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Abstract Depth-integrated long-wave models, such as the shallow-water and Boussi-
nesq equations, are standard fare in the study of small amplitude surface waves in
shallow water. While the shallow-water theory features conservation of mass, mo-
mentum and energy for smooth solutions, mechanical balance equations are not
widely used in Boussinesq scaling, and it appears that the expressions for many
of these quantities are not known. This work presents a systematic derivation of
mass, momentum and energy densities and fluxes associated with a general family
of Boussinesq systems. The derivation is based on a reconstruction of the velocity
field and the pressure in the fluid column below the free surface, and the derivation
of differential balance equations which are of the same asymptotic validity as the
evolution equations. It is shown that all these mechanical quantities can be expressed
in terms of the principal dependent variables of the Boussinesq system: the surface
excursion η and the horizontal velocity w at a given level in the fluid.
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1 Introduction

Long-wave models for weakly nonlinear surface water waves were first developed
by Boussinesq (1872) to describe surface gravity waves of small amplitude and long
wavelength, propagating in a horizontal channel of uniform depth. These models are
derived under the assumption that there is an approximate balance between nonlinear
steepening effects and dispersive spreading. In mathematical terms, this balance is
expressed by introducing two small parameters α and β measuring the wave ampli-
tude and the wavelength, respectively, by comparison with the undisturbed depth of
the channel. If both α and β are small and of the same order of magnitude, then a gen-
eral system of equations may be derived which models the evolution of surface waves
which fall into this scaling regime. The situation was reviewed recently by Bona et al.
(2002), and a general family of Boussinesq systems was put forward. The present ar-
ticle aims for a further development of physical properties of the Boussinesq systems
derived in Bona et al. (2002). In particular, the focus will be on derivation of mass,
momentum and energy densities, and the associated fluxes in terms of the dependent
variables used in the model equations. Moreover, expressions for the pressure asso-
ciated to the particular variables used in these systems will be derived. It is our hope
that these quantities will prove useful in studies where Boussinesq models are used
to understand the effect of surface waves on the fluid flow underneath the surface.

The surface water-wave problem is generally described by the Euler equations
with no-flow conditions at the bottom, and kinematic and dynamic boundary con-
ditions at the free surface. Assuming weak transverse effects, the unknowns are the
surface elevation η(x, t), the horizontal and vertical fluid velocities u1(x, z, t) and
u2(x, z, t), respectively, and the pressure P(x, z, t). If the assumption of irrotational
flow is made, then a velocity potential φ(x, z, t) can be used. If one is aiming for
disturbances which are localized near the observer, and a flat bottom is given, the
problem may be posed on a domain {(x, z) ∈ R

2 | −h0 < z < η(x, t)} which extends
to infinity in the positive and negative x-direction, and where the parameter h0 rep-
resents the undisturbed depth of the fluid. Due to the incompressibility of the fluid,
the potential then satisfies Laplace’s equation in this domain. The fact that the fluid
cannot penetrate the bottom is expressed by a homogeneous Neumann boundary con-
dition at the flat bottom. Thus we have

�φ = 0 in −h0 < z < η(x, t),

φz = 0 on z = −h0.

The pressure is eliminated with help of the Bernoulli equation, and the free-surface
boundary conditions are formulated in terms of the potential and the surface excur-
sion by

ηt + φxηx − φz = 0,

φt + 1
2 (φ2

x + φ2
z ) + gη = 0,

}
on z = η(x, t),

where g represents the gravitational acceleration. The geometric setup of the problem
is illustrated in Fig. 1.

As is well known, the difficulty in this problem lies mainly in the fact that the
fluid domain is not known a priori. The initial-value problem for this equation has
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Fig. 1 The schematic elucidates the geometric setup of the problem. The free surface is described by a
function η(x, t). The undisturbed water depth is h0, the gravitational acceleration is g, and the x-axis is
aligned with the free surface at rest. The density of the fluid is ρ

been studied in several works, culminating in recent proofs of local well-posedness
by Wu (1997) for the two-dimensional problem with infinite depth, and further im-
provements by Wu (1999) to treat the three-dimensional case. Lannes (2005) gave a
simplified but more general proof in arbitrary dimensions which also covers the phys-
ically relevant case of finite depth and uneven bottom. If the main interest is in the
evolution of the free surface, one may use a simplified model system which will be
valid asymptotically for waves of small amplitude, for long wavelength, or both. Sup-
posing that a is a representative amplitude, and � represents a dominant wavelength,
the Boussinesq scaling consists of assuming that α = a/h0 � 1, β = h2

0/�
2 � 1, and

α ∼ β . It was shown in Bona et al. (2002) that if the Boussinesq scaling is used then
a general system of the form

ηt + h0wx + (ηw)x + awxxx − bηxxt = 0,

wt + gηx + wwx + cηxxx − dwxxt = 0,
(1.1)

may be derived. Here η represents the excursion of the free surface as before, while
w is a function of x and t only, which represents the horizontal velocity at a given
height h0θ in the fluid column. The parameters a, b, c and d are given by

a = 1

2

(
θ2 − 1

3

)
λh3

0, b = 1

2

(
θ2 − 1

3

)
(1 − λ)h2

0,

c = 1

2

(
1 − θ2)μgh2

0, d = 1

2

(
1 − θ2)(1 − μ)h2

0,

where λ ∈ R and μ ∈ R are modeling parameters which can be chosen freely, and
0 ≤ θ ≤ 1. For a further discussion of the asymptotic validity of these model equa-
tions, the reader may consult (Bona et al. 2002) and the references contained therein.
The work presented in Bona et al. (2002, 2004) was important in the sense that it gave
a complete classification of systems of Boussinesq type, and provided a comprehen-
sive study of existence and uniqueness of solutions for these systems. The validity
of these and similar equations as asymptotic models for water waves has been un-
der investigation in a number of mathematical works, starting with the work of Craig
(1985), and in later work by Schneider and Wayne (2000), and Bona et al. (2005).
The global existence of the water-wave problem in scaling regimes relevant for the
system (1.1) has been proved by Alvarez-Samaniego and Lannes (2008).
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The attention in the present paper is directed toward the physical quantities that
characterize the water motion inside the channel, such as water pressure, and mass,
momentum and energy densities and fluxes. It will turn out that all these quanti-
ties can be reconstructed from the two principal unknowns, η and w. This study
was originally motivated by our desire to find accurate expressions for the energy
associated with a surface wave field described by Boussinesq scaling, and to un-
derstand the energy conservation properties in undular bores propagating in narrow
channels with even bottom. Regarding this problem, there has been an ongoing de-
bate about the energy loss at the bore front which is predicted by the shallow-water
theory. In Ali and Kalisch (2010), a preliminary version of an energy integral was
used to show that energy losses exist only as a consequence of the approximate na-
ture of the equations, and not because of some dissipation mechanism which is un-
accounted for in Boussinesq scaling. This is only reasonable, of course, since the
shallow-water system itself is purely hyperbolic, and an energy loss in this theory
only occurs because of the loss of regularity due to hyperbolic wave breaking at the
bore front.

