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Abstract Contrast-enhanced ultrasound (CEUS) with
microbubble contrast agents is a new imaging technique
for quantifying tissue perfusion. CEUS presents several
advantages over other imaging techniques in assessing
tissue perfusion, including the use of microbubbles as
blood-pool agents, portability, availability and absence of
exposure to radiation or nuclear tracers. Dedicated software
packages are necessary to quantify the echo-signal intensity
and allow the calculation of the degree of tissue contrast
enhancement based on the accurate distinction between
microbubble backscatter signals and native tissue back-
ground. The measurement of organ transit time after
microbubble injection and the analysis of tissue reperfusion
kinetics represent the two fundamental methods for the
assessment of tissue perfusion by CEUS. Transit time
measurement has been shown to be feasible and has started
to become accepted as a clinical tool, especially in the liver.
The loudness of audio signals from spectral Doppler
analysis is used to generate time-intensity curves to follow
the wash-in and wash-out of the microbubble bolus. Tissue
perfusion may be quantified also by analysing the replen-
ishment kinetics of the volume of microbubbles after their
destruction in the imaged slice. This allows to obtain
semiquantitative parameters related to local tissue perfu-
sion, especially in the heart, brain, and kidneys.
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Introduction

The ability to accurately quantify tissue perfusion, blood
flow equalised for the volume or weight of the perfused
tissue (cm3/s/cm3 or grams), is essential for the assessment
of the physiological functionality and viability of a tissue.
Different parameters are related to tissue perfusion includ-
ing: blood velocity (cm/s), the speed of red blood cells in
the region analysed; blood flow (cm3/s), the volume of
blood passing in a section of tissue per unit of time; the
fractional vascular volume (cm3), the proportion of tissue
volume occupied by blood.

Laser Doppler [1], single photon computed tomography
(SPECT) [2], multidetector computed tomography (CT) [3],
magnetic resonance (MR) imaging [4] and positron
emission tomography (PET) [5] all quantify tissue perfu-
sion accurately but they are expensive and present some
inherent limitations such as limited availability and patient
exposure to radiation or nuclear tracers. Colour and power
Doppler are limited by the low sensitivity to low-velocity
flow in smaller vessels (<2 mm in diameter). Contrast-
enhanced ultrasound (CEUS) with microbubble contrast
agents [6–8] has recently been proposed as a new imaging
technique for quantifying tissue perfusion [9, 10]. CEUS
presents several advantages including low cost, portability,
availability, lack of restrictions in performing serial exami-
nations at short intervals, and absence of exposure to
radiation or nuclear tracers.

Microbubble contrast agents

Microbubble contrast agents for ultrasound (US) (Table 1)
have a diameter of 2 to 6 μm (Fig. 1). The microbubble
shell may be stiff (e.g. denaturated albumin) or flexible
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(phