but
show high divergence to the rest of the mammals, and are
next to primates, as expected.

The human genome shows a duplication of MAGED4
and MAGED4B not present in the genomes of chimpan-
zee, orangutan, or any other primate. The sequence align-
ment of both genes shows an inverse orientation between
them and with sequence identity of 100% of the coding
and intergenic regions but distributed in blocks separated
by different repetitive elements, mostly LINEs (Fig. 7).
At the edge of the two inverted regions, two LINEI
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is drawn in a reverse orientation for better comparison. Black, wide
boxes represent the exons and the gray, thin boxes represent introns.
Genes to the left are in antisense orientation and those to the right are
in a sense orientation. Chromosome assignment is located below the
common name, being all known eutherian on the X chromosome and
in the platypus on chromosome 1

elements (L1PA3) are located in inverse orientation and
this might be the breakpoint of duplication of the entire
region.

The most likely evolutionary history of the euthe-
rian type II MAGE genes, based on their phylogenetic
relations, genome location, homology conservation,
and the protein and gene structures, is shown in Fig. 8.
In eutherians, TRO most likely originated by duplica-
tion from MAGED?2, and it is probable that this whole
segment was duplicated to originate MAGED4 and
MAGEDI, respectively, since the MAGED2-MAGEDI1
and TRO-MAGED4 pairs are closely related in all euthe-
rian mammals analyzed. The genes of the 1-exon group
were most likely derived from either MAGEL2 or NDN,
since they are basal to the 13-exon group of MAGE type
II. Because MAGEL2, NDN, and NSMCE3 are located in
the same chromosomes in all the species, it is very likely
that they originated by duplication events from MAGEL?2
or NDN, while MAGEF1 was most likely duplicated by
transposition. Due to the short sequence of MAGEH], it
is very difficult to infer where it comes from, but it may
have been derived from a MAGE gene of the 1-exon
group by transposition, since there is a strong phyloge-
netic relationship to these genes.
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Fig. 3 Phylogenetic analysis of the human MAGE homology
domains (MHD). Phylogeny of all the members of the type II genes,
except for MAGEH], in the human genome, as well as for the MAGE
proteins in the frog (Xenopus tropicalis) and platypus (Ornithorhyn-
chus anatinus). Phylogenetic analyses were carried out using the
maximum likelihood method based on the JTT matrix-based model
(a), a Bayesian analysis implementing the mixed model setting to
estimate the amino acid rate change (b), and a ML with a 4-matrix

Discussion

Lépez-Sanchez et al. (2007) analyzed the sequence simi-
larity of MHD among all eukaryotes and found that this
domain has been well conserved in all the metazoans they
studied, as well as with some degree of conservation in
plants and protozoans, suggesting that MAGE proteins are
ancient in eukaryotes. They also suggest that the ancestral
gene may have lacked introns, since the MAGE genes in
Entamoeba histolytica and Drosophila melanogaster do
not contain introns. Katsura and Satta (2011) identified
2 genes in the opossum, the American marsupial, show-
ing a monophyletic tree. This is consistent with our result.
We also identified two MAGE genes from the Tasmanian
devil, the Australian marsupial, forming a monophyl-
etic tree with high similarity between these species for

hMACEESh

model where sites are categorized depending on their evolutionary
rate (c). The trees are drawn to scale, with branch lengths measured in
the number of substitutions per site. The analysis involved 15 amino
acid sequences, with a total of 203 positions in the final dataset. The
percentages of replicate trees in which the associated taxa clustered
together in the bootstrap test (1000 replicates) are shown next to the
branches. Frog and platypus were used as outgroups since they are
the closest to the ancestral MAGE sequence

each gene, suggesting a duplication event before the split
of these two groups. We therefore suggest changes in the
gene nomenclature in these species as MAGEI (the ances-
tral gene), currently designated as LOC103095671 and
LOC100935086, in opossum and Tasmanian devil, respec-
tively, and MAGE?2 (the duplicated one), currently desig-
nated as LOC100617402 and NDNL2, respectively, in
order to avoid confusion.

