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Deep learning for fully automated tumor segmentation
and extraction of magnetic resonance radiomics features
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Abstract
Objective To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical
tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics
features.
Methods This retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB–IVA cap-
tured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were
recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually
delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various
combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The repro-
ducibility of the training was also assessed.
Results Combining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training
phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted
value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully
automated segmentation methods (p < 0.05). Reproducibility between the first and second training iterations was high for the
first-order radiomics parameters (intraclass correlation coefficient = 0.70–0.99).
Conclusion U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DWMR images.
First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal moni-
toring of tumor responses in broad clinical settings.
Summary U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DWMR images.
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Key Points
•U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-
weighted MR images.

• Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated
localization.

• First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitu-
dinal monitoring of treatment responses.

Keywords Apparent diffusion coefficient . Diffusion-weighted imaging . Uterine cervical neoplasm . Deep learning . Radiomics

Abbreviations
ADC Apparent diffusion coefficient
DSC Dice similarity coefficient
DW Diffusion-weighted
MR Magnetic resonance
PPV Positive predictive value
ROI Region of interest
T2W T2-weighted

Introduction

Magnetic resonance (MR) imaging is standard practice for care
of cervical cancers of International Federation of Gynecology
and Obstetrics (FIGO) stage IB1 or higher [1, 2]. MR imaging
is useful for defining the extent of tumor involvement, including
the depth of cervical stromal or parametrial invasion [1]. Tumor
contour and volume are important for radiation therapy planning,
and MR is considered the gold standard for the evaluation of
local tumor extension [3]. However, discrepancies in gross tumor
volume betweenmanualmeasurements were observed following
the recommendations fromGynaecological Groupe Européen de
Curiethérapie and the European Society for Radiotherapy &
Oncology working group (GYN GEC-ESTRO) [4]. In addition
to tumor localization, diffusion-weighted (DW) MR imaging
provides quantitative estimates, namely the apparent diffusion
coefficient (ADC), which reflects the cellular microenvironment
of a tumor to assist treatment decision-making [5]. Radiomics
features derived from the ADC of a volumetric analysis of a
whole tumor showed promise for tumor grading [6] and
predicting the recurrence of cervical cancer [7–9]. However,
radiomics approach requires the development of a strategy for
high-throughput extraction of quantitative features to enable the
conversion of images into mineable data in a precise and timely
fashion [10].

To extract the quantitative features of a whole tumor, an effi-
cient tumor segmentation tool is critical. Manual segmentation is
time-consuming and prone to interobserver variation. Torheim
et al [11] employed a machine-learning method and Fisher’s
linear discriminant analysis to yield a Dice similarity coefficient
(DSC) of 0.44 for tumor segmentation. Deep-learning algorithms
based on convolutional neural networks (CNNs) have emerged

to demonstrate potential for lesion detection and segmentation.
Results have revealed that CNNs outperform traditional
machine-learning techniques for brain [12–14], rectal [15], and
prostate cancer [16] in tumor segmentation. Recently, the U-Net
architecture was proposed, which requires fewer network param-
eters and accelerates the training process [17, 18]. Recent studies
have shown that U-Net outperforms previous methods for se-
mantic segmentation of a natural scene image in terms of perfor-
mance and speed [13, 19]. To the best of our knowledge, no
studies have examined the performance of deep-learning algo-
rithms for fully automated tumor localization, volume segmenta-
tion, and the reliability of the extracted radiomics parameters of
cervical cancer.

The aim of this study was therefore to develop and evaluate
the performance of U-Net for fully automated localization and
segmentation of cervical tumors inMR imaging, as well as the
robustness of extracting ADC radiomics features.

Materials and methods

Patients

We retrospectively analyzed two consecutively collected cohorts
from January 2011 to December 2016 (IRB 97-2366B and IRB
102-0620A3). Our Institutional Review Board approved this
study, and informed consent was obtained from all participants.
The study was conducted in a tertiary referral center with a ded-
icated interdisciplinary gynecological oncology team. The inclu-
sion criteria were (a) newly diagnosed cervical cancer of FIGO
stage IB–IVA and (b) willingness to undergo chemoradiation as
standard treatment. The exclusion criteria were noncompliance
with treatment or inaccessibility for follow-up, contraindications
toMR scanning, andmental health–related inability to cooperate.
One hundred thirty-four of the 169 patients have been previously
reported to study the prognostic values of whole-tumor ADC
values frommanually delineated tumor regions [9]. In this study,
we developed a deep-learning algorithm based on the reported
manually delineated tumor regions and tested the algorithm on an
independent dataset. From a consecutive cohort of 215 patients,
we excluded 30 patients who had no visible tumors and 16
patients who were susceptible to artifacts in DW imaging.
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Thus, 169 patients were eligible for the final analysis. During the
model development, 144 patients were randomized into the train-
ing dataset, and another independent testing dataset comprising
25 patients, to provide an unbiased evaluation of the final model
fit of the training dataset.

MR image acquisition

MR images were obtained using two 3-TMR scanners, name-
ly a Trio TIM (n = 96) and Skyra (n = 73) (Siemens
Healthineers). All patients underwent the standard MR proto-
col for the pelvis at our institute, including T2-weighted, T1-
weighted, DW images, and contrast-enhanced T1-weighted
series acquired in the sagittal and axial oblique planes perpen-
dicular to the cervical canal. The imaging parameters of the
DW images were as follows: single-shot echo-planar imaging
with fat suppression; repetition time = 3600–8400 ms; echo
time = 64–84 ms; section thickness = 4 mm; gap = 1 mm; ma-
trix = 192 × 192 or 256 × 256; field of view = 20 × 20 cm2, b-
values = 0 and 1000 s/mm2. ADC maps were generated auto-
matically by an MR scanner by using a monoexponential de-
cay model with b-values of 0 and 1000 s/mm2. The sagittal
DW images of b0, b1000, and the ADC maps of each slice of
each patient were used as input sources for subsequent train-
ing. For each patient, 15–20 slice sections were acquired to
cover the entire tumor. The contrast-enhanced series was ac-
quired at about 120–180 s equilibrium phase after intravenous
injection of 0.1 mmol/kg body weight of contrast medium but
not used for analysis in this study.

Image annotation

An in-house graphical user interface was developed in
MATLAB (Mathworks, Natick) to manually delineate tumor

contours. Anonymous data were exported offline, and the first
reader (Y. T. H., a gynecologic radiologist with 9 years’ expe-
rience) drew regions of interest (ROIs) around the tumor on
each section of the ADCmapswith respect to the high-b-value
DW and T2-weighted images to delineate the whole tumor
volume. The second reader (G.L., a gynecologic radiologist
with 11 years’ experience) independently verified the ROIs.
Both readers were blind to the clinical outcomes. Care was
taken to avoid each ROI contaminating the adjacent normal
cervical stroma or vascular structures and contamination by
areas of fluid or nabothian cysts in the cervix. The labeled
ROIs were regarded as the ground truth for the subsequent
training process.

U-Net model development in the training dataset

Figure 1 illustrates the U-Net architecture based on a fully
convolutional network [18]. The architecture combines a
contracting (downsampling) path to capture context and a
symmetrical expending (upsampling) path to enable precise
localization [17]. The detail of U-Net architecture is described
in the Supplementary Material. The matrices of all images
were resized to 256 × 256. All images were standardized such
that the intensity was distributed to have mean = 0 and stan-
dard deviation = 1 [15]. Data augmentation was performed on
each training image set such that the training model could be
robust against the degree of enlargement, rotation, and parallel
shift. The central part (200 × 200 pixels) of each image was
cropped; rotated 90°, 180°, and 270°; and shifted by 28 pixels
in four directions (up, down, left, and right). Through those
processes, 24 additional image sets were generated from one
image set, yielding 61,320 images in each set.

