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Abstract
Objectives The objectives are to describe the disadvantages of
the area under the receiver operating characteristic curve
(ROC AUC) to measure diagnostic test performance and to
propose an alternative based on net benefit.
Methods We use a narrative review supplemented by data
from a study of computer-assisted detection for CT
colonography.
Results We identified problems with ROC AUC. Confidence
scoring by readers was highly non-normal, and score distri-
bution was bimodal. Consequently, ROC curves were highly
extrapolated with AUC mostly dependent on areas without
patient data. AUC depended on the method used for
curve fitting. ROC AUC does not account for preva-
lence or different misclassification costs arising from
false-negative and false-positive diagnoses. Change in
ROC AUC has little direct clinical meaning for clini-
cians. An alternative analysis based on net benefit is
proposed, based on the change in sensitivity and spec-
ificity at clinically relevant thresholds. Net benefit in-
corporates estimates of prevalence and misclassification costs,
and it is clinically interpretable since it reflects changes in
correct and incorrect diagnoses when a new diagnostic test is
introduced.

Conclusions ROC AUC is most useful in the early stages of
test assessment whereas methods based on net benefit are
more useful to assess radiological tests where the clinical
context is known. Net benefit is more useful for assessing
clinical impact.
Key points
• The area under the receiver operating characteristic curve
(ROC AUC) measures diagnostic accuracy.

• Confidence scores used to build ROC curves may be difficult
to assign.

• False-positive and false-negative diagnoses have different
misclassification costs.

• Excessive ROC curve extrapolation is undesirable.
• Net benefit methods may provide more meaningful and
clinically interpretable results than ROC AUC.

Keywords ROC curve . Sensitivity and specificity . Area
under curve . Data interpretation . Statistical . CT
colonography

Introduction

Radiologists interpret medical images in order to identify
potentially harmful lesions. Test choice depends on many
factors including availability and cost but is usually influenced
most by how effectively the test resolves potential abnormal-
ities. Sensitivity, how well a test identifies an abnormality, is a
measure of diagnostic test accuracy very familiar to radiolo-
gists. Sensitivity is inextricably linked to specificity – how
well a test identifies normal patients. Sensitivity and specific-
ity usually move in different directions. Most obviously, if we
reported every image as disease-positive, sensitivity would be
100 % but specificity would be 0 %, and normal patients
would be subjected to unnecessary further investigation and
possibly treatment, which would be inconvenient, illogical,
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precipitate anxiety, and be extremely costly. Conversely, if we
reported every image as negative, specificity would be perfect
but we would never diagnose any abnormality. Sensitivity and
specificity are "two sides of the same coin" and should always
be considered together, which can be difficult when compar-
ing tests; if one test has high sensitivity and another high
specificity, which is better? Combining sensitivity and speci-
ficity into a single measure of "diagnostic accuracy" facilitates
comparisons. For radiologists, the most familiar combined
measure is the area under the receiver operating characteristic
curve (ROC AUC) [1].

The ROC curve

The ROC curve is a plot of the test true-positive rate (y-axis)
against the corresponding false-positive rate (x-axis); i.e.,
sensitivity against 1-specificity (Fig. 1). The curve is built
from test performance at different “diagnostic thresholds.”
For example, while urinalysis for glucose is “present/absent,”
blood sugar has a range of normal values. While diabetes is
increasingly likely with higher values, the proportion of
patients ultimately diagnosed depends on applying a
diagnostic threshold that denotes a positive test. For
imaging tests that depend on subjective interpretation,
a threshold can be applied at a level that reflects diag-
nostic confidence, e.g., the mammographic BI-RADS
scale: “negative”, “benign”, “probably benign”, “suspi-
cious”, and “highly suggestive of malignancy” [2].
Broader scales use 0 (definitely no disease) to 100 (def-
initely disease) [3]. Scales amalgamate whether lesions are
resolved by imaging, whether a radiologist perceived a lesion,
and whether it was interpreted correctly. For example, consid-
er a research study of a radiologist faced with CT
colonography examinations from 100 patients, 50 of whom
have colon cancer. Although competent radiologists will usu-
ally make the correct diagnosis, occasionally they will not
because small cancers may be unresolved, missed, or
misinterpreted as spasm; even “obvious” tumours are some-
times missed. Whereas in clinical practice we must
apply a single diagnostic threshold at which (and above)
the patient has an abnormality and below which they do
not, in research studies we can calculate the proportion
of correct (true-positive) and incorrect (false-negative) diag-
noses at all thresholds by comparing the test result for each
patient with the true diagnosis known via an independent
reference test(s).

