Skip to main content
Log in

The Sobolev Stability Threshold for 2D Shear Flows Near Couette

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the 2D Navier–Stokes equation on \(\mathbb T \times \mathbb R\), with initial datum that is \(\varepsilon \)-close in \(H^N\) to a shear flow (U(y), 0), where \(\Vert U(y) - y\Vert _{H^{N+4}} \ll 1\) and \(N>1\). We prove that if \(\varepsilon \ll \nu ^{1/2}\), where \(\nu \) denotes the inverse Reynolds number, then the solution of the Navier–Stokes equation remains \(\varepsilon \)-close in \(H^1\) to \((e^{t \nu \partial _{yy}}U(y),0)\) for all \(t>0\). Moreover, the solution converges to a decaying shear flow for times \(t \gg \nu ^{-1/3}\) by a mixing-enhanced dissipation effect, and experiences a transient growth of gradients. In particular, this shows that the stability threshold in finite regularity scales no worse than \(\nu ^{1/2}\) for 2D shear flows close to the Couette flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alinhac, S.: The null condition for quasilinear wave equations in two space dimensions I. Invent. Math. 145(3), 597–618 (2001)

    Article  MathSciNet  Google Scholar 

  • Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A Math. 143(05), 905–927 (2013)

    Article  MathSciNet  Google Scholar 

  • Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. l’IHÉS. 122(1), 195–300 (2013)

    Article  MathSciNet  Google Scholar 

  • Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. To appear in Annals of PDE (2013)

  • Bedrossian, J., Zelati, M.C.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. arXiv:1510.08098 (2015)

  • Bedrossian, J., Zelati, M.C., Glatt-Holtz, N.: Invariant measures for passive scalars in the small noise inviscid limit. arXiv:1505.07356 (2015a)

  • Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: below threshold. arXiv:1506.03720 (2015b)

  • Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: above threshold. arXiv:1506.03721 (2015c)

  • Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. arXiv:1511.01373 (2015d)

  • Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the 2D Couette flow. Arch. Ration. Mech. Anal. 216(3), 1087–1159 (2016)

    Article  Google Scholar 

  • Bernoff, A.J., Lingevitch, J.F.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6, 3717 (1994)

    Article  Google Scholar 

  • Caglioti, E., Maffei, C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92(1), 301–323 (1998)

  • Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 2(168), 643–674 (2008)

    Article  MathSciNet  Google Scholar 

  • Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Dubrulle, B., Nazarenko, S.: On scaling laws for the transition to turbulence in uniform-shear flows. Eur. Phys. Lett. 27(2), 129 (1994)

    Article  Google Scholar 

  • Gallagher, I., Gallay, T., Nier, F.: Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. 12(12), 2147–2199 (2009)

  • Inci, H., Kappeler, T., Topalov, P.: On the regularity of the composition of diffeomorphisms. Mem. Am. Math. Soc. 226(1062), vi+60 (2013)

    MathSciNet  MATH  Google Scholar 

  • Kelvin, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates. Phil. Mag. 24, 188 (1887)

    Article  Google Scholar 

  • Latini, M., Bernoff, A.J.: Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399–411 (2001)

    Article  Google Scholar 

  • Lin, Z., Zeng, C.: Inviscid dynamic structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097 (2011)

    Article  MathSciNet  Google Scholar 

  • Lundgren, T.S.: Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 2193 (1982)

    Article  Google Scholar 

  • Mouhot, C., Villani, C.: On landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  Google Scholar 

  • Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid. Proc. R. Ir. Acad. Sect. A Math. Phys. Sci. 27, 9–68 (1907)

    Google Scholar 

  • Reddy, S.C., Schmid, P.J., Baggett, J.S., Henningson, D.S.: On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269–303 (1998)

    Article  MathSciNet  Google Scholar 

  • Rhines, P.B., Young, W.R.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)