To evaluate the effect of input image type on the training
efficacy, we evaluated seven combinations from three image

Fig. 1 U-Net architecture with
input image matrix size of 200 ×
200. Each blue box corresponds
to a multichannel feature map.
The black text at the left of the
box denotes the matrix size. The
blue text on top of the box denotes
the number of filters. The arrows
of different colors indicate
different operations
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sets (b0, b1000, and ADC) as input sources for training, de-
scribed as follows: (a) single channel—b0, b1000, and ADC
are independent; (b) dual channel—b0 + b1000, b0 + ADC,
and b1000 + ADC; (c) triple channel—b0 + b1000 + ADC.
The training was performed on a personal computer equipped
with GeForce GTX1080Ti (NVIDIA) graphics processing
unit. Python programming language 3.5.4 with Keras 2.1.4
and TensorFlow 1.5.0 for neural networks were used for the
training. The networks were trained using the stochastic gra-
dient descent Adam Optimizer method [20], with the DSC
serving as an accuracy measure of the segmentation proce-
dure, and minus DSC serving as a loss function that was
backpropagated through the CNN. The batch size was set to
35. The learning rate was set to 10−5. The model was trained
for 100 epochs for each dataset combination. Segmentation
was generated by setting the threshold of the probability map
to p = 0.5. To test the reproducibility of the predicted ROI
using the training model, we repeated the entire training pro-
cedure with the identical parameters.

ADC radiomics extraction

To assess the robustness of the predicted ROIs, we examined
the radiomics parameters of the ADC values of the tumors.
The calculation of MR radiomics was performed using the
MR Radiomics Platform (www.ym.edu.tw/~cflu/MRP_
MLinglioma.html), which was constructed in the MATLAB
programming environment [21]. In the extracted 1073
radiomics features, we analyzed the 51 texture features in
our data because the higher order features (local binary
pattern, and scale invariant feature transform) did not show
significant result in our preliminary test. The final ADC
texture features employed in this study included intensity-
based features (first-order statistics), shape- and size-based
features, and textural features (gray-level co-occurrence ma-
trix-based features, and gray-level run-length matrix-based
features).

Performance evaluation in the testing dataset

After building the models, we examined their performance in
predicting the ROIs of the tumors in the independent testing
dataset. The segmentation accuracy was evaluated using (a)
the DSC, a statistical measure of spatial overlap defined as
DSC ¼ 2TP

FPþ2TPþFN, where TP, FP, and FN are the numbers of

true positive, false positive, and false negative detections, re-
spectively; (b) the positive predictive value (PPV), a measure
of the numbers of FP and TP detections defined as
PPV ¼ TP

TPþFP; and (c) sensitivity, which evaluates the num-

bers of TP and FN detections and is defined as
Sensitivity ¼ TP

TPþFN. We provided additional 12 metrics to

evaluate concordance between labeled and predicted ROIs in

our testing dataset [22]. The radiomics parameters of tumor
ADCs extracted by the proposed algorithm were correlated with
those that had been manually labeled using Spearman’s correla-
tion. The Bland-Altman analysis was performed for the first-
order features extracted by labeled and predicted ROIs. The re-
producibility of the training model was assessed using the
intraclass correlation coefficient (ICC) between the radiomics
parameters of the ADCs of ROIs extracted from the first and
second training algorithms. The stability of the model was assess
by a fivefold cross-validation using analysis of variance
(ANOVA) on DSCs between labeled and predicted ROI by each
trainedmodel. The differences in DSCswith regard to tumor size
and tumor histology were assessed using Mann-Whitney U test.
Univariate andmultivariate logistic regression with stepwise pro-
cedure was used to identify the independent factor accounting for
the DSC below 0.9. The data were analyzed using the Statistical
Package for Social Sciences, version 11 (SPSS, IBM), MedCalc
forWindows, Version 9.2.0.0 (MedCalc Software), or R Package
for Statistical Computing (www.r-project.org).

Results

Patient characteristics

A total of 169 patients were eligible for the final analysis. The
patients were aged from 23 to 91 years (median, 52 years).
Table 1 lists the clinical and demographic features for the

Table 1 Participant demographics

Variable Training Testing p value

n 144 25

Age (year)* 53.27 (14.50) 53.68 (10.72) 0.893

Histopathology 1.000

Squamous cell 119 (82.6) 21 (84.0)

Non-squamous cell 25 (17.4) 4 (16.0)

Grade of differentiation 0.935

Well/moderate 68 (47.2) 11 (44.0)

Poorly 76 (52.8) 14 (56.0)

T stage 0.821

1 47 (32.6) 7 (28.0)