Figure 1 shows our CT colonography example. If a thresh-
old of “definitely cancer” is required for diagnosis, then most
patients so labeled will probably have cancer. However, pa-
tients labeled “probably cancer” and below who have cancer
will be missed with such a high threshold. Dropping the
threshold to “probably cancer” increases the proportion of

cancers detected (sensitivity increases) but more normal pa-
tients are labeled positive; the false-positive fraction increases
(decreased specificity). Plotting the proportion of true-positive
against false-positive patients at each diagnostic threshold
builds a ROC curve (Fig. 1) and different test (and readers)
may have different curves (Fig. 2). The ROC plot, therefore,
describes test performance measured using sensitivity and
specificity at different thresholds and is a composite of two
distributions, patients with and without abnormalities (Fig. 3).

ROC AUC

ROC AUC, the area under the ROC curve, is often used
to summarise test performance across all thresholds in
the plot. Simplistically, AUC represents how likely it is
that the test will rank two patients; one with a lesion
and one without, in the correct order, across all possible
thresholds [4, 5]. More intuitively, AUC is the chance
that a randomly selected patient with a lesion will be
ranked above a randomly selected normal patient [1]. A
perfect test would have 100 % sensitivity with zero
false-positives (100 % specificity), across all thresholds.
This point lies at the extreme top left-hand corner of the
ROC plot; AUC=1·0. Such tests don’t exist in real life,
and we expect some failure to separate normal and
abnormal patients. A straight line connecting the ex-
treme bottom-left (sensitivity, FPR: 0,0) and top-right
(1,1) corners (the “chance diagonal”) describes a test
with no discrimination; AUC=0.5.

MRMC studies

“Multi-reader, multi-case” studies (MRMC) employ multiple
readers interpreting multiple cases, to maximise statistical
power and enhance generalisability of results [6, 7].
Different radiologists have different ROC curves. Some are
more experienced, some are more competent, and all have
different internal thresholds for reporting abnormalities
(“over-callers” vs. “under-callers”). Because diagnosis for
the same image may differ depending on the radiologist, no
single ROC curve can really describe any imaging investiga-
tion incorporating human interpretation. As noted already, the
curve combines the ability of the test to resolve lesions with
the ability of observers to detect them.

Once a radiologist has viewed 20 cases there is less infor-
mation to be gained by asking him to view a further 20 than by
asking a different radiologist to view the same 20. MRMC
studies introduce “clustering” because multiple radiologists
view the same cases. For example, small lesions are generally
seen less frequently than larger lesions, i.e., reader observa-
tions are clustered within cases. Similarly, more experienced
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readers are likely to perform better across a series of cases than
less experienced readers, i.e., results are correlated within
readers. Analysis methods must account for clustering or the
95 % confidence intervals will be too narrow. Bootstrap
resampling and multilevel modeling can account for cluster-
ing, linking results from the same observers and cases [8].

Advantages of ROC AUC

ROC AUC is a single metric facilitating comparison between
tests without needing to “juggle” sensitivity and specificity.
Proponents claim it measures “overall diagnostic perfor-
mance” since ROC AUC is averaged across all possible

Fig. 1 Data from a hypothetical study of 100 patients who
underwent CT colonography, 50 of whom have colorectal cancer.
A radiologist uses the following rating scale to indicate their
belief that the CT shows cancer in each individual patient: 1 –
Definitely normal; 2 – Probably normal; 3 – Equivocal; 4 –
Probably has cancer; 5 – Definitely has cancer. The following
table details the rating when compared to the reference diagnosis
in each case:

The ROC curve for these data is shown above. Assuming a
threshold of 5 is required to diagnose cancer then 15 patients
with cancer are correctly identified (30% sensitivity) with only two false-
positive diagnoses (96 % specificity). By lowering the threshold needed
for diagnosis to 3 (i.e., all patients allocated a rating of 3 and above are
considered to have cancer), then seven positive cases are missed (86 %
sensitivity) with 17 false-positive diagnoses (specificity 66 %). Dropping
the diagnostic threshold to include “definitely normal” (a small propor-
tion of whom may actually have cancer) results in 100 % sensitivity but
0 % specificity since all patients are called positive. The empiric ROC
AUC is 0.83 (calculated using a web-based calculator for ROC curves.
Baltimore: Johns Hopkins University 2006 and drawn using GraphPad
Prism 6·0, La Jolla, USA)
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diagnostic thresholds [9]. ROC AUC is constant across prev-
alence of abnormality [3] and authors argue that issues of
prevalence and misclassifications costs (see Section 2 below)
should only be considered once the “intrinsic” performance of
a test is known [10]. ROC AUC is claimed to account for

different thresholds between readers (“response criteria”) and
different curves are compared easily.

Disadvantages of ROC AUC

Clinical comprehension and relevance

Sensitivity and specificity are familiar concepts to clinicians,
who are used to interpreting the results of diagnostic tests in
these terms. In contrast, ROC AUC means little to clinicians
(especially non-radiologists), patients, or health care pro-
viders. While a test whose AUC is 0.9 is considered “better”
than one of 0.8, what does this mean for patients and what is
clinically important? It is well established that diagnostic tests
are understood best when presented in terms of gains and
losses to individual patients [11]. AUC lacks clinical inter-
pretability because it does not reflect this. Clinicians are
uninterested in performance across all thresholds - they focus
on clinically relevant thresholds. However, because AUC
measures performance over all thresholds, it includes both
those clinically relevant and clinically illogical. Moreover,
different tests can have identical AUC but different perfor-
mance at clinically important thresholds. Narrowing the range

Fig. 2 The black ROC curve with circles at diagnostic thresholds
shows the data from Fig. 1, with AUC 0.83. The red curve with
triangles describes the following data where test specificity is the
same as in Fig. 1, but sensitivity has been increased. Here, assuming
a rating of 3 or more conveys a diagnosis of cancer, then three
positive cases are missed (sensitivity 94 %) and 17 negative cases
are labeled positive (specificity 66 %); the AUC is 0.89:

The blue ROC curve with squares describes the following data where test
sensitivity is the same as Fig. 1, but specificity has been increased. Here,
assuming a rating of 3 or more conveys a diagnosis of cancer, then seven
positive cases are missed (sensitivity 86 %) and eight negative cases are
labeled positive (specificity 84 %); the AUC is 0.89:

The black ROC curve with solid circles describes the following data
where test sensitivity is increased to the same level as the red curve but
with specificity dropped by a corresponding amount. Assuming a rating
of 3 or more conveys a diagnosis of cancer, then just three cases are
missed (sensitivity 94 %) but 47 negative cases are labelled positive
(specificity 6 %). The empirical ROC AUC is 0.50 and the “curve” is
actually a straight line:

Fig. 3 Distribution of confidence scores (data from Fig. 1). Patients with
cancer are represented by the dotted line and patients without cancer by
the solid line. In this example using a threshold at greater or equal to a
confidence rating of 3 provides the best separation between patients with
and without cancer and is optimally balanced between sensitivity versus
specificity. Moving this boundary to the right or left of the graph corre-
sponds to raising or lowering the diagnostic threshold, respectively. If CT
were perfect at discriminating between patient groups, the two distribu-
tions would not overlap. The less good a test at discriminating between
patients with and without an abnormality, the more the two distributions
will overlap
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of thresholds via “partial” AUC (pAUC) is possible [12] but
choosing a single clinically important threshold is usually
more practical.

Are sensitivity and specificity equally important?

ROC AUC treats sensitivity and specificity as equally impor-
tant overall when averaged across all thresholds. But what if
the clinical consequences of changes in sensitivity and spec-
ificity are very different? Consider our CT colonography
example: Poor sensitivity could mean missed cancer and
delayed treatment or even death, whereas poor specificity just
means unnecessary colonoscopy. A recent study of colorectal
cancer screening found that patients and healthcare profes-
sionals were willing to accept 2250 false-positive diagnoses in
exchange for one additional true-positive cancer [13].
Similarly, for mammography, women will exchange 500
false-positives for one additional cancer [14].