Even though the region containing the MAGE gene in
platypus has not been assigned to a chromosome yet, the
gene HUWEIL in that region has been localized on chromo-
some 6 by in situ hybridization (Delbridge et al. 2009), and
this chromosome has been shown to be homologous to the
autosomal ancestor of the sex chromosome in metatherians
and eutherians. The monotremata sex chromosomes have
no homology with the therian sex chromosome, instead
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Fig. 4 Phylogenetic analysis of
all MAGE type II genes from 9
mammalian species. Phylogeny
of all the members of the type
II genes, except for MAGEHI,
using the MHD from 9 mam-
malian species, as well as for
the MAGE proteins in the frog
(Xenopus tropicalis) and platy-
pus (Ornithorhynchus anati-
nus). The phylogenetic analysis
was carried out using a Bayes-
ian analysis implementing the
mixed model setting to estimate
the amino acid rate change.
The tree is drawn to scale, with
branch lengths measured in the
number of substitutions per site.
The analysis involved 92 amino
acid sequences, with a total of
218 positions in the final data-
set. The percentages of replicate
trees in which the associated
taxa clustered together in the
bootstrap test (1000 replicates)
are shown only next to the
branches separating the genes
but not the species’ sequences.
Frog and platypus were used

as outgroups since they are the
closest to the ancestral MAGE
sequence
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Fig. 5 Phylogenetic analysis of the MAGE homology domains
(MHD) in tetrapoda. Phylogeny of representatives of the main
groups of living tetrapoda. Phylogenetic analyses were carried out
as described in the legend of Fig. 3 and in methods. The analysis

share homology with the Z chromosome of birds (Veyrunes
et al. 2008).

In monotremata and metatherians, the ancestral region
contains only one MAGE gene, but in the eutherians, there
are two: MAGED?2 and TRO. Studies have found that cho-
rionic gonadotropin secreted from the preimplantation
embryo up-regulates TRO expression by the uterine epi-
thelium, in preparation for the attachment reaction (Sugi-
hara et al. 2008). Furthermore, homophilic binding of TRO
during the attachment reaction initiates downstream signal-
ing that differentially alters the physiological state of each
cell type, setting the stage for subsequent invasion of the
uterus by EvT cells (Armant 2011). The important function
of TRO in the implantation of the embryo and the forma-
tion of placenta (Tamura et al. 2011) suggests that the TRO
function has been derived more recently in eutherian evolu-
tion, as suggested by Katsura and Satta (2011). This, and
the fact that our phylogenetic analysis consistently showed
MAGED?2 as being closer to the ancestral MAGE gene,
makes this gene the most likely ancestral candidate for all
the type II genes. Katsura and Satta (2011) suggested that
MAGED?2 is probably the ancestor of eutherian MAGE
genes, but their analysis could not conclude whether
MAGED?2 or TRO was the ancestral gene.

Consistent with our results here, Katsura and Satta
(2011) have shown that there is significant sequence simi-
larity within and between the type I and II genes but only
in the CDS regions, suggesting that retrotransposition
events have produced many of the genes. However, the

H. sapiens MAGED2 (human)

M. domestica MAGE1 (opossum)

S. harrisii MAGE1 (Tasmanian devil)
M. domestica MAGE2 (opossum)

S. harrisii MAGE2 (Tasmanian devil)

O. anatinus (platypus)

99: G. gallus (chicken)

T. guttata (speckled tanager)

83 A. carolinensis (green anole)
_MEbivittatus (Burmese python)
G. japonicus (Japanese gecko)
o i fovomns,

Alaarad fumnml

involved 12 amino acid sequences, with a total of 203 positions in
the final dataset. The frog sequence was used as an outgroup since
it should be the closest to the ancestral sequence of the diapsids (liz-
ards, snakes, crocodiles, and birds) and mammals

considerable breakage of recently duplicated MAGED4 and
MAGED4B genes in humans suggests that the non-coding
regions surrounding MAGE genes can undergo rapid diver-
sification, making it very difficult to differentiate between
retrotransposition and other types of duplication events,
just by the divergence of the surrounding sequences. In this
regard, when searching for MAGED4 and MAGED4B in
the genome of the ancient Denisovan hominid (Meyer et al.
2012) and the Neanderthal (Priifer et al. 2014), using the
UCSC Genome Browser, we found both regions conserved,
containing both genes, although the low coverage of these
genomes do not allow for sequence comparison of the
repetitive elements found. The divergence time of Nean-
derthals and Denisovans from modern humans from Homo
heidelbergensis was estimated to have occurred 550-765
Kya (Priifer et al. 2014). Thus, MAGED4/D4B were dupli-
cated after the divergence of humans and chimpanzees but
before the divergence of these hominoids.

