Skip to main content

Advertisement

Log in

Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G3 animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong RB, Phelps RO (1984) Muscle fiber type composition of the rat hindlimb. Am J Anat 171:259–272

    Article  PubMed  CAS  Google Scholar 

  • Barham D, Trinder P (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145

    Article  PubMed  CAS  Google Scholar 

  • Bee G, Anderson AL, Lonergan SM, Huff-Lonergan E (2007) Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Sci 76:359–365

    Article  CAS  Google Scholar 

  • Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L, Coates G, Cuff J, Curwen V, Cutts T, Down T, Eyras E, Fernandez-Suarez XM, Gane P, Gibbins B, Gilbert J, Hammond M, Hotz HR, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Lehvaslaiho H, McVicker G, Melsopp C, Meidl P, Mongin E, Pettett R, Potter S, Proctor G, Rae M, Searle S, Slater G, Smedley D, Smith J, Spooner W, Stabenau A, Stalker J, Storey R, Ureta-Vidal A, Woodwark KC, Cameron G, Durbin R, Cox A, Hubbard T, Clamp M (2004) An overview of Ensembl. Genome Res 14:925–928

    Article  PubMed  CAS  Google Scholar 

  • Brockmann GA, Bevova MR (2002) Using mouse models to dissect the genetics of obesity. Trends Genet 18:367–376

    Article  PubMed  CAS  Google Scholar 

  • Brockmann GA, Karatayli E, Haley CS, Renne U, Rottmann OJ, Karle S (2004) QTLs for pre- and postweaning body weight and body composition in selected mice. Mamm Genome 15:593–609

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Cannata S, Engle TE, Moeller SJ, Zerby HN, Radunz AE, Green MD, Bass PD, Belk KE (2010) Effect of visual marbling on sensory properties and quality traits of pork loin. Meat Sci 85(3):428–434

    Article  PubMed  CAS  Google Scholar 

  • Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U, Dreja T, Vogel H, Schmolz K, Kluge R, Zierath JR, Hultschig C, Hoeben RC, Schurmann A, Joost HG, Al-Hasani H (2008) Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 40:1354–1359

    Article  PubMed  CAS  Google Scholar 

  • Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD, Palmer AA (2010) Genome-wide association studies and the problem of relatedness among advanced intercross lines and other highly recombinant populations. Genetics 185:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Choe JH, Choi YM, Lee SH, Shin HG, Ryu YC, Hong KC, Kim BC (2008) The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Sci 80:355–362

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA, Wergedal JE, Bult C, Paigen B, Flint J, Tsaih SW, Churchill GA, Broman KW (2009) A new standard genetic map for the laboratory mouse. Genetics 182:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    PubMed  CAS  Google Scholar 

  • de Koning DJ, Janss LL, Rattink AP, van Oers PA, de Vries BJ, Groenen MA, van der Poel JJ, de Groot PN, Brascamp EW, van Arendonk JA (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152:1679–1690

    PubMed  Google Scholar 

  • de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 97:7947–7950

    Article  PubMed  Google Scholar 

  • Dragos-Wendrich M, Sternstein I, Brunsch C, Moser G, Bartenschlager H, Reiner G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome 14. J Anim Breed Genet 120:111–118

    Article  CAS  Google Scholar 

  • Eaton S (2002) Control of mitochondrial [beta]-oxidation flux. Progr Lipid Res 41:197–239

    Article  CAS  Google Scholar 

  • Ebeling P, Essen-Gustavsson B, Tuominen JA, Koivisto VA (1998) Intramuscular triglyceride content is increased in IDDM. Diabetologia 41:111–115

    Article  PubMed  CAS  Google Scholar 

  • Fernandez X, Monin G, Talmant A, Mourot J, Lebret B (1999) Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci 53:59–65

    Article  CAS  Google Scholar 

  • Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451

    Article  PubMed  CAS  Google Scholar 

  • Hamalainen N, Pette D (1993) The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem 41:733–743

    Article  PubMed  CAS  Google Scholar 

  • Hansson O, Donsmark M, Ling C, Nevsten P, Danfelter M, Andersen JL, Galbo H, Holm C (2005) Transcriptome and proteome analysis of soleus muscle of hormone-sensitive lipase-null mice. J Lipid Res 46:2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Hunt MC, Rautanen A, Westin MA, Svensson LT, Alexson SE (2006) Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs. FASEB J 20:1855–1864

    Article  PubMed  CAS  Google Scholar 

  • Kaerst S, Schmitt A, Brockmann G (2010) A novel method for measuring of fat content in low-weight tissue: a NMR study. WebmedCentral OBESITY 2010;1(12):WMC001368. http://www.webmedcentral.com/article_view/1368

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  PubMed  CAS  Google Scholar 

  • Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller M, Andersson L (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069–1080

    PubMed  CAS  Google Scholar 

  • Lambe NR, Macfarlane JM, Richardson RI, Matika O, Haresign W, Bünger L (2010) The effect of the Texel muscling QTL (TM-QTL) on meat quality traits in crossbred lambs. Meat Sci 85:684–690

    Article  PubMed  CAS  Google Scholar 

  • Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ (2009) Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab 10:405–418

    Article  PubMed  CAS  Google Scholar 

  • Lionikas A, Blizard DA, Gerhard GS, Vandenbergh DJ, Stout JT, Vogler GP, McClearn GE, Larsson L (2005) Genetic determinants of weight of fast- and slow-twitch skeletal muscle in 500-day-old mice of the C57BL/6J and DBA/2J lineage. Physiol Genom 21:184–192

    Article  CAS  Google Scholar 

  • Lionikas A, Blizard D, Vandenbergh D, Stout J, Vogler G, McClearn G, Larsson L (2006) Genetic determinants of weight of fast- and slow-twitch skeletal muscles in old mice. Mamm Genome 17:615–628

    Article  PubMed  Google Scholar 

  • Liu G, Kim JJ, Jonas E, Wimmers K, Ponsuksili S, Murani E, Phatsara C, Tholen E, Juengst H, Tesfaye D, Chen JL, Schellander K (2008) Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population. Mamm Genome 19:429–438

    Article  PubMed  Google Scholar 

  • Ludden PA, Kucuk O, Rule DC, Hess BW (2009) Growth and carcass fatty acid composition of beef steers fed soybean oil for increasing duration before slaughter. Meat Sci 82:185–192

    Article  CAS  Google Scholar 

  • Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome 12:637–645

    Article  PubMed  CAS  Google Scholar 

  • Mott R (2005) Perl script “ril.pl.”. http://mus.well.ox.ac.uk/mouse/INBREDS/RIL/index.shtml

  • Neuschl C, Hantschel C, Wagener A, Schmitt AO, Illig T, Brockmann GA (2010) A unique genetic defect on chromosome 3 is responsible for juvenile obesity in the Berlin Fat Mouse. Int J Obes (Lond) 34(12):1706–1714

    Article  CAS  Google Scholar 

  • Ochoa O, Shireman PK, McManus LM (2006) Altered inflammation increases intramuscular fat accumulation and impairs skeletal muscle regeneration following ischemic injury in CCR2−/− mice. J Am Coll Surg 203:S101

    Article  Google Scholar 

  • Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988

    Article  PubMed  CAS  Google Scholar 

  • Paszek AA, Wilkie PJ, Flickinger GH, Miller LM, Louis CF, Rohrer GA, Alexander LJ, Beattie CW, Schook LB (2001) Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim Biotechnol 12:155–165

    Article  PubMed  CAS  Google Scholar 

  • Phillips DIW, Caddy S, Ilic V, Fielding BA, Frayn KN, Borthwick AC, Taylor R (1996) Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 45:947–950

    Article  PubMed  CAS  Google Scholar 

  • Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C, Schwerin M, Schellander K, Wimmers K (2008) Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genom 9:367

    Article  Google Scholar 

  • Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS (2004) Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J 382:619–629

    Article  PubMed  CAS  Google Scholar 

  • Rehfeldt C, Renne U, Sawitzky M, Binder G, Hoeflich A (2010) Increased fat mass, decreased myofiber size, and a shift to glycolytic muscle metabolism in adolescent male transgenic mice overexpressing IGFBP-2. Am J Physiol Endocrinol Metab 299:E287–E298

    PubMed  CAS  Google Scholar 

  • Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391

    Article  PubMed  CAS  Google Scholar 

  • Schmitt AO, Al-Hasani H, Cheverud JM, Pomp D, Bunger L, Brockmann GA (2007) Fine mapping of mouse QTLs for fatness using SNP data. OMICS 11:341–350

    Article  PubMed  Google Scholar 

  • Schmitt A, Bortfeldt R, Neuschl C, Brockmann G (2009) RandoMate: a program for the generation of random mating schemes for small laboratory animals. Mamm Genome 20:321–325