ROC AUC ignores clinical differentials in “misclassifica-
tion cost” and, therefore, risks finding a new test worthless
when patients and physicians would consider otherwise.

Strictly speaking, ROC AUC weighs changes in sensitivity
and specificity equally only where the curve slope equals one
[5]. Other points assign different weights, determined by
curve shape and without considering clinically meaningful
information; e.g., a 5 % improvement in sensitivity contrib-
utes less to AUC at high specificity than at low specificity.
Thus, AUC can consider a test that increases sensitivity at low
specificity superior to one that increases sensitivity at high
specificity. However, when screening, better tests must in-
crease sensitivity at high specificity to avoid numerous false-
positives [15].

Confidence scales may be inconsistent and unreliable

While confidence scales are used to construct ROC curves in
radiology, there is little evidence they are assigned consistent-
ly and reliably. Confidence scales should ideally be ordinal,
with a meaningful order and constant difference between
points. However, a study asking what is "high confidence",
found radiologists gave ten different interpretations including,
"image quality is good", "the finding is obvious", and "the
finding is familiar" [16]. Consistent scales are perturbed fur-
ther by the multifaceted nature of radiological interpretation.
For example, a rating may describe whether a pulmonary
nodule is present or absent, whether it is benign or malignant,
and also its location. Potentially, there are three tasks – detec-
tion, characterisation, and localisation. For the simplest anal-
yses, empirical methods can be used to calculate and compare
ROC AUC. However, multi-reader multi-case analyses usu-
ally require ratings be distributed normally (or transformed to
normal distribution) for valid comparison of reader and test
performance. However, having perceived an abnormality,

readers are unlikely to state then they did so with low confi-
dence. For example, the authors, undertaking a research study
to seek US Food and Drug Administration approval for
computer-assisted-detection (CAD) software for diagnosis of
colorectal polyps [17], were obliged to use ROC AUC as the
primary outcome for licensing. Following guidance [6, 18],
readers rated the presence/absence of polyps using a 100 point
(continuous) scale; 60 of 107 patients had polyps [17].
Confidence ratings were influenced strongly by polyp size,
with larger polyps attracting higher scores. By definition,
observers do not see false-negative polyps, so in true-
negative patients’ only false-positives attract ratings. True-
negative patients may, therefore, attract no per-polyp score.
While zero scores can be imposed when data coding, this
scoring introduces a parallel binary rating method inconsistent
with the continuous scale used by readers. We found confi-
dence ratings highly non-normal because, in effect, there were
two distributions, one continuous, and one binary (Fig. 4).
While some suggest that extensive scales and encouragement
to use the whole range will broaden distributions [3], this
contradicts clinical practice where binary decisions are
usual. Gur et al. [19] state, "even when observers pro-
vide a distribution of confidence ratings, it may be more
representative of the subtleness of the depicted abnormality
rather than the confidence that the observer actually ‘saw’ or
did not ‘see’ it."

True-negative scores can potentially apply to normal pa-
tients or those with benign abnormalities. Lewin [20] de-
scribes 4,945 screening mammograms where zero scores were
given to both cases classified as no abnormality and cases
classified with benign abnormalities. We would expect better
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Fig. 4 Histogram of confidence ratings ascribed by ten radiologists in a
prior study of CT colonography [17]. The dark brown bars represent
ratings for 107 patients (of whom 60 had colon polyps) when using
computer-assisted detection (CAD) whereas the light brown bars repre-
sent ratings when unassisted. The distribution is bimodal: The highest
peak occurs for patients who received zero scores both with and without
CAD. There is a second broader, more continuous distribution for pa-
tients, with most scores being 50 or more and a peak at approximately 70
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tests to improve confidence scores, but a zero score for normal
cases cannot be improved whereas scores for benign lesions
may improve if better imaging switches equivocal findings to
benign. AUC summarises only a subset of study data as
patients with zero or equivalent lowest scores do not contrib-
ute to AUC. In our colonography study [17] only 15 % to
47 % (depending on reader) of the 107 patients actually
contributed to the curve and, hence, AUC. Harrington states,
"The radiologist reports confidence levels only for a finding
actually seen, or for a finding of normality. ROC analysis is
largely silent (or misleading) on one of the most important
aspects of an imaging system's performance - the ability to
avoid misses" [16].