    Article  Google Scholar 

  • Ryutov, D.D.: Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion 41(3A), A1 (1999)

    Article  Google Scholar 

  • Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows, vol. 142. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Vukadinovic, J., Dedits, E., Poje, A.C., Schäfer, T.: Averaging and spectral properties for the 2D advection-diffusion equation in the semi-classical limit for vanishing diffusivity. Phys. D 310, 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  • Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Preprint arxiv:1509.08228 (2015)

  • Yaglom, A.M.: Hydrodynamic Instability and Transition to Turbulence, vol. 100. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Yu, J.H., Driscoll, C.F.: Diocotron wave echoes in a pure electron plasma. IEEE Trans. Plasma Sci. 30(1), 24–25 (2002)

    Article  Google Scholar 

  • Yu, J.H., Driscoll, C.F., O‘Neil, T.M.: Phase mixing and echoes in a pure electron plasma. Phys. Plasmas 12, 055701 (2005)

    Article  Google Scholar 

  • Zillinger, C.: Linear inviscid damping for monotone shear flows. arXiv preprint arXiv:1410.7341 (2014)

  • Zlatoš, A.: Diffusion in fluid flow: dissipation enhancement by flows in 2D. Commun. Partial Differ. Equ. 35(3), 496–534 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of J.B. was partially supported by NSF Grant DMS-1462029, and by an Alfred P. Sloan Research Fellowship. The work of V.V. was partially supported by NSF Grant DMS-1514771 and by an Alfred P. Sloan Research Fellowship. The work of F.W. was partially supported by NSF Grant DMS-1514771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Vicol.

Additional information

Communicated by Alex Kiselev.

Appendix: Construction and Properties of the Multiplier M

Appendix: Construction and Properties of the Multiplier M

In this section, we recall some of the technical tools regarding the Fourier multiplier M from Bedrossian et al. (2015d) and adapt them to our simpler setting.

Lemma 4.1

There exists a multiplier M such that the conditions (16a)–(16e) hold for some constant \(0<c<1\).

Proof of Lemma 4.1

We consider a multiplier of the form \(M=M_1M_2\) such that both \(M_1\) and \(M_2\) satisfy (16a). We choose \(M_1\) such that for \(k\ne 0\) it is determined by the ODE

$$\begin{aligned} -\frac{\dot{M_1}}{M_1}&=\frac{\left| k\right| }{k^2+|\xi -kt|^2} \\ M_1(0,k,\eta )&= 1. \end{aligned}$$

Similar multipliers appeared in Zillinger (2014), Bedrossian et al. (2015b, (2015c, (2015d). The above multiplier clearly satisfies (16c). Notice that for \(k \ne 0\), there holds

$$\begin{aligned} \frac{k^2 + \left| \eta -kt\right| ^2}{k^2+|\xi -kt|^2} = \frac{k^2 + \left| \xi -kt + \eta -\xi \right| ^2}{k^2+|\xi -kt|^2} \lesssim 1 + \left| \eta -\xi \right| ^2, \end{aligned}$$

and hence (16f) holds for \(M_1\). A direct computation shows that

$$\begin{aligned} M_1(t, k, \xi ) = \exp {\left( -\int _0^t \frac{\left| k\right| }{k^2+|\xi -ks|^2}\,\hbox {d}s\right) }, \end{aligned}$$

which implies (16b) holds for \(M_1\). Taking the derivative of \(M_1\) with respect to \(\xi \) gives

$$\begin{aligned} \left| \frac{\partial _{\xi }M_1(k,\xi )}{M_1(k,\xi )}\right| = \left| \int _0^t \frac{2\left| k\right| (\xi -k s)}{(k^2+|\xi -ks|^2)^2}\,\hbox {d}s\right| \le \frac{2}{\left| k\right| ^2}\int _0^t \frac{1}{(1+|\xi /k-s|^2)}\,\hbox {d}s, \end{aligned}$$

which proves that (16d) holds for \(M_1\). Note here that \(k \ne 0\) implies \(|k|\ge 1\).

Next, we define \(M_2\) by the differential equation (for \(k \ne 0\)),

$$\begin{aligned} -\frac{\dot{M_2}}{M_2}&=\frac{\nu ^{1/3}}{(\nu ^{1/3}\left| t-\xi /k\right| )^{2}+1} \\ M_2(0,k,\eta )&= 1. \end{aligned}$$

This multiplier was introduced in Bedrossian et al. (2015d). Similarly to \(M_1\), we deduce that (16b), (16d), and (16f) all hold for \(M_2\) (and hence also for \(M = M_1 M_2\)). Since for \(k\ne 0\) we have that

$$\begin{aligned} 1\lesssim \nu ^{1/3}|k,\xi -kt| \quad \text{ if } \quad \nu ^{-1/3}\le \left| t-\dfrac{\xi }{k}\right| \end{aligned}$$

and

$$\begin{aligned} 1\lesssim \dfrac{1}{(\nu ^{1/3}\left| t-\xi /k\right| )^{2}+1} \quad \text{ if } \quad \nu ^{-1/3}\ge \left| t-\dfrac{\xi }{k}\right| , \end{aligned}$$

inequality (16e) holds for \(M_2\). Therefore, the multiplier M we constructed satisfies conditions (16a)–(16e), completing the proof. \(\square \)

Remark 4.2

In condition (16e), the power \(\nu ^{-1/6}\) in front of the multiplier is sharp in the sense that 1 / 6 is the smallest sacrifice we need to make to bound the expression on the right side from below by a constant. In fact, if we make \(M_2\) to be positive constants independent of \(\nu \) when \(\left| t-\xi /k\right| \ge \nu ^{-1/3}\), then the size of \(\dot{M}_2\) should be approximately \(\nu ^{1/3}\). Hence, if we did not need (16f) or (16d), one could construct \(M_2\) to satisfy (16e) with

$$\begin{aligned} \dot{M}_2&=0 \ \ \ \ \ \ \ \ \mathrm{if}\,\, \nu ^{-1/3}\ge \left| t-\dfrac{\xi }{k}\right| \\ \dot{M}_2&=-\dfrac{1}{2}\nu ^{1/3} \ \ \ \ \ \ \ \ \mathrm{if}\ \nu ^{-1/3}\ge \left| t-\dfrac{\xi }{k}\right| . \end{aligned}$$

We need the following Lemma to commute \(\sqrt{-\dot{M}M}\) with \(\Delta _L\Delta _t^{-1}\), the latter of which is not a Fourier multiplier.

Lemma 4.3

Let \(f\in H^N\) and \(N > 1\). Then the following estimate holds for \(\delta \) sufficiently small,

$$\begin{aligned} \left\| \sqrt{-\dot{M}M}\Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}} \lesssim \left\| \sqrt{-\dot{M}M}f_{\ne }\right\| _{H^{N}}. \end{aligned}$$

Proof of Lemma 4.3

Using the equality

$$\begin{aligned} \Delta _L=\Delta _t-(a^2-1)\partial _{vv}^L-b\partial _{v}^L, \end{aligned}$$

we have

$$\begin{aligned} \left\| \sqrt{-\dot{M}M}\Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}}&\lesssim \left\| \sqrt{-\dot{M}M}f_{\ne }\right\| _{H^{N}} \nonumber \\&\quad + \left\| \sqrt{-\dot{M}M}\left( (a^2-1)\partial _{vv}^L\Delta _t^{-1}f_{\ne }\right) \right\| _{H^{N}} \nonumber \\&\quad + \left\| \sqrt{-\dot{M}M}\left( b\partial _{v}^L\Delta _t^{-1}f_{\ne }\right) \right\| _{H^{N}}. \end{aligned}$$
(50)