2, 3, 4 97 (67.4) 18 (72.0)

N stage 0.569

0 87 (60.4) 13 (52.0)

1 57 (39.6) 12 (48.0)

M stage 0.708

0 119 (83.0) 22 (88.0)

1 25 (17.0) 3 (12.0)

Data in parentheses are percentages

* represents mean (standard deviation)
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training and testing datasets. The training and testing datasets
demonstrated no statistically significant differences in clinical
or demographic characteristics. The histopathology types
comprised squamous cell carcinoma (n = 160, 95%), adeno-
carcinoma (n = 2, 1%), adenosquamous carcinoma (n = 4,
2%), and small-cell carcinoma (n = 3, 2%).Most of the tumors
were poorly differentiated (n = 90, 53%) or moderately differ-
entiated (n = 69, 41%). Tumor size ranged from 0.21 to
83.78 cm3 (median, 9.51 cm3). The time interval and any
clinical interventions between MR study and histopathology
were 0–30 days (median, 13 days). No adverse events due to
performance of the MR study were observed.

U-Net for fully automated tumor localization
and segmentation in the training phase

The segmentation performance varied when different combi-
nations of source images were used for training (Table 2). All
data from the b0, b1000, and ADC maps were highly corre-
lated. During the training phase, the use of the triple-channel
input (ADC + b0 + b1000) exhibited the highest learning
efficacy, reaching a plateau of 0.95 (95% confidence interval
[CI], 0.95–0.96). The single channel of b0 had the lowest
learning efficacy, reaching a plateau for accuracy of 0.89
(95% CI, 0.88–0.89) (Fig. 2).

Evaluation of segmentation performance
in the independent testing dataset

Figure 3 shows an example of fully automated tumor segmenta-
tion in the testing dataset. The segmentation accuracy is summa-
rized in Table 2. Among the combinations of source images that
served as input sources, the triple-channel model (ADC + b0 +
b1000) exhibited the highest DSC of 0.82 (95% CI, 0.79–0.85),
the highest sensitivity of 0.89 (95%CI, 0.86–0.91), and a PPVof
0.92 (95% CI, 0.90–0.93). The triple-channel model also
outperformed the other models regarding similarity and
distance-based metrics (Supplementary Table 1). The difference

of DSCs among the fivefold partition groups was not statistically
significant (p= 0.34) (Supplementary Table 2).

Insights into error analysis from the testing dataset

Based on stepwise selection procedure, it showed that tumor size
≥ 4 cm was an independent predictor for the DSC< 0.9 (odds
ratio, 4.30; 95% confidence interval 1.74–11.39; p= 0.002). We
found that the DSC was statistically significant at tumor diame-
ters of < 4 cm compared with those of ≥ 4 cm (DSC 0.58 vs.
0.87, p= 0.039). Figure 4 plots the relationship between theDSC
and patient-based tumor volume in the testing dataset. The DSC
was significantly correlated with the logarithm of tumor volume
(r = 0.82, p < 0.001). No significant correlation was observed
between the DSC and patient age (p = 0.337). Notably, the five
patients with very low DSCs of < 0.30 demonstrated low tumor
volumes of < 3.42 cm3. We observed that the DSC was

Table 2 Accuracy of predicted ROIs generated using various combinations of source images from the training and testing datasets

Input image Training Testing

DSC DSC Sensitivity PPV

ADC 0.90 (0.89, 0.91) 0.77 (0.74, 0.81) 0.62 (0.58, 0.66) 0.91 (0.89, 0.93)

b0 0.89 (0.88, 0.89) 0.72 (0.69, 0.76) 0.44 (0.40, 0.48) 0.88 (0.85, 0.91)

b1000 0.92 (0.91, 0.93) 0.78 (0.75, 0.82) 0.71 (0.66, 0.75) 0.88 (0.85, 0.91)

ADC + b0 0.95 (0.94, 0.95) 0.80 (0.77, 0.83) 0.71 (0.68, 0.75) 0.89 (0.87, 0.92)

ADC + b1000 0.94 (0.94, 0.94) 0.79 (0.76, 0.83) 0.88 (0.85, 0.90) 0.89 (0.86, 0.91)

b0 + b1000 0.94 (0.94, 0.95) 0.79 (0.76, 0.82) 0.74 (0.70, 0.77) 0.89 (0.86, 0.91)