To set the stage for the developments in the body of the paper, we consider the
existing theory for the shallow-water approximation. The shallow-water approxima-
tion makes the assumption that there is no significant vertical acceleration of the fluid
particles. Equivalently, it is assumed that the parameter β is small, so the waves to
be described are long compared to the undisturbed depth h0. In two dimensions, the
shallow-water system is given by

ηt + h0wx + (ηw)x = 0,

wt + gηx + wwx = 0.
(1.2)

Now this system is derived from physical principles of mass and momentum conser-
vation in a control volume, such as shown in Fig. 2. In the shallow-water approxima-
tion these equations are vertically integrated, and are given by

∂

∂t
M0 + ∂

∂x
q0
M = 0, (1.3)

∂

∂t
I 0 + ∂

∂x
q0
I = 0, (1.4)

Fig. 2 A typical control volume used in the derivation of mass, momentum and energy balance laws. This
control volume is a blend of a fixed and a material control volume. The bottom and lateral boundaries are
held fixed while the upper boundary moves with the free surface. The mass flux is indicated through the
lateral boundaries
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where M0 and I 0 are the mass and momentum density per unit span, respectively,
while q0

M and q0
I are the corresponding fluxes. These quantities are given by

M0 = ρ(h0 + η),

q0
M = ρ(h0w + ηw),

and

I 0 = ρ(h0 + η)w, (1.5)

q0
I = ρ(h0 + η)w2 + ρ

2
g(h0 + η)2. (1.6)

Note that the momentum flux contains a term which represents the pressure force.
Equations (1.3) and (1.4) can then be written as

ηt + h0wx + (ηw)x = 0,[
(h0 + η)w

]
t
+ [

(h0 + η)w2
]
x

+ g(h0 + η)ηx = 0.
(1.7)

For smooth solutions, the systems (1.7) and (1.2) are equivalent. The conservation
of energy is not a separate principle in homogeneous fluids, but follows from the
equations of motion (Kundu and Cohen 2008). The conservation of energy takes the
form

∂

∂t
E0 + ∂

∂x
q0
E = 0, (1.8)

where the energy density associated to the shallow-water approximation is given by

E0 = ρ

2
w2(h0 + η) + ρ

2
g
(
2h0η + η2). (1.9)

Note that this quantity has been written in such a way that the potential energy is zero
if there is no wave motion, i.e. if η = 0. The energy flux corrected for the work done
by the pressure force is

q0
E = ρ

2
w3(h0 + η) + ρgw(h0 + η)2. (1.10)

The shallow-water system has additional conservation laws of the form (1.8), but
these do not appear to describe any physical properties of the fluid (Whitham 1974).
Finally, note that the conservation of angular momentum is encoded in the assumption
of irrotational flow.

The main contribution of the present paper is the systematic derivation of ex-
pressions for the mass, momentum and energy densities and fluxes in the context
of Boussinesq scaling. These expressions are similar to the ones recorded above, and
in most cases correctly reduce to their shallow-water counterparts in the limit of very
long waves, i.e. if the parameter β is taken to be zero. We first recall the derivation of
the family (1.1) of systems in the next section. In Sect. 3, the pressure associated with
a particular Boussinesq model is found. In Sects. 4, 5, and 6, the mass, momentum
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and energy balance equations are computed. In Sect. 7, these expressions are tabu-
lated for some particular systems, and in Sect. 8, a numerical example is provided.
Section 9 contains the results of a similar study pertaining to higher-order Boussinesq
systems. Finally, a short conclusion is given in Sect. 10.

2 Derivation of the System

To set the stage for finding the mass, momentum and energy integrals, we recall the
derivation of the general system (1.1). In order to identify the relevant terms in the
equations, the variables are non-dimensionalized in the following way:

x̃ = x

�
, z̃ = z + h0

h0
, η̃ = η

a
, t̃ = c0t

�
, φ̃ = c0

ga�
φ,

where c0 = √
gh0. The free-surface boundary conditions then take the form

η̃t̃ + αφ̃x̃ η̃x̃ − 1
β
φ̃z̃ = 0,

η̃ + φ̃t̃ + 1
2 (αφ̃2

x̃
+ α

β
φ̃2

z̃
) = 0,

⎫⎬
⎭ on z̃ = 1 + αη̃. (2.1)

The standard approach consists of developing the potential φ in an asymptotic series,
and using the Laplace equation and Neumann boundary condition at the bottom to
write the non-dimensional velocity potential φ̃ in the form

φ̃ =
∞∑

m=0

(−1)m
z̃2m

(2m)!
∂2mf̃

∂x̃2m
βm = f̃ − z̃2

2
f̃x̃x̃β + z̃4

24
f̃x̃x̃x̃x̃β

2 + O
(
β3).

Substituting this expression into the second boundary condition at the free surface
yields the relation

η̃ + f̃t̃ − β

2
f̃x̃x̃t̃ + α

2
f̃ 2

x̃ = O
(
αβ,β2), (2.2)

which will be of use later in the derivation of the pressure. To find a closed system of
two evolution equations, we insert the asymptotic expression for φ̃ in the first equa-
tion in (2.1), and collect all terms of zeroth and first order in α and β . Then, we
differentiate (2.2) and express the equations in terms of the non-dimensional hori-
zontal velocity at the bottom fx̃ = ṽ. This procedure yields the equations

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ − 1

6
βṽx̃x̃x̃ = O

(
αβ,β2

)
,

η̃x̃ + ṽt̃ − 1

2
βṽx̃x̃t̃ + αṽṽx̃ = O

(
αβ,β2

)
.

(2.3)

Now if we let w̃ be the non-dimensional velocity at a non-dimensional height
0 ≤ θ ≤ 1 in the fluid column, then Taylor’s formula shows that

φ̃x̃ |z̃=θ = w̃ = ṽ − θ2

2
ṽx̃x̃β + θ4

24
ṽx̃x̃x̃x̃β

2 + O
(
β3).
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Then as shown in Bona et al. (2002), ṽ may be expressed in terms of w̃ by

ṽ = w̃ + 1

2
βθ2w̃x̃x̃ + θ4 5

24
w̃x̃x̃x̃x̃β

2 + O
(
β2). (2.4)

Substituting this representation into the system (2.3) yields

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1

2

(
θ2 − 1

3

)
βw̃x̃x̃x̃ = O

(
αβ,β2),

η̃x̃ + w̃t̃ + αw̃w̃x̃ + 1

2
β
(
θ2 − 1

)
w̃x̃x̃t̃ = O

(
αβ,β2).

Now for any real λ and μ, the previous system is a special case of the more general
system

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1

2

(
θ2 − 1

3

)
λβw̃x̃x̃x̃ − 1

2

(
θ2 − 1

3

)
(1 − λ)βη̃x̃x̃t̃

= O
(
αβ,β2),

w̃t̃ + η̃x̃ + αw̃w̃x̃ + 1

2

(
1 − θ2)μβη̃x̃x̃x̃ − 1

2

(
1 − θ2)(1 − μ)βw̃x̃x̃t̃ = O

(
αβ,β2).

If terms of order O(αβ,β2) are disregarded, the system takes the following form in
dimensional variables:

ηt + h0wx + (ηw)x + 1

2

(
θ2 − 1

3

)
λh3

0wxxx − 1

2

(
θ2 − 1

3

)
(1 − λ)h2

0ηxxt

= 0, (2.5)

wt + gηx + wwx + 1

2

(
1 − θ2)μgh2

0ηxxx − 1

2

(
1 − θ2)(1 − μ)h2

0wxxt = 0. (2.6)

One important fact to notice about the systems (2.5) and (2.6) is that the higher-
order terms do not contain summands of the order O(α2). This fact shows that any
higher-order system derived along these lines will reduce to the shallow-water system
(1.2) in the limit of very long waves, i.e. when β → 0.

