Skip to main content

Advertisement

Log in

Hypodense liver lesions in patients with hepatic steatosis: do we profit from dual-energy computed tomography?

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate dual-energy CT (DECT) imaging of hypodense liver lesions in patients with hepatic steatosis, having a high incidence in the general population and among cancer patients receiving chemotherapy.

Methods

One hundred and five patients with hepatic steatosis (liver parenchyma <40 HU) underwent contrast-enhanced DECT with reconstruction of pure iodine (PI), optimum contrast (OC), 80 kVp, and 120 kVp-equivalent data sets. Image noise (IN), lesion to liver signal to noise (SNR) and contrast to noise (CNR) ratios were quantitatively analysed; image quality was rated on a 5-point scale (1, excellent; 2, good; 3, fair; 4, poor; 5, non-diagnostic) by two independent reviewers.

Results

In 21 patients with hypodense liver lesions, IN was lowest in PI followed by 120 kVp-equivalent and OC, and highest in 80 kVp. SNR was highest in PI (1.30), followed by 120 kVp-equivalent (0.72) and 80 kVp (0.63), and lowest in OC (0.55). CNR was highest in 120 kVp-equivalent (4.95), followed by OC (4.55) and 80 kVp (4.14), and lowest in PI (3.63). The 120 kVp-equivalent series exhibited best overall qualitative image score (1.88), followed by OC (1.98), 80 kVp (3.00) and PI (3.67).

Conclusion

In our study, the 120 kVp-equivalent series was best suited for visualization of hypodense lesions within steatotic liver parenchyma, while using DECT currently seems to offer no additional diagnostic advantage.

Key Points

Hepatic steatosis has high incidence in the general population and following chemotherapy.

Hypodense liver lesions can be obscured by steatotic liver parenchyma in CT.

Low kV p -CT shows no advantage in detecting hypodense lesions in steatotic livers.

Additional DECT image information does not improve visualization of hypodense lesions in steatosis.

120 kV p -equivalent imaging yields best quantitative and qualitative image analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:G852–G858

    Article  CAS  PubMed  Google Scholar 

  2. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    Article  CAS  PubMed  Google Scholar 

  3. Angulo P, Lindor KD (2002) Non-alcoholic fatty liver disease. J Gastroenterol Hepatol 17:S186–S190

    Article  PubMed  Google Scholar 

  4. Jimenez R, Hijona E, Emparanza J et al (2012) Effect of neoadjuvant chemotherapy in hepatic steatosis. Chemotherapy 58:89–94

    Article  CAS  PubMed  Google Scholar 

  5. Nomura R, Ishizaki Y, Suzuki K, Kawasaki S (2007) Development of hepatic steatosis after pancreatoduodenectomy. AJR Am J Roentgenol 189:1484–1488

    Article  PubMed  Google Scholar 

  6. Farrell GC (2002) Drugs and steatohepatitis. Semin Liver Dis 22:185–194

    Article  CAS  PubMed  Google Scholar 

  7. Zorzi D, Laurent A, Pawlik TM, Lauwers GY, Vauthey JN, Abdalla EK (2007) Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastases. Br J Surg 94:274–286

    Article  CAS  PubMed  Google Scholar 

  8. Lee SS, Park SH, Kim HJ et al (2010) Non-invasive assessment of hepatic steatosis: prospective comparison of the accuracy of imaging examinations. J Hepatol 52:579–585

    Article  CAS  PubMed  Google Scholar 

  9. Bohte AE, van Werven JR, Bipat S, Stoker J (2011) The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 21:87–97

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kuhn JP, Hernando D, Mensel B et al (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39:1494–1501

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lee SS, Lee Y, Kim N et al (2011) Hepatic fat quantification using chemical shift MR imaging and MR spectroscopy in the presence of hepatic iron deposition: validation in phantoms and in patients with chronic liver disease. J Magn Reson Imaging 33:1390–1398

    Article  PubMed  Google Scholar 

  12. Park SH, Kim PN, Kim KW et al (2006) Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology 239:105–112

    Article  PubMed  Google Scholar 

  13. Pickhardt PJ, Park SH, Hahn L, Lee SG, Bae KT, Yu ES (2012) Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis. Eur Radiol 22:1075–1082