By (16f), \(N>1\), and (42), we deduce

$$\begin{aligned}&\left\| \sqrt{-\dot{M}M}\left( (a^2-1)\partial _{vv}^L\Delta _t^{-1}f_{\ne }\right) \right\| _{H^{N}}\\&\quad = \left\| \sqrt{-\dot{M}M}\left( ((a-1)^2-2(a-1))\partial _{vv}^L\Delta _t^{-1}f_{\ne }\right) \right\| _{H^{N}} \\&\qquad \lesssim \Vert a-1\Vert _{H^{N+1}}\left\| \sqrt{-\dot{M}M}\Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}} \\&\qquad \lesssim \delta \left\| \sqrt{-\dot{M}M}\Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}}, \end{aligned}$$

and similarly

$$\begin{aligned} \left\| \sqrt{-\dot{M}M}\left( b\partial _{v}^L\Delta _t^{-1}f_{\ne }\right) \right\| _{H^{N}}&\lesssim \Vert b\Vert _{H^{N+1}}\left\| \sqrt{-\dot{M}M}\Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}} \\&\lesssim \delta \left\| \sqrt{-\dot{M}M}\Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}}. \end{aligned}$$

Since \(\delta \ll 1\), the result follows from (50) immediately. \(\square \)

The following lemma is proved in the same manner as Lemma 4.3, although slightly simpler. In particular, this lemma shows that \(\Delta _L \Delta _t^{-1}\) can be approximately treated as the identity for \(\delta \) sufficiently small.

Lemma 4.4

Let \(f\in H^N\) and \(N > 1\). Then the following estimate holds for \(\delta \) sufficiently small,

$$\begin{aligned} \left\| \Delta _L\Delta _t^{-1}f_{\ne }\right\| _{H^{N}} \lesssim \left\| f_{\ne }\right\| _{H^{N}}. \end{aligned}$$

The following estimate applies to the zero mode of the velocity field.

Lemma 4.5

Let f be such that \(f_0\in H^N\), \(N>1\), and \(\partial _{v}\Delta _t^{-1}f_0\in L^2\). Then for \(\delta \) sufficiently small, there holds

$$\begin{aligned} \Vert \partial _{vv}\Delta _t^{-1}f_0\Vert _{H^{N}} \lesssim \Vert f_0\Vert _{H^N}+\delta \Vert \partial _{v}\Delta _t^{-1}f_0\Vert _{L^{2}}. \end{aligned}$$

Proof of Lemma 4.5

Since

$$\begin{aligned} \partial _{vv}\Delta _t^{-1}f_0 = (\Delta _t-(a^2-1)\partial _{vv}-b\partial _v)\Delta _t^{-1}f_0, \end{aligned}$$

we have by \(N>1\) and (42) (interpolating \(H^N\) between \(L^2\) and \(H^{N+1}\)),

$$\begin{aligned} \Vert \partial _{vv}\Delta _t^{-1}f_0\Vert _{H^{N}}&\lesssim \Vert f_0\Vert _{H^{N}}+\delta \Vert \partial _{vv}\Delta _t^{-1}f_0\Vert _{H^{N}} +\delta \Vert \partial _{v}\Delta _t^{-1}f_0\Vert _{H^{N}} \\&\lesssim \Vert f_0\Vert _{H^{N}}+\delta \Vert \partial _{vv}\Delta _t^{-1}f_0\Vert _{H^{N}} +\delta \Vert \partial _{v}\Delta _t^{-1}f_0\Vert _{L^{2}}. \end{aligned}$$

For \(\delta \ll 1\), we may absorb the second term on the right side and we obtain the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedrossian, J., Vicol, V. & Wang, F. The Sobolev Stability Threshold for 2D Shear Flows Near Couette. J Nonlinear Sci 28, 2051–2075 (2018). https://doi.org/10.1007/s00332-016-9330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9330-9

Keywords

Mathematics Subject Classification

Navigation