In the following sections, the Boussinesq system (2.5) and (2.6) is studied with
respect to reconstruction of the pressure, and computation of mass, momentum and
energy densities and fluxes from the dependent variables η and w. Considering for in-
stance the total momentum contained in a control volume in the fluid reaching from
the even bottom to the free surface, such as shown in Fig. 2, it is not immediately
clear how to determine the correct order of approximation of such a quantity. How-
ever, after a moment of thought it appears that a natural way to proceed is to derive
differential balance laws in analogy with (1.7) in the shallow-water theory. However,
it will turn out that in Boussinesq scaling, these balance laws are valid only up to the
same order as the evolution equations. Accordingly, to (2.5) and (2.6) derived above,
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which are valid to order O(αβ,β2), there are associated non-dimensional densities
X̃ and fluxes q̃X which satisfy the relation

∂

∂t̃
X̃ + ∂

∂x̃
q̃X = O

(
α2, αβ,β2)

where X may represent the mass, momentum or energy density, and qX the corre-
sponding flux.

Various forms of energy integrals have been used in the literature. In particular,
previous efforts of studying energy budgets in Boussinesq scaling include the incor-
poration of an energy equation into the evolution system. This approach was taken
by Dutykh and Dias, and it yields a third evolution equation (Dutykh and Dias 2009)
in addition to the two equations (2.5) and (2.6). In the work of Christov (2001), the
focus was on deriving’energy-consistent’ Boussinesq models, which were required to
preserve a certain functional in time. In a long study, Keulegan and Patterson defined
an energy integral associated to the single Boussinesq equation (Keulegan and Pat-
terson 1940), which apparently represents the physical energy. Despite these efforts,
a systematic study deriving these expressions for all Boussinesq systems of the type
derived in Bona et al. (2002) seems to be unavailable at present.

3 Pressure

In this section the pressure associated with the general system (2.5) and (2.6) is found.
While it is interesting for various applications to be able to reconstruct the pressure
from the primary dependent variables of the equations of motion, an appropriate ex-
pression for the pressure is also essential for computation of the momentum and en-
ergy balances. Indeed the pressure force on a control volume and the work done by
the pressure force appear prominently in these balance laws.

The starting point for obtaining the pressure is the Bernoulli equation,

φt + 1

2
|∇φ|2 = −P

ρ
− gz + C. (3.1)

In order to find the constant C, we evaluate this equation at the free surface. Assuming
that the surface disturbance is sufficiently localized so that η → 0 and φ → const. as
x → ∞, the constant C is given by

C = Patm

ρ
,

where Patm denotes the atmospheric pressure. Therefore the pressure P in equation
(3.1) can be obtained from

P − Patm = −ρgz − ρφt − ρ

2
|∇φ|2.

As is customary, we introduce the dynamic pressure P ′ which measures the deviation
from hydrostatic pressure. The dynamic pressure is defined by

P ′ = P − Patm + ρgz = −ρφt − ρ

2
|∇φ|2.
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The dynamic pressure is scaled by using a typical wave amplitude a . Accordingly, if
we define ρagP̃ ′ = P ′, then P̃ ′ is given in terms of the velocity potential by

P̃ ′ = P − Patm

agρ
+ z

a

= −φ̃t̃ − 1

2
αφ̃2

x̃ − 1

2

α

β
φ̃2

z̃ .

Substituting the expression for φ̃ found in Sect. 2, we obtain

P̃ ′ = −f̃t̃ + β
z̃2

2
f̃x̃x̃t̃ − 1

2
αf̃ 2

x̃ + O
(
αβ,β2).

However, using the relation (2.2) in the previous section, we see that

η̃ − 1

2
βf̃x̃x̃t̃ = −f̃t̃ − 1

2
αf̃ 2

x̃ + O
(
αβ,β2).

Recalling that f̃x̃x̃t̃ = w̃x̃t̃ + O(β), the second-order dynamic pressure emerges in the
form

P̃ ′ = η̃ + 1

2
β
(
z̃2 − 1

)
w̃x̃t̃ + O

(
αβ,β2).

Using this expression, and converting to dimensional variables, the total pressure is
given by

P = Patm + ρg(η − z) + 1

2
ρ
(
(z + h0)

2 − h2
0

)
wxt .

Now if this expression is evaluated at the free surface it appears that the pressure is
not equal to atmospheric pressure. Even though one may argue that the value of the
pressure at the free surface is still correct to second order in α and β , this failure
of the asymptotic method to represent the pressure at the free surface is certainly a
drawback when the method is used in practice. On the other hand, the defect in the
expression for the pressure may be alleviated by making the third-order correction

P1 = Patm + ρg(η − z) + 1

2
ρ
(
(z + h0)

2 − h2
0

)
wxt − 1

2
ρ
(
2h0η + η2)wxt .

This approximation is correct to the same order as the previous expression, but it has
the advantage that it takes on the appropriate value when evaluated at the free surface:

P1|z=η = Patm.

While it might be advantageous to use P1 in practical situations, for the developments
in the next few sections, the exact value of the pressure at the surface is immaterial.
Moreover, as the atmospheric pressure is of a magnitude much smaller than the sig-
nificant terms in the evolution equations, it will be assumed in the following that the
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atmospheric pressure is zero. Thus, we work with the expression

P = ρg(η − z) + 1

2
ρ
(
(z + h0)

2 − h2
0

)
wxt (3.2)

for the pressure. We note also that the definition of the pressure does not depend on
the vertical level θh0 where the horizontal velocity is modeled. Moreover, P does not
depend on either of the modeling parameters λ and μ, and agrees with the expres-
sion for the pressure associated to the so-called ‘classical’ Boussinesq system (7.1),
which was given in Peregrine (1972). The system (7.1) will be studied more closely
in Sect. 7.

4 Mass Balance

In this section, mass conservation properties of the system (2.5) and (2.6) are ex-
plored. Consider the total mass of the fluid contained in a control volume of unit
width, delimited by the interval [x1, x2] on the lateral sides, and by the bottom and
the free surface, such as indicated in Fig. 2. This mass is given by

M =
∫ x2

x1

∫ η

−h0

ρ dzdx.

The physical principle of mass conservation implies that the change per unit time
in the total mass in a control volume is equal to the net mass flux into the control
volume. Since there is no mass flux through the bottom or through the free surface,
mass conservation can be stated in terms of the flow variables as

d

dt

∫ x2

x1

∫ η

−h0

ρ dzdx =
[∫ η

−h0

ρφx(x, z)dz

]x1

x2

.

In non-dimensional form this becomes

d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0
dz̃ dx̃ = α

[∫ 1+αη̃

0
φ̃x̃ (x̃, z̃)dz̃

]x1/�

x2/�

.

Integrating with respect to z̃ and substituting the expression for φ̃x̃ in terms of ṽ yields

d

dt̃

∫ x2/�

x1/�

(1 + αη̃)dx̃ = α

[∫ 1+αη̃

0

{
ṽ − z̃2

2
βṽx̃x̃ + O

(
β2)}dz̃

]x1/�

x2/�

= α

[
ṽ + αṽη̃ − β

6
ṽx̃x̃ + O

(
αβ,β2)]x1/�

x2/�

.

Using the approximation (2.4) leads to the first-order approximation

d

dt̃

∫ x2/�

x1/�

(1 + αη̃)dx̃ = α

[
w̃ + αw̃η̃ + β

2

(
θ2 − 1

3

)
w̃x̃x̃ + O

(
αβ,β2)]x1/�

x2/�

. (4.1)
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We notice that the mass balance equation (4.1) contains terms of order O(α2β,αβ2)

on the right-hand side. In order to determine which terms should be kept to get an
approximation of the same order as the evolution equations, it appears most natural
to derive a differential form of the mass balance equation. Thus we divide by the
length of the interval to obtain

1

x2/� − x1/�

∫ x2/�

x1/�

η̃t̃ dx̃

= 1

x2/� − x1/�

[
w̃ + αw̃η̃ + β

2

(
θ2 − 1

3

)
w̃x̃x̃ + O

(
αβ,β2)]x1/�

x2/�

.