ADC + b0 + b1000 0.95 (0.95, 0.96) 0.82 (0.79, 0.85) 0.89 (0.86, 0.91) 0.92 (0.90, 0.93)

ADC = apparent diffusion coefficient, b = b-value, DSC = dice similarity coefficient, PPV = positive predictive value

Fig. 2 Plot of training accuracy against epoch produced using various
combinations of image sources
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statistically significantly lower in non-squamous cell types com-
pared with squamous cell carcinomas (DSC 0.44 vs. 0.80, p =
0.025), whereas tumor grade was not an influential factor (p =
0.618). The DSC was statistically significantly lower in tumor
stage T1 compared with stages T2 and above (DSC 0.41 vs.
0.87, p = 0.018) and in stage N0 compared with stage N1
(DSC 0.62 vs. 0.87, p= 0.031) but not in stage M0 compared
with stage M1 (p = 0.337).

Robustness of extracting ADC radiomics features

The effects of the predicted ROIs on the ADC radiomics pa-
rameters are illustrated in Fig. 5, Table 3, and Supplementary
Table 3. Tumor volumes were significantly correlated be-
tween the manually contoured and fully automated

segmentation methods (r = 0.94, p < 0.001), as were the first-
order ADC radiomics parameters (r = 0.432–0.986, p < 0.05).
The reproducibility scores of the radiomics parameters be-
tween the first and second training runs were high for the
first-order statistics (ICC = 0.70–0.99, p < 0.05). However,
the correlation and reproducibility were less significant for
the high-order features, namely the textural features (gray-lev-
el co-occurrence matrix-based features and gray-level run-
length matrix-based features; ICC = − 0.12 to 0.38). The
Bland-Altman plots demonstrated that the first-order features
mostly distributed within the mean ± 1.96 standard deviation
(Supplementary Fig. 1), implying that the labeled and predict-
ed ROIs were in agreement without systematic errors.

Discussion

We exploited the potential of deep neural networks for fully
automated segmentation of DWMR imaging for cervical can-
cer and examined the robustness of extracting ADC radiomics
features. By using the fully convolutional network of U-Net
architecture with DW MR images, cervical tumors could un-
dergo fully automated segmentation in standard DICOM im-
ages without manual interference. All metrics for model eval-
uation, namely the DSC, sensitivity, and the PPV, demonstrat-
ed more than twofold improvement compared with the previ-
ously reported automated segmentation methods of machine
learning and Fisher’s linear discriminant analysis [11]. Related
studies on pelvic MR imaging have used a patch-based ap-
proach, but operating on image patches is computationally
time-consuming, and performance is influenced manually
[12, 15]. Trebeschi et al [15] utilized patch-based deep learn-
ing to segment rectal cancer on T2-weighted and DW images
and reported a DSC of 0.70. However, the performance of the
patch-based approach was influenced by the size and location
of the manually selected patches. The U-Net architecture is

Fig. 3 A 50-year-old woman with cervical cancer. The tumor exhibited
hypointensity on the ADC map (a). The ROI of the tumor was labeled
manually (yellow contour) and was overlaid with the predicted ROI (red

contour) generated by the trained triple-channel model (b, c). The
predicted ROI was segmented at the corresponding tumor location with
DSC = 0.928

Fig. 4 Scatter plot of the DSC and tumor volumes of patients in the
testing dataset. A logarithmic regression was plot showing that the DSC
was correlated with the logarithm of tumor volume

Eur Radiol (2020) 30:1297–13051302



based on a fully convolutional network, which extracts signif-
icant features of images to generate a predicted map [17].With
the input of single-channel T2-weighted images, Wang et al
[19] obtained a DSC of 0.74 for segmenting rectal cancers

using the U-Net architecture. Furthermore, Dolz et al [23]
obtained a DSC of 0.69 for segmenting bladder cancers using
a dilated convolutional network. Our study demonstrated the
triple-channel model further improving the segmentation of

Fig. 5 Correlations and reproducibilities of ADC radiomics parameters of predicted ROIs using the triple-channel training model