    Article  PubMed  Google Scholar 

  • Schmitz-Peiffer C (2000) Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal 12:583–594

    Article  PubMed  CAS  Google Scholar 

  • Schwab CR, Mote BE, Du ZQ, Amoako R, Baas TJ, Rothschild MF (2009) An evaluation of four candidate genes for use in selection programmes aimed at increased intramuscular fat in Duroc swine. J Anim Breed Genet 126:228–236

    Article  PubMed  CAS  Google Scholar 

  • Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L (1998) A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 9:671–672

    Article  PubMed  CAS  Google Scholar 

  • Tanomura H, Miyake T, Taniguchi Y, Manabe N, Kose H, Matsumoto K, Yamada T, Sasaki Y (2002) Detection of a quantitative trait locus for intramuscular fat accumulation using the OLETF rat. J Vet Med Sci 64:45–50

    Article  PubMed  CAS  Google Scholar 

  • Tinsley FC, Taicher GZ, Heiman ML (2004) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obesity 12:150–160

    Article  Google Scholar 

  • Tyra M, Ropka-Molik K, Eckert R, Piórkowska K, Oczkowicz M (2010) H-FABP and LEPR gene expression profile in skeletal muscles and liver during ontogenesis in various breeds of pigs. Domest Anim Endocrinol 40(3):147–154

    Article  PubMed  Google Scholar 

  • Underwood KR, Tong J, Zhu MJ, Shen QW, Means WJ, Ford SP, Paisley SI, Hess BW, Du M (2007) Relationship between kinase phosphorylation, muscle fiber typing, and glycogen accumulation in longissimus muscle of beef cattle with high and low intramuscular fat. J Agric Food Chem 55:9698–9703

    Article  PubMed  CAS  Google Scholar 

  • Valdar WJ, Flint J, Mott R (2003) QTL fine-mapping with recombinant-inbred heterogeneous stocks and in vitro heterogeneous stocks. Mamm Genome 14:830–838

    Article  PubMed  Google Scholar 

  • Varga L, Szabo G, Darvasi A, Muller G, Sass M, Soller M (1997) Inheritance and mapping of Compact (Cmpt), a new mutation causing hypermuscularity in mice. Genetics 147:755–764

    PubMed  CAS  Google Scholar 

  • Wimmers K, Murani E, Ponsuksili S (2010) Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. Brief Funct Genom 9:251–258

    Article  CAS  Google Scholar 

  • Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M (2004) Effects of fatty acids on meat quality: a review. Meat Sci 66:21–32

    Article  CAS  Google Scholar 

  • Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, de Villena FP, Churchill GA (2009) A customized and versatile high-density genotyping array for the mouse. Nat Methods 6:663–666

    Article  PubMed  CAS  Google Scholar 

  • Yaspelkis BB, Singh MK, Krisan AD, Collins DE, Kwong CC, Bernard JR, Crain AM (2004) Chronic leptin treatment enhances insulin-stimulated glucose disposal in skeletal muscle of high-fat fed rodents. Life Sci 74:1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    Article  PubMed  CAS  Google Scholar 

  • Zhang WG, Lonergan SM, Gardner MA, Huff-Lonergan E (2006) Contribution of postmortem changes of integrin, desmin and [mu]-calpain to variation in water holding capacity of pork. Meat Sci 74:578–585

    Article  CAS  Google Scholar 

  • Zhang D, Liu ZX, Choi CS, Tian L, Kibbey R, Dong J, Cline GW, Wood PA, Shulman GI (2007) Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 104:17075–17080

    Article  PubMed  CAS  Google Scholar 

  • Zhao SM, Ren LJ, Guo L, Cheng ML, Zhang X, Ge CR, Gao SZ (2010) Muscle lipid metabolism gene expression in pigs with different H-FABP genotypes. Livestock Sci 128:101–107

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by the Deutsche Forschungsgemeinschaft (Project BR1285/8-1) and National Institutes of Health grant R21DA024845. We thank Gary Churchill for the support of the Center for Genome Dynamics for high density SNP genotyping at The Jackson Laboratory. Furthermore, we thank Carsten Berndt, Alexandra Weyrich, Melanie Riedel, and Annett Kannegiesser for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kärst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kärst, S., Cheng, R., Schmitt, A.O. et al. Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mamm Genome 22, 530–543 (2011). https://doi.org/10.1007/s00335-011-9342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9342-6

Keywords

Navigation