Taking the limit as x2/� → x1/� yields the differential balance equation

η̃t̃ + w̃x + α(w̃η̃)x̃ + β

2

(
θ2 − 1

3

)
w̃x̃x̃x̃ = O

(
αβ,β2). (4.2)

Denoting the non-dimensional mass density by

M̃ = 1 + αη̃,

and the non-dimensional mass flux by

q̃M = αw̃ + α2η̃w̃ + 1

2
αβ

(
θ2 − 1

3

)
w̃x̃x̃ ,

the mass balance is

∂

∂t̃
M̃ + ∂

∂x̃
q̃M = O

(
αβ,β2).

Using the scalings M = ρh0M̃ and qM = ρh0c0q̃M , the dimensional forms of these
quantities are

M = ρ(h0 + η), (4.3)

and

qM = ρh0w + ρηw + ρh3
0

2

(
θ2 − 1

3

)
wxx. (4.4)

Incidentally, we see that dimensional form of (4.2) is the same as (2.5) with λ = 1.
Thus the model (2.5) and (2.6) conserves mass exactly if the modeling parameter λ is
chosen to be equal to one. For other choices of λ, mass is not exactly conserved, but
only up to the same non-dimensional order as the equation is valid. A possible check
on the viability of the expression for the mass is the behavior as the parameter β ap-
proaches zero. In this case, the waves are extremely long, and the shallow-water the-
ory should be the result. Indeed, letting β → 0 in the mass balance equation (4.2), and
changing to dimensional variables, the equation reduces to the first equation in (1.7).
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5 Momentum Balance

This section and the next are devoted to finding approximate expressions for momen-
tum and energy contained in a control volume, and the respective fluxes. The total
horizontal momentum of a fluid of constant density ρ, contained inside a control
volume in a horizontal channel of unit width, reaching from the bottom to the free
surface, and delimited by the interval [x1, x2] in the x-direction is given by

I =
∫ x2

x1

∫ η

−h0

ρφx dzdx.

Conservation of momentum is expressed by the requirement that the rate of change
of I is equal to the net influx of momentum through the boundaries plus the net work
done on the boundary of the control volume. This relation is expressed by

d

dt

∫ x2

x1

∫ η

−h0

ρφx dzdx =
[∫ η

−h0

ρφ2
x dz +

∫ η

−h0

P dz

]x1

x2

.

The right-hand side of the last equality will be called the net momentum flux, cor-
rected for pressure forces, or simply the momentum flux. Expressing the last relation
in non-dimensional variables yields

α
d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0
φ̃x̃ dz̃ dx̃

=
[
α2

∫ 1+αη̃

0
φ̃2

x̃ dz̃ + α

∫ 1+αη̃

0
P̃ ′ dz̃ −

∫ 1+αη̃

0
(z̃ − 1)dz̃

]x1

x2

.

Substituting the values of φ̃x̃ and P̃ ′ found in Sects. 2 and 3 yields

α
d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0

{
f̃x̃ − z̃

2
βf̃x̃x̃x̃ + O

(
β2)}dz̃dx̃

=
[
α2

∫ 1+αη̃

0

{
f̃ 2

x̃ + O(β)
}

dz̃

+ α

∫ 1+αη̃

0

{
η̃ + β

2

(
z̃2 − 1

)
f̃x̃x̃t̃ + O

(
αβ,β2)}dz̃ +

∫ 1+αη̃

0
(1 − z̃)dz̃

]x1/�

x2/�

.

Using the non-dimensional horizontal velocity ṽ = f̃x̃ and integrating with respect to
z̃ transforms this into

α
d

dt̃

∫ x2/�

x1/�

{
ṽ(1 + αη̃) − β

6
ṽx̃x̃ + O

(
αβ,β2)}dx̃

=
[
α2{ṽ2 + O(α,β)

} +
{
αη̃ + α2

2
η̃2 − αβ

3
ṽx̃t̃ + 1

2
+ O

(
α2β,αβ2)}]x1/�

x2/�

.

(5.1)
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Now expressing (5.1) in terms of w̃ using (2.4) yields

α
d

dt̃

∫ x2/�

x1/�

{
w̃(1 + αη̃) + β

2

(
θ2 − 1

3

)
w̃x̃x̃

}
dx̃

=
[
α2w̃2 + αη̃ + α2

2
η̃2 − αβ

3
w̃x̃t̃ + 1

2

]x1/�

x2/�

+ O
(
α3, α2β,αβ2). (5.2)

Differentiating with respect to x̃ as in the previous section finally reveals the balance
equation:

w̃t̃ + α(w̃η̃)t̃ + β

2

(
θ2 − 1

3

)
w̃x̃x̃t̃ + η̃x̃ + 2αw̃w̃x̃ + αη̃η̃x̃ − 1

3
βw̃x̃x̃t̃

= O
(
α2, αβ,β2).

Again, this differential balance equation appears to be the most appropriate gauge of
which terms are to be included in the expressions for momentum density and flux.
Taking the appropriate terms in (5.2) which are of order zero or one in the differential
momentum balance, we find the non-dimensional momentum density to be

Ĩ = αw̃ + α2w̃η̃ + 1

2
αβ

(
θ2 − 1

3

)
w̃x̃x̃ ,

and the non-dimensional momentum flux (corrected for the pressure force) as

q̃I = αη̃ + α2w̃2 + α2

2
η̃2 − αβ

3
w̃x̃t̃ + 1

2
.

Then the momentum balance is

∂

∂t̃
Ĩ + ∂

∂x̃
q̃I = O

(
α2, αβ,β2).

Using the scaling I = ρc0h0Ĩ and qI = ρc2
0h0q̃I , the dimensional forms of the mo-

mentum density and momentum flux per unit span are given by

I = ρ(h0 + η)w + ρ

2

(
θ2 − 1

3

)
h3

0wxx (5.3)

and

qI = ρh0w
2 + ρg

2
(h0 + η)2 − ρh3

0

3
wxt . (5.4)

In order to compare these terms with the shallow-water theory we let β → 0 in (5.2).
Then the corresponding dimensional expressions for the momentum density and flux
are

I = ρ(h0 + η)w
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and

qI = ρh0w
2 + ρ

2
g(h0 + η)2.

It can be seen that the momentum density I reduces correctly to the shallow water
form I 0. On the other hand, the flux does not reduce to the shallow-water momentum
flux q0

I . This is also borne out by the fact that (5.2) contains a correction term of order
O(α3), namely the term α3w̃2η̃. If agreement is desired here, one has to consider a
higher-order theory. Such an approach will be presented in Sect. 9. Another way to
obtain agreement is to use a higher-order correction for the momentum flux only by
adding the term α3w̃2η̃. This correction will keep the expression correct to the same
order, but will facilitate comparison with the shallow-water theory.

6 Energy Balance

The total mechanical energy inside a control volume of the same type as used in the
previous two sections is

E = 1

2

∫ x2

x1

∫ η

−h0

ρ|∇φ|2 dzdx +
∫ x2

x1

∫ η

0
ρg(z + h0)dzdx,

where the first term represents the kinetic energy, and the second term is the potential
energy. The potential energy has been defined in such a way that it is zero when no
wave motion is present. Conservation of total mechanical energy is written as

d

dt

∫ x2

x1

∫ η

−h0

ρ

2
|∇φ|2 dzdx + d

dt

∫ x2

x1

∫ η

0
ρg(z + h0)dzdx

=
[∫ η

−h0

{
ρ

2
|∇φ|2 + ρg(z + h0)

}
φx dz +

∫ η

−h0

φxP dz

]x1

x2

.