Table 3 Robustness of ADC
radiomics parameters (first-order
statistics) of predicted ROIs
obtained using the triple-channel
training model

Correlation between manual and
predicted values

Reproducibility between 1st and 2nd
predicted values

Variable r p value ICC* p value

Energy 0.564 0.011 0.94 (0.86, 0.98) < 0.001

Entropy 0.445 0.048 0.71 (0.40, 0.89) 0.022

Kurtosis 0.555 0.012 0.83 (0.62, 0.93) < 0.001

Maximum 0.574 0.009 0.81 (0.59, 0.92) < 0.001

Mean 0.974 < 0.001 0.98 (0.96, 0.99) < 0.001

Mean absolute deviation 0.686 < 0.001 0.71 (0.41, 0.88) < 0.001

Median 0.986 < 0.001 0.99 (0.98, 1.00) < 0.001

Minimum 0.792 < 0.001 0.84 (0.64, 0.93) < 0.001

Range 0.441 0.048 0.70 (0.40, 0.87) < 0.001

Root mean square 0.964 < 0.001 0.99 (0.98, 1.00) < 0.001

Skewness 0.707 < 0.001 0.90 (0.78, 0.96) < 0.001

Standard Deviation 0.612 < 0.001 0.77 (0.51, 0.90) < 0.001

Uniformity 0.432 0.049 0.70 (0.39, 0.88) 0.042

Variance 0.612 0.005 0.75 (0.48, 0.89) < 0.001

*Data are means with 95% confidence intervals in parentheses
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cervical cancers regarding the regional overlap and distance
along the shapes, with a final DSC of 0.82.

DWMR imaging provides the widest available tissue con-
trast range between a tumor and noncancerous tissue com-
pared with T1-weighted, T2-weighted, and contrast-
enhanced MR images [24], and thus it was employed in the
current study. DW MR imaging acquired b0 and b1000 im-
ages simultaneously during scanning and generated ADC
maps, thereby preventing bias due to motion-related misreg-
istration across MR pulse sequences. Our approach mimicked
the clinical scenario of a radiologist delineating tumor ROIs
by referencing multiparametric MR images simultaneously.
Therefore, we propose that including all available DW and
ADC images for training is beneficial for deep learning used
for tumor segmentation.

Fully automated localization and segmentation of cervical
cancer based on the present study could assist the radiation
therapy planning and minimize discrepancies in gross tumor
volume. The fully automated strategy could also accelerate the
high-throughput extraction of quantitative features to enable
the conversion of images into mineable data in a precise and
timely fashion. We observed that the ADC radiomics param-
eters were significantly correlated between the manually
contoured and fully automated segmentation methods for
first-order radiomics features. This finding implies that the
algorithm based on the U-Net architecture may instantaneous-
ly accelerate the extraction of radiomics features through fully
automated contouring of cervical cancers, although care
should be taken if using this algorithm for tumor detection
because our results revealed suboptimal DSCs clustered in
patients with low tumor volumes or non-squamous cell types.
Nonetheless, the fully automated localization and segmenta-
tion approach may be the key to integrating imaging bio-
markers into daily clinical routines and could be of particular
benefit to oncologists for longitudinal monitoring of tumor
responses to treatment [25].

Limitations, future directions, and recommendations

Some limitations of this study require further research. First, we
focused on only DWMR imaging; multiparametric images may
have demonstrated superior performance. Because organ motion
leads to temporal variation during the scanning of various MR
pulse sequences, we were unable to confidently include the la-
beled ROIs from T1-weighted, T2-weighted, and contrast-
enhanced images for rigid registration. We believe that the seg-
mentation accuracy would increase further if more images were
used following a robust nonrigid registration among various
parametric MR images. Second, the U-Net architecture used in
this study is a basic form resulting from a recent modification for
higher accuracy in segmenting prostate tumors [26]. However,
the performance of the architecture warrants further verification
and optimization for cervical cancer.

Conclusion

In conclusion, our results demonstrate that U-Net-based deep
learning can perform accurate localization and segmentation
of cervical cancer in DW MR images. First-order radiomics
features extracted from the model-based tumor segmentation
were robust and reproducible, whereas the reproducibility of
higher order features was limited.
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