Due to difficulties in studying phylogenetic relationships
of major groups such as those underlying macroevolution-
ary processes and complex patterns of gene family evolu-
tion, new statistical analyses are moving away from sim-
ple parametric models and stepwise approaches towards
integrative models (Lartillot 2015). Phylogenetic trees
constructed using LG4X and Bayesian models produced
higher levels of branch support, compared to simple para-
metric models such as neighbor-joining or UPGMA (not
shown) and ML with gamma distribution. LG4X leaves
aside the gamma distribution because it uses four different
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Fig. 6 Mammalian phylogeny based on the complete sequence of 4
type II MAGE proteins. Phylogenetic relationship among 23 mam-
malian species, based on the entire, concatenated protein sequences
combined of MAGED1, MAGED2, MAGEL?2, and NDN. Phyloge-
netic analyses were carried out as described in the legend of Fig. 3
and in methods. The analysis involved 23 amino acid sequences,
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with a total of 2864 positions in the final dataset. Platypus MAGE
and opossum MAGEI were used as outgroups since they are the most
ancient mammalian MAGE genes. The branch distances in all trees
for platypus and opossum, with respect to eutherians, were not drawn
to scale because of their length
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Fig. 7 Sequence conservation in the human MAGED4-MAGED4B
region. Sequence conservation of the region containing the MAGED4
and MAGED4B genes, using mVista software (http://genome.lbl.
gov/vista/index.shtml). Gray boxes are regions showing >70% iden-
tity conservation, black, vertical lines represent annotated exons and
those horizontal correspond to non-conserved genomic sequences.
Black thick arrows show the direction of the LINE1 elements at the
suggested duplication point, while the thin arrows show the homol-
ogous pair of conserved blocks. The dotted line is just showing the
connection of both sides of the region
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Fig. 8 Evolutionary history of the type I MAGE gene family. Most
likely evolution of the eutherian type I MAGE genes based on their
phylogenetic relations, genome location, homology conservation,
and the protein and gene structures. In eutherians and metatherians,
the light gray arrows imply duplication by retrotransposition and
the black arrows imply duplication by other means. Human chromo-
somes 3, 15, and X are denoted as HOSA3, HOSA15, and HOSAX,
respectively

matrices, following a distribution-free scheme for the site
rates (Le et al. 2008; Le and Gascuel 2010). The complex-
ity of amino acid substitutions has been shown by analyz-
ing different datasets, which makes flexible models such
as LG4M and LG4X more suitable (Le et al. 2012), both

significantly outperforming single-matrix models, and pro-
viding gains of dozens to hundreds of log-likelihood units
for most datasets. LG4X obtains substantial gains com-
pared with LG4M, thanks to its distribution-free scheme
for site rates. Le et al. (2012) suggests that LG4X is a good
alternative to single replacement matrices, since it displays
such advantages but require the same memory space and
have comparable running times to standard models.

Mammalian phylogeny reconstruction inferred using
protein sequences of the most informative MAGE genes
is very much like the recently published studies that were
inferred using large datasets (Prasad et al. 2008; Lindblad-
Toh et al. 2011). In these studies, elephants diverged very
early in eutherian diversification and rodents are the clos-
est relatives to primates, even though they show very rapid
diversification compared to other groups. In addition, both
trees also show Perissodactyla closely related to carnivores
and both to Cetartiodactyla, agreeing with the proposed
group Ferungulata, which allegedly contains Pholidota,
Carnivora, Perissodactyla, and Cetartiodactyla (Zhou et al.
2012). Prasad et al’s. (2008) results illustrate the diffi-
culty in resolving some branches even with large amounts
of data. An alternative to using large datasets is to use
sequence data that are most informative in those problem-
atic branches, such as the early divergent eutherian clades.
Thus, the use of genes such as those of the type I MAGE
family as evolutionary markers, which have diverged early
in the history of eutherians, is an alternative to resolve the
phylogenetic relationships among the basal mammalian
clades such as Euarchontoglires, Laurasiatheria (within
Boreoeutheria), Atlantogenata, and Metatheria. In this
sense, Salichos and Rokas (2013) suggest that selecting
genes with strong phylogenetic signals and demonstrating
the absence of significant incongruence are essential for
accurately reconstructing ancient divergences.
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