This conservation equation follows from physical conservation of energy; a more
detailed derivation may be found in Stoker (1957), Chap. 1. Converting to non-
dimensional variables gives

d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0

{
α2

2

(
φ̃2

x̃ + 1

β
φ̃2

z̃

)}
dz̃ dx̃ + d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

1
z̃ dz̃dx̃

= α

[∫ 1+αη̃

0

{
α2

2

(
φ̃3

x̃ + 1

β
φ̃2

z̃ φ̃x̃

)
+ z̃φ̃x̃

}
dz̃

+ α

∫ 1+αη̃

0
P̃ ′φ̃x̃ dz̃ +

∫ 1+αη̃

0
(1 − z̃)φ̃x̃ dz̃

]x1/�

x2/�

. (6.1)
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We compute these integrals individually. Substituting the expressions for φ̃x̃ and φ̃z̃

yields

d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0

{
α2

2

(
φ̃2

x̃ + 1

β
φ̃2

z̃

)}
dz̃dx̃ + d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

1
z̃ dz̃ dx̃

= d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0

α2

2
f̃ 2

x̃ dz̃dx̃ + d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

1
z̃ dz̃dx̃ + O

(
α2β

)

= d

dt̃

∫ x2/�

x1/�

{
α2

2
f̃ 2

x̃ + (1 + αη̃)2

2
− 1

2

}
dx̃ + O

(
α3, α2β

)
.

Recalling that fx̃ = ṽ is the velocity at the bottom, and using (2.4), there appears

d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

0

{
α2

2

(
φ̃2

x̃ + 1

β
φ̃2

z̃

)}
dz̃ dx̃ + d

dt̃

∫ x2/�

x1/�

∫ 1+αη̃

1
z̃ dz̃dx̃

= d

dt̃

∫ x2/�

x1/�

{
αη̃ + α2

2
η̃2 + α2

2
w̃2

}
dx̃ + O

(
α3, α2β

)
.

Treating the first integral on the right-hand side of (6.1) in a similar way results in the
expression

α

∫ 1+αη̃

0

{
α2

2

(
φ̃3

x̃ + 1

β
φ̃2

z̃ φ̃x̃

)
+ z̃φ̃x̃

}
dz̃

= α

∫ 1+αη̃

0

{
z̃fx̃ − z̃3

2
βfx̃x̃x̃

}
dz̃ + O

(
α3, αβ2)

= α

2
w̃ + α2η̃w̃ − αβ

8
w̃x̃x̃ + αβ

4
θ2w̃x̃x̃ + O

(
α3, α2β,αβ2)

for the energy flux. The work done by the pressure force takes the following form:

α2
∫ 1+αη̃

0
P̃ ′φ̃x̃ dz̃ + α

∫ 1+αη̃

0
(1 − z̃)φ̃x̃ dz̃

= α2
∫ 1+αη̃

0

{
η̃ + O(β)

}{
f̃x̃ + O(β)

}
dz̃

+ α

∫ 1+αη̃

0
(1 − z̃)

{
f̃x̃ − β

2
z̃2f̃x̃x̃x̃ + O

(
β2)}dz̃

= α

2
ṽ + α2ṽη̃ − αβ

24
ṽx̃x̃ + O

(
α3, α2β,αβ2)

= α

2
w̃ + α2η̃w̃ + αβ

4

(
θ2 − 1

6

)
w̃x̃x̃ + O

(
α3, α2β,αβ2).
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Collecting these terms, the energy balance equation transforms to

d

dt̃

∫ x2/�

x1/�

{
αη̃ + α2

2
η̃2 + α2

2
w̃2

}
dx̃

=
[
α

2
w̃ + α2η̃w̃ + αβ

4

(
θ2 − 1

2

)
w̃x̃x̃

+ α

2
w̃ + α2η̃w̃ + αβ

4

(
θ2 − 1

6

)
w̃x̃x̃ + O

(
α3, α2β,αβ2)]x1

x2

. (6.2)

Thus the differential form of the energy balance equation is given by(
η̃ + α

2
w̃2 + α

2
η̃2

)
t̃

+
(

w̃ + 2α(w̃η̃) + β

2

(
θ2 − 1

3

)
w̃x̃x̃

)
x̃

= O
(
α2, αβ,β2). (6.3)

Taking the appropriate terms in the energy density and flux in (6.2) which are of
order zero or one in the differential energy balance (6.3), we find the non-dimensional
energy density to be

Ẽ = αη̃ + α2

2
η̃2 + α2

2
w̃2,

and the non-dimensional energy flux (corrected for the work done by pressure force)
as

q̃E = αw̃ + 2α2w̃η̃ + αβ

2

(
θ2 − 1

3

)
w̃x̃x̃ .

With these definitions, the energy balance is

∂

∂t̃
Ẽ + ∂

∂x̃
q̃E = O

(
α2, αβ,β2).

The dimensional forms of the energy density and energy flux per unit span are given
by

E = ρ

2
g
(
2h0η + η2) + ρ

2
h0w

2 (6.4)

and

qE = ρg
(
h2

0 + 2h0η
)
w + ρ

2

(
θ2 − 1

3

)
c2

0h
3
0wxx.

In order to compare these terms with the shallow-water theory we let β → 0 in (6.2).
Then the corresponding dimensional expression for the energy density is still (6.4).
The corresponding dimensional expression for the energy flux is

qE = ρg
(
h2

0 + 2h0η
)
w.
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It now appears that neither the energy density nor the energy flux agrees with the
corresponding quantities in the shallow-water theory. Again, this can already be read
off from the fact that the energy balance (6.3) contains correction terms of O(α2). It is
also clear from noticing that the energy density in the shallow-water theory contains
cubic terms, and the corresponding flux contains a quartic term. As was the case for
the momentum balance, the energy density and flux can be corrected by higher-order
terms without compromising the validity of the model to second order. Nevertheless,
it might be more satisfactory to derive expressions corresponding to a higher-order
Boussinesq system, as will be shown in Sect. 9.

7 Special Systems

In this section, a number of special cases of the general system (2.5) and (2.6) are
examined, and the expressions for pressure and the mass, momentum, and energies
densities and fluxes are tabulated. Some comments on boundary and initial conditions
for physically relevant numerical studies are given.

Classical Boussinesq System This system emerges for θ2 = 1
3 , μ = 0 and arbitrary

λ in (2.5) and (2.6). In dimensional variables, the system has the form

ηt + h0wx + (ηw)x = 0,

wt + gηx + wwx − h2
0

3
wxxt = 0.

(7.1)

This system is not the one originally developed by Boussinesq (1872), but is still
commonly known as the classical Boussinesq system. The original Boussinesq sys-
tem featured the term of the form ηxtt in the second equation (Boussinesq 1872;
Whitham 1974). In the case of (7.1), the mass density and mass flux per unit span are
given by

M = ρ(h0 + η), (7.2)

and

qM = ρh0w + ρηw,

respectively. The corresponding quantities for the momentum and energy balance
laws are

I = ρ(h0 + η)w

and

qI = ρh0w
2 + ρ

2
g(h0 + η)2 − ρ

3
h3

0wxt , (7.3)

as well as

E = ρ

2
g
(
2h0η + η2) + ρ

2
h0w

2 (7.4)
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and

qE = ρg
(
h2

0 + 2h0η
)
w.