    Article  PubMed  Google Scholar 

  14. Kodama Y, Ng CS, Wu TT et al (2007) Comparison of CT methods for determining the fat content of the liver. AJR Am J Roentgenol 188:1307–1312

    Article  PubMed  Google Scholar 

  15. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  16. Artmann A, Ratzenbock M, Noszian I, Trieb K (2010) Dual energy CT–a new perspective in the diagnosis of gout. Röfo 182:261–266

    CAS  PubMed  Google Scholar 

  17. Klauss M, Stiller W, Pahn G et al (2013) Dual-energy perfusion-CT of pancreatic adenocarcinoma. Eur J Radiol 82:208–214

    Article  CAS  PubMed  Google Scholar 

  18. Gnannt R, Fischer M, Goetti R, Karlo C, Leschka S, Alkadhi H (2012) Dual-energy CT for characterization of the incidental adrenal mass: preliminary observations. AJR Am J Roentgenol 198:138–144

    Article  PubMed  Google Scholar 

  19. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  20. Graser A, Johnson TR, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  21. Sommer CM, Schwarzwaelder CB, Stiller W et al (2010) Dual-energy computed-tomography cholangiography in potential donors for living-related liver transplantation: initial experience. Investig Radiol 45:406–412

    Article  Google Scholar 

  22. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  23. Robinson E, Babb J, Chandarana H, Macari M (2010) Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol 45:413–418

    PubMed  Google Scholar 

  24. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  25. Schmidt B, Bredenhoeller C, Flohr T (2008) Dual source CT technology. In: Seidenstricker PRH, Hofmann LK (eds) Dual source CT imaging. Springer, Berlin Heidelberg, New York, pp 19–33

  26. Macari M, Spieler B, Kim D et al (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol 194:W27–W32

    Article  PubMed  Google Scholar 

  27. Stiller W, Schwarzwaelder CB, Sommer CM, Veloza S, Radeleff BA, Kauczor HU (2012) Dual-energy, standard and low-kVp contrast-enhanced CT-cholangiography: a comparative analysis of image quality and radiation exposure. Eur J Radiol 81:1405–1412

    Article  CAS  PubMed  Google Scholar 

  28. Holmes DR 3rd, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413

    Article  PubMed Central  PubMed  Google Scholar 

  29. Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Investig Radiol 45:399–405

    Google Scholar 

  30. European Commission (1997) European guidelines on quality criteria for computed tomography, EUR 16262 EN. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  31. Artz NS, Hines CD, Brunner ST et al (2012) Quantification of hepatic steatosis with dual-energy computed tomography: comparison with tissue reference standards and quantitative magnetic resonance imaging in the ob/ob mouse. Investig Radiol 47:603–610

    Article  Google Scholar 

  32. Wang B, Gao Z, Zou Q, Li L (2003) Quantitative diagnosis of fatty liver with dual-energy CT. An experimental study in rabbits. Acta Radiol 44:92–97

    CAS  PubMed  Google Scholar 

  33. Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251:771–779

    Article  PubMed  Google Scholar 

  34. Schindera ST, Nelson RC, Mukundan S Jr et al (2008) Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection–phantom study. Radiology 246:125–132

    Article  PubMed  Google Scholar 

  35. Stiller W (2011) Principles of multidetector-row computed tomography: part 1. Technical design and physicotechnical principles. Radiologe 51:625–637, quiz 638–629

    Article  CAS  PubMed  Google Scholar 

  36. Marin D, Choudhury KR, Gupta RT et al (2013) Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumours using a low tube voltage, high tube current MDCT technique. Eur Radiol 23:3325–3335

    Article  PubMed  Google Scholar 

  37. Husarik DB, Schindera ST, Morsbach F et al (2014) Combining automated attenuation-based tube voltage selection and iterative reconstruction: a liver phantom study. Eur Radiol 24:657–667

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The contents of the manuscript have been previously presented as an oral presentation at ECR 2014 in Vienna.

The scientific guarantor of this publication is Dr. Wolfram Stiller. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Stiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nattenmüller, J., Hosch, W., Nguyen, TT. et al. Hypodense liver lesions in patients with hepatic steatosis: do we profit from dual-energy computed tomography?. Eur Radiol 25, 3567–3576 (2015). https://doi.org/10.1007/s00330-015-3772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3772-6

Keywords

Navigation