Extrapolation

In our study [17], few false-positives were reported, so data
was clustered in the lower left portion of the ROC plot (Fig. 5).
Completing a curve across all thresholds necessitates extrap-
olation beyond the last available data point. AUC is then
dominated by a region containing no data and no clinically
practical thresholds. Furthermore, the statistical method used
for curve extrapolation also influences the calculated AUC [8]
(Fig. 5). Gur states “selection of a specific analysis approach
could affect the study conclusion” [21], noting problems with
extrapolation, “when observers tend to be more decisive”.
Frequently, ROC curves cannot be fitted using standard
methods due to “degenerate” data distributions. In our study
this occurred in half the readers due to low false-positives.
Also, when false-positive diagnoses are infrequent, those
present exert disproportionate influence on curve shape versus
more numerous true-positive scores; i.e., AUC is dominated

by a small portion of observed data. In our study, without
CAD-assistance the median number of patients with false-
positive scores was just 2 of 107 [17].

Prevalence of abnormality

A stated advantage of ROC AUC is its independence from
prevalence of abnormality [10]; AUC is unchanged at differ-
ing prevalence. AUC corresponds to the probability of cor-
rectly ranking pairs of patients, one abnormal, one normal,
implicitly suggesting 50% prevalence. In clinical practice, the
number of patients classified accurately by a test changes with
prevalence. In high-prevalence situations the number of test-
positive patients increases greatly for a given increase in
sensitivity compared with low-prevalence situations (e.g.,
screening). AUC itself cannot account for how changing
prevalence impacts on results for individual patients, so in-
stead sensitivity and specificity are used, with the operating
point directed by prevalence. While sensitivity and specificity
are prevalence-independent, these measures separate positive
and negative patients so prevalence can be incorporated by
users as part of their interpretation.

Alternatives to ROC AUC

We have described problems with ROC AUC that encompass
conceptual issues (confidence scores may be meaningless),
statistical issues (non-normal distributions, extrapolation), prac-
tical issues (some patients do not contribute to AUC), and
ethical issues (patients’ and doctors’ values cannot be incorpo-
rated easily). An alternative should be easy to comprehend and
express, incorporate explicit weightings regarding gain in sen-
sitivity vs loss of specificity, and account for prevalence. In
particular, “costs” should be ascribed to the misclassification of
true-positive and true-negative patients that account for the
different clinical consequences of such misdiagnoses.

The need for alternatives to ROC AUC is well recognised,
with several methods proposed. These have not penetrated the
radiological literature, probably because ROC AUC is so
predominant [22, 23]. Some methods move the operating
point from one that optimises separation of events and non-
events towards one or the other, depending on the relative
misclassification costs [24]. “Net Reclassification
Improvement” , “Weighted Net Reclass i f ica t ion
Improvement”, and “Relative Utility” all account for differing
consequences of correct and incorrect diagnosis [24]. Many
measures, such as weighted-comparison [25] and Net
Reclassification Index with two categories [26], are based
directly on the difference in sensitivity and specificity between
the tests assessed. We used a “net benefit”method in a second
study of CAD for CT colonography [27]. Correct and

Fig. 5 Data extrapolation: ROC plots for an individual reader of CT
colonography (without CAD) using data from a prior study [17]. Green
dots indicate real data points underlying curve fitting. ROC curves are
shown extrapolated from these data using two software methods,
LabMRMC (red dashed line) and Proproc (blue solid line). It can be seen
that the AUC depends on the method used for curve fitting, and that
almost all of the AUC is determined by the extrapolated curvewhere there
is no patient data
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incorrect classification costs were expressed directly and ad-
justment for prevalence incorporated. A net benefit formula
may be expressed as:

Net benefit ¼ Δsensitivityþ Δspecificityx 1=Wð Þ x 1−pð Þ=p½ �

where Δsensitivity is the change in sensitivity and
Δspecificity is the change in specificity when using CAD
[28]. A net benefit will be positive if CAD is beneficial, zero
indicates no benefit, and a negative value means a net loss. We
would expect CAD to increase sensitivity but decrease spec-
ificity. As explained, increased sensitivity may be particularly
desirable and outweigh the negative consequences of lowered
specificity. To account for this, a weighting factor “W” is used
to diminish the effect of reduced specificity via multiplying
Δspecificity by 1/W (i.e., the larger W is, the less effect
exerted by a given fall in specificity). The p is prevalence of
abnormality in the population for which we calculate the
benefit. At low prevalence, true-negative diagnosis is easier
to achieve since most subjects are normal. The 1-p gives the
proportion of normal subjects and dividing this by p gives the
odds of having normal patients diagnosed over and above
those with lesions. In our MRMC study we calculated average
net benefit using a multilevel approach similar to meta-anal-
ysis, treating each reader as if in an individual “study.”
Bootstrap methods obtained 95 % confidence intervals empir-
ically, accounting for the correct clustering of results within
readers and cases. A significant benefit for a new test is
defined as a positive net effect whose 95 % confidence inter-
val does not include zero.

In our second study 16 radiologists read 112 cases with and
without CAD assistance; 56 patients had 132 polyps. A chal-
lenging requirement is the need for assumptions regarding the
relative costs of false-negative and false-positive classifica-
tions, reflected by W. While the precise value of W may be
unknown, some insight will usually be available. We used
W=3, a conservative estimate based on discussion with clin-
ical colleagues; i.e., an additional true-positive was judged
equal to the cost of three additional false-positives. The mean
net benefit measure for second-read CAD overall was 6·2 %
(95 %CI 3·1 % to 9·3 %) indicating significant benefit versus
unassisted interpretation [27].

Advantages of net benefit methods

Net benefit combines sensitivity and specificity in a single
metric, facilitating comparisons between tests. It provides
advantages over ROC AUC as misclassification costs are
transparent and incorporated explicitly (see worked example).
Further, where W is unknown or known imprecisely, a range
of weightings can be assigned via sensitivity analysis to
examine the effect of different values. Errors induced by

interpretation of confidence scores are avoided, prevalence is
incorporated, and there is no need to fit curves or extrapolate
beyond the data. Ultimately, net benefit is clinically relevant
and interpreted easily since study data are expressed in terms
of false-negative and false-positive patient diagnoses (speci-
fied as difference in sensitivity and difference in specificity).

Disadvantages of net benefit methods

As noted in the paragraph above, net benefit methods allow
the effect of disease prevalence and misclassification costs to
be incorporated explicitly into the analysis. However, a po-
tential disadvantage is that these values must be known for
them to be incorporated. Because most radiological research
investigates applications that are ready for everyday use, the
clinical context is usually established and estimates of disease
prevalence in the population of interest should be relatively
easy to obtain. Relative misclassification costs are more diffi-
cult to assess, especially with precision, because little research
has been carried out in this area. However, such research in
both mammographic [13] and colorectal cancer screening [14]
has shown that patients and healthcare professionals greatly
value gains in sensitivity over and above loss of specificity.
Where the precise value of W has not been established, then it
should be possible to arrive at a value by expert consensus.We
used consensus to arrive at a value of 3 for our prior study
[27], but subsequently found the precise value to be far higher
[14], meaning that the initial analysis had underestimated the
benefit of the new imaging test.

Summary: ROC AUC or net benefit?

Arguing for ROC AUC, Zweig and Campbell [10] state that,
“The ROC plot provides a more global comprehensive view
of the test, independent of prevalence”, going on to point out
that, “sensitivity and specificity are properties inherent to the
test; predictive value and efficiency (percentage of correct
results) are properties of the application once the context
(decision threshold and prevalence) is established”. We agree,
and believe ROC AUC to be most useful in the early stages of
diagnostic test assessment, especially for tests not requiring
subjective interpretation. However, most radiological research
investigates tests or applications that are ready for clinical use,
so the context is established. Because of this, meaningful
evaluation must incorporate how the test influences results
for individual patients, at a prevalence applicable to daily
practice, incorporating an explicit assessment of the differing
misclassification costs of false-negative and false-positive
diagnoses. Also, the data should be comprehensible and intu-
itive to facilitate choices for clinicians, their patients, and
healthcare providers. ROC AUC cannot achieve these aims
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easily, and is beset by non-trivial statistical problems induced
by the confidence scales used to build the ROC curve. By
contrast, net benefit methods provide meaningful and clinical-
ly interpretable results.
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