The system (7.1) has been used in a number of numerical studies, such as Peregrine
(1966). Well-posedness has been established for the Cauchy problem on the real line
(Amick 1984; Schonbek 1981). The initial-boundary-value problem has been treated
in Fokas and Pelloni (2005).

We note that the mass density M , the momentum flux qI and the energy density E

all have the same form for all choices of θ , μ and λ, so these terms are not tabulated
in the following.

Coupled BBM System The coupled BBM system appears in (2.5) and (2.6) if λ = 0
and μ = 0. This system takes the form

ηt + h0wx + (ηw)x − h2
0

2

(
θ2 − 1

3

)
ηxxt = 0,

wt + gηx + wwx − h2
0

2

(
1 − θ2

)
wxxt = 0.

(7.5)

The mass flux associated to (7.5) is given by

qM = ρ(h0 + η)w + ρh3
0

2

(
θ2 − 1

3

)
wxx. (7.6)

The corresponding quantities for the momentum density and energy flux are

I = ρ(h0 + η)w + ρh3
0

2

(
θ2 − 1

3

)
wxx

and

qE = ρg
(
h2

0 + 2h0η
)
w + ρc2

0h
3
0

2

(
θ2 − 1

3

)
wxx,

respectively. This system, which is similar to the BBM equation (Benjamin et al.
1972), was studied in Bona and Chen (1998), where the well-posedness of the
boundary-value problem on a finite interval was established (see also Alazman et al.
2006). Based on previous work on the single BBM equation (Bona et al. 1981), Bona
and Chen (1998) put forward a numerical method which is optimal in the sense that
it has computational complexity of O(N) when N gridpoints are used. The system
was also recently used in the study of wave breaking in undular bores (Bjørkavåg and
Kalisch 2011). Because of its benign numerical behavior, this system appears partic-
ularly useful for computational studies of water waves. Moreover, for the particular
value θ2 = 7

9 , the system features exact solitary-wave solutions (Chen 1998). These
will be used later to provide a numerical example in Sect. 8.
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Coupled KdV System This system appears if λ = 1 and μ = 1. It has the form

ηt + h0wx + (ηw)x +
(

θ2 − 1

3

)
h3

0

2
wxxx = 0,

wt + gηx + wwx + (
1 − θ2

)
g

h2
0

2
ηxxx = 0.

(7.7)

As long as the value of θ is the same as for the coupled BBM system, the associated
quantities for the mass, momentum and energy densities and fluxes are also the same.
The system has been shown to have global solutions in Bona et al. (2010), and a
rigorous proof of the convergence of solutions of the water-wave problem to solutions
of (7.7) in the limit as α → 0 and β → 0 was given in Bona et al. (2005). A numerical
study of this system was done by Bona et al. (2007).

Kaup System If θ2 = 1, λ = 1, and μ is arbitrary, the so-called Kaup system ap-
pears. It has the form

ηt + h0wx + (ηw)x + h3
0

3
wxxx = 0,

wt + gηx + wwx = 0.

(7.8)

Even though this system is not well-posed (Bona et al. 2004), it is important, because
it has an integrable Hamiltonian structure (Kaup 1975). Moreover, (7.8) appears nat-
urally when one bases the derivation of the long-wave system on approximating the
Hamiltonian function (Craig and Groves 1994) of the full surface water-wave prob-
lem. A version of this system also appears in the context of interfacial waves if it is
required that an approximate Hamiltonian function be conserved (Craig et al. 2005).
In the current context, the mass flux is given by

qM = ρh0w + ρηw + ρh3
0

3
wxx,

and the momentum density is

I = ρ(h0 + η)w + ρ

3
h3

0wxx.

The energy density is given by (6.4), and the energy flux is

qE = ρg
(
h2

0 + 2h0η
)
w + ρ

3
c2

0h
3
0wxx.

8 A Numerical Example

In this section, the balance laws derived above are examined in a concrete situation.
The coupled BBM system (7.5) features solitary-wave solutions in closed form if
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the value θ2 = 7
9 is chosen (Chen 1998). Suppose the undisturbed depth h0 and an

amplitude η0 are given. Then the solitary wave takes the form

η(x, t) = η0 sech2(κ(x − x0 − Cst)
)
,

w(x, t) = w0 sech2(κ(x − x0 − Cst)
)
,

(8.1)

where

w0 =
√

3g

η0 + 3h0
η0, Cs = 3h0 + 2h0√

3h0(η0 + 3h0)

√
gh0, κ = 3

2h0

√
η0

2η0 + 3h0
.

The non-dimensional parameter α can now be defined in terms of the solitary-wave
amplitude η0 as α = η0

h0
. The parameter β may be defined by β = κ2h2

0. There is some
ambiguity in the definition of the parameter β in this example, but it is clear that
β < α, whatever definition is used. As discussed in Benjamin and Lighthill (1954),
the solitary wave represents the limit case with respect to the ratio α/β for which the
Boussinesq scaling is valid.

Consider a channel of depth h0 = 1 m, and a control volume delimited by the
interval [−10,10] in the x-axis. The mass per unit width contained in this control
interval is defined in the Boussinesq scaling by

∫ 10
−10 M(x, t)dx, where M is given

by (7.2). The mass flux through the boundaries of the control volume is defined by
qM(−10, t) and qM(10, t), where qM is given by (7.6) with θ2 = 7

9 . Thus to second
order in α and β , the mass balance law takes the form

d

dt

∫ 10

−10
M(x, t)dx − qM(−10, t) + qM(10, t) = 0.

To test the conservation, we compute the quantities M and qM during the passage
of a solitary wave which is centered at x0 = −25 m at time t = 0. The left panel
of Fig. 3 shows the control volume at the instant t = 8.5 s. The right panel shows

Fig. 3 The left panel shows the control volume above the interval [−10,10] at time t = 8.5 s. The top
boundary is given by a solitary wave of amplitude 0.2 m whose crest was initially positioned at x = −25 m.
The right panel shows plots of time series of the rate of change in the total mass (solid curve), the mass
influx at x = −10 m (dashed curve) and the mass outflux at x = 10 m (dotted curve) per unit span
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Table 1 This table shows the maximum error in conservation of the mechanical balance laws for mass,
momentum, and energy for increasing solitary-wave amplitude. The second column represents the maxi-
mum error for the mass balance as defined in (8.2). The third and fourth columns are the maximum error
for momentum and energy balances, respectively. The last column represents the model error which is
O(α2)

Amplitude Err(M) Err(I) Err(E ) α2

0.05 0.0001 0.0001 0.0001 0.0025

0.10 0.0002 0.0006 0.0003 0.0100

0.15 0.0007 0.0016 0.0009 0.0225

0.20 0.0013 0.0032 0.0020 0.0400

0.25 0.0023 0.0056 0.0035 0.0625

0.30 0.0035 0.0089 0.0056 0.0900

0.35 0.0050 0.0131 0.0084 0.1225

the quantities
∫ 10
−10 M(x, t)dx, qM(−10, t) and qM(10, t) as functions of time t . The

figure suggests that mass conservation holds approximately. To further quantify the
error in the conservation of mass, we define the non-dimensional error by

Err(M) = 1

c0h0ρ
max

t

∣∣∣∣ d

dt

∫ 10

−10
M dx − qM(−10, t) + qM(10, t)

∣∣∣∣. (8.2)

The results for various amplitudes of the solitary wave are displayed in Table 1. The
first column shows the amplitude η0 of the wave. The second column shows the error
in mass conservation defined in (8.2). Using the expressions for I , qI , E, and qE

defined above, corresponding expressions can be obtained for the conservation of the
momentum and energy, and those are shown in columns 3 and 4 of Table 1.

The results in Table 1 confirm that in the case of the coupled BBM system, the
maximum error in the conservation of mass, momentum, and energy is smaller than
the error order O(α2, αβ,β2) guaranteed by the analysis in the previous sections.
Note that we have β < α for the solitary-wave solution, so that the model error is only
determined by O(α2). In order to validate the more general case where the error is
determined by both α and β , a further numerical study could be done where solutions
of one of the systems (2.5) and (2.6) are computed by numerical discretization.

9 Higher-Order Models

In the derivation of the balance laws in the previous sections, it was noted that the
momentum flux and the energy density and flux did not reduce to the correspond-
ing shallow-water quantities (1.6), (1.9), and (1.10) in the limit β → 0. However, in
some cases, such as in the study of energy conservation in undular bores presented
in Ali and Kalisch (2010), it is important that the integrals for the mass, momentum
and energy fluxes through a control interval correctly reduce to the corresponding
shallow-water expressions. One possible strategy is to include higher-order terms in
the expressions for these quantities as this does not change the order of the approxi-
mation.
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However, it might be preferable to have available an altogether higher-order theory
in which both the evolution equations and the densities and fluxes are valid to higher
order. Indeed, there is a vast literature on higher-order Boussinesq models, and other
fully nonlinear equations, such as the Green–Naghdi equations (Green and Naghdi
1976) (also known as Su–Gardner equations, Su and Gardner 1969). For the sake of
coherence, our focus will be on the higher-order models derived in Bona et al. (2002).
These equations are of the form

η̃t̃ + w̃x̃ + α(η̃w̃)x̃

+ 1

2

(
θ2 − 1

3

)
βw̃x̃x̃x̃ + 1

2

(
θ2 − 1

)
αβ(η̃w̃x̃x̃ )x̃ + 5

24

(
θ2 − 1

5

)2

β2w̃x̃x̃x̃x̃x̃

= O
(
α2β,αβ2, β3), (9.1)

w̃t̃ + η̃x̃ + αw̃w̃x̃ − 1

2

(
1 − θ2)βw̃x̃x̃t̃

− αβη̃w̃x̃x̃t̃ − αβη̃x̃w̃x̃t̃ + 1

2

(
θ2 + 1

)
αβw̃x̃x̃ w̃x̃ + 1

2

(
θ2 − 1

)
αβw̃w̃x̃x̃x̃

+ 5

24

(
θ2 − 1

)(
θ2 − 1

5

)
β2w̃x̃x̃x̃x̃ t̃ = O

(
α2β,αβ2, β3). (9.2)

More general equations can be derived by choosing model parameters such as λ and μ

in Sect. 2. However, as became clear in the previous sections, these model parameters
have no impact on the form of the physical quantities derived here, so we will take
the system (9.1) and (9.2) as the basis for our investigations. Using similar ideas as
before in Sect. 3, and a higher-order version of (2.2), the associated non-dimensional
dynamic pressure is given by

P̃ ′ = η̃ + 1

2
β
(
z̃2 − 1

)
w̃x̃t̃ − αβη̃w̃x̃t̃ + 1

4
β2(z̃2 − 1

)(
θ2 − (z̃2 + 1)

6

)
w̃x̃x̃x̃t̃

+ 1

2
αβ

(
z̃2 − 1

)
w̃w̃x̃x̃ − 1

2
αβ

(
z̃2 − 1

)
w̃2

x̃ + O
(
α2β,αβ2, β3).

Thus the dimensional pressure associated to (9.1) and (9.2) is

P = Patm + ρg(η − z) + ρ

2

(
z2 + 2h0z

)
wxt − ρηh0wxt

+ ρ

4

(
z2 + 2h0z

)(
h2

0θ
2 − (z2 + 2h0z + 2h2

0)

6

)
wxxxt

+ ρ

2

(
z2 + 2h0z

)(
wwxx − w2

x

)
.
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Using the same method as in Sect. 3, one may define the corrected pressure which
is equal to atmospheric pressure when evaluated at the free surface. The dimensional
form reads

P1 = Patm + ρg(η − z) + ρ

2

(
(z + h0)

2 − (η + h0)
2)wxt

+ ρ

4
h2

0θ
2((z + h0)

2 − (η + h0)
2)wxxxt

− ρ

24

(
(z + h0)

4 − (η + h0)
4)wxxxt

+ ρ

2

(
(z + h0)

2 − (η + h0)
2)(wwxx − w2

x

)
.

Since the balance equations are derived to third order, this correction does not figure
in the following analysis, and we continue to work with the expression P − Patm.
The mass density is given by the same formula as before, (4.3). The non-dimensional
mass flux is

q̃M = αw̃ + α2η̃w̃ + αβ

2

(
θ2 − 1

3

)
w̃x̃x̃ + 1

2
α2β

(
θ2 − 1

)
w̃x̃x̃ η̃

+ αβ2

12

(
1

10
− θ2 + 5

2
θ4

)
w̃x̃x̃x̃x̃ .

Thus the mass balance equation is

∂

∂t̃
M̃ + ∂

∂x̃
q̃M = O

(
αβ2, α2β,β3).

Using the scaling q̃M = ρh0c0qM , the dimensional form is

qM = ρ

{
h0w + ηw + h3

0

2

(
θ2 − 1

3

)
wxx

+ h2
0

2

(
θ2 − 1

3

)
ηwxx + h5

0

12

(
1

10
− θ2 + 5

2
θ4

)
wxxxx

}
,

and it is also evident that the shallow-water mass flux q0
M is reached in the limit

β → 0. Moreover, note that (9.1) can be recognized as a mass conservation equation,
so that mass conservation holds exactly also in the context of the higher-order system.
The non-dimensional momentum density is

Ĩ = αw̃ + α2η̃w̃ + αβ

2

(
θ2 − 1

3

)
w̃x̃x̃ + α2β

2

(
θ2 − 1

)
η̃w̃x̃x̃

+ αβ2

12

(
5θ4

2
− θ2 + 1

10

)
w̃x̃x̃x̃x̃ ,



394 J Nonlinear Sci (2012) 22:371–398

while the non-dimensional momentum flux is

q̃I = α2w̃2 + α3η̃w̃2 + 1

2
+ αη̃ + α2

2
η̃2 − αβ

3
w̃x̃t̃

+ α2β

(
θ2 − 2

3

)
w̃w̃x̃x̃ − α2βη̃w̃x̃t̃ + α2β

3
w̃2

x̃ − α
β2

6

(
θ2 − 1

5

)
w̃x̃x̃x̃t̃ .

Therefore the momentum balance is

∂

∂t̃
Ĩ + ∂

∂x̃
q̃I = O

(
αβ2, α2β,β3).

In particular, we see that there are no higher-order terms of the form O(α3). Therefore
this approximation already entails the shallow-water approximation. Indeed, for very
long waves (as β → 0), this balance is reduced exactly to the conservation equation
of momentum for the shallow-water system (1.4). Using the scaling I = ρh0c0Ĩ , the
dimensional momentum density is given by

I = ρ

{
h0w + ηw + h3

0

2

(
θ2 − 1

3

)
wxx + h2

0

2

(
θ2 − 1

)
ηwxx

+ h5
0

12

(
5θ4

2
− θ2 + 1

10

)
wxxxx

}
.

Using the scaling qI = ρh0c
2
0q̃I , the dimensional momentum flux appears as

qI = ρ

{
h0w

2 + ηw2 + g

2
(h0 + η)2 − h3

0

3
wxt

+ h3
0

(
θ2 − 2

3

)
wwxx − h2

0ηwxt + h3
0

3
w2

x − h5
0

6
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5

)
wxxxt

}
.

Finally, let us consider the energy balance. The non-dimensional energy density is

Ẽ = α2

2
(1 + αη̃)w̃2 + 1

2

(
2αη̃ + α2η̃2) + α2β

6
w̃2

x̃ + α2β

2

(
θ2 − 1

3

)
w̃w̃x̃x̃ ,

and the non-dimensional energy flux is

q̃E = α3

2
w̃3 + αw̃(1 + αη̃)2 + αβ

2

(
θ2 − 1

3

)
w̃x̃x̃

+ α2β

(
θ2 − 2

3

)
η̃w̃x̃x̃ − α2β

3
w̃w̃x̃t̃ + αβ2

12

(
5θ4

2
− θ2 + 1

10

)
w̃x̃x̃x̃x̃ .

Therefore the energy balance is given by

∂

∂t̃
Ẽ + ∂

∂x̃
q̃E = O

(
α3, αβ2, α2β,β3).
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Using the scaling E = ρh0c
2
0Ẽ, the dimensional energy density is

E = ρ

{
1

2
(h0 + η)w2 + g

2

(
2h0η + η2) + h3

0

6
w2

x + h3
0

2

(
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3
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wwxx

}
.

The dimensional energy flux is given by

qE = ρ

{
h0

2
w3 + gw(h0 + η)2 + gh4

0

2
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θ2 − 1

3

)
wxx

+ gh3
0
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ηwxx − h3

0

3
wwxt + gh6

0

12

(
5θ4

2
− θ2 + 1

10

)
wxxxx

}
,

where qE = ρh0c
3
0q̃E .

Note that as β → 0, the energy balance does not reduce correctly to the shallow-
water energy conservation. In order to achieve the correct limit, a further correction
term of order O(α4) has to be included in the non-dimensional energy flux, namely

the term α4

2 η̃w̃3. Alternatively, in order to obtain a model which correctly reduces
to the shallow-water equations one would have to derive a seventh-order system of
evolution equations. Such a derivation does not present a problem from a theoretical
point of view, but appears to be irrelevant from a practical standpoint. Numerical
integration of a system containing such high spatial derivatives would necessitate
the imposition of at least 12 boundary conditions. Since these are not known in any
practical situation, it appears a moot endeavor to pursue such a development.

10 Conclusion

Based on the derivation of a general class of Boussinesq models in Bona et al. (2002),
a method of determining the corresponding mass, momentum and energy densities
and fluxes has been developed. The pressure and all densities and fluxes are expressed
in terms of the dependent variables η representing the surface elevation and w rep-
resenting the horizontal fluid velocity at a given height h0θ in the fluid column. The
correct order of approximation of these quantities has been found by expressing the
mass, momentum, and energy conservation as mechanical balance laws which are
required to hold asymptotically to the same order as the evolution equations. As can
be seen, the mass, momentum, and energy densities and fluxes depend only on the
parameter θ , that is, on the depth at which the horizontal velocity is taken. No de-
pendence has been found on the model parameters λ and μ which give the relation
between terms of the type ηxxt and terms of type wxxx . It has been found that some
of the quantities found do not reduce to the corresponding shallow-water expressions
in the limit of very long waves. As a remedy, higher-order expressions corresponding
to fifth-order Boussinesq systems have also been derived.

A concrete example has been investigated which confirms the results of this paper
in a special case of the coupled BBM equation. Nevertheless, it should be empha-
sized that the method employed here is strictly formal. If one wanted to attempt a
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mathematical proof that the balance laws derived above are valid to the same or-
der as the equations, one might start with the Zakharov–Craig–Sulem formulation of
the water-wave problem (Craig and Sulem 1993; Zakharov 1968) and develop the
Dirichlet–Neumann operator with respect to the small parameters α and β . Indeed
this technique has been used in Bona et al. (2005) to prove the convergence of solu-
tions of the water-wave problem to solutions of (7.7), and it may also yield a rigorous
proof of the validity of the mechanical balance laws.

Recently, two-dimensional Boussinesq models have also been derived and studied
both numerically and with regard to well-posedness (Chen 2009; Dougalis et al. 2007,
2009), and we expect that our analysis can be extended to two-dimensional models.
Of course, in this case questions about the geometry of the control volumes might
become important.

There is an abundant literature on improvement of the Boussinesq equations as re-
gards various aspects, such as the inclusion of bottom topography, three-dimensional
channel geometry and underlying shear flow. A few examples of such work are con-
tained in Kim et al. (2009), Kirby (1986), Lannes and Bonneton (2009), Madsen et al.
(2006), Nachbin and Choi (2007), Teng and Wu (1997), Wahlen (2008). Major efforts
have also been made toward extending the applicability of Boussinesq-type models
to waves of larger amplitude, relaxing the shallow-water assumption, and improving
dispersion properties (Agnon et al. 1999; Chazel et al. 2009; Green and Naghdi 1976;
Kennedy et al. 2001; Madsen and Schäffer 1998; Lannes and Bonneton 2009;
Shi et al. 2001; Su and Gardner 1969; Wei et al. 1995). In contrast to these stud-
ies, we have found expressions for mechanical quantities connected with the original
Boussinesq scaling. While there is no improvement of the model in any of the direc-
tions named above, our results make it possible to use the Boussinesq equations in
studies where the focus is on aspects of the fluid flow other than the shape of the free
surface and the horizontal velocity.

Acknowledgements The first author is employed at Uni Research, Bergen on a doctoral fellowship
funded by the Research Council of Norway through grant number NFR 190474/s40.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Agnon, Y., Madsen, P.A., Schäffer, H.A.: A new approach to high-order Boussinesq models. J. Fluid Mech.
399, 319–333 (1999)

Alazman, A.A., Albert, J.P., Bona, J.L., Chen, M., Wu, J.: Comparison between the BBM equation and a
Boussinesq system. Adv. Differ. Equ. 11, 121–166 (2006)

Ali, A., Kalisch, H.: Energy balance for undular bores. C. R., Méc. 338, 67–70 (2010)
Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent.

Math. 171, 485–541 (2008)
Amick, C.J.: Regularity and uniqueness of solutions to the Boussinesq system of equations. J. Differ. Equ.

54, 231–247 (1984)
Benjamin, T.B., Lighthill, M.J.: On cnoidal waves and bores. Proc. R. Soc. Lond. Ser. A 224, 448–460

(1954)



J Nonlinear Sci (2012) 22:371–398 397

Benjamin, T.B., Bona, J.B., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems.
Philos. Trans. R. Soc. Lond. Ser. A 272, 47–78 (1972)

Bjørkavåg, M., Kalisch, H.: Wave breaking in Boussinesq models for undular bores. Phys. Lett. A 375,
157–1578 (2011)

Bona, J.L., Chen, M.: A Boussinesq system for two-way propagation of nonlinear dispersive waves. Phys-
ica D 116, 191–224 (1998)

Bona, J.L., Pritchard, W.G., Scott, L.R.: An evaluation of a model equation for water waves. Philos. Trans.
R. Soc. Lond. Ser. A 302, 457–510 (1981)

Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves
in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves
in nonlinear dispersive media. II: The nonlinear theory. Nonlinearity 17, 925–952 (2004)

Bona, J.L., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal.
178, 373–410 (2005)

Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of KdV-KdV systems of Boussinesq
equations. I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–
228 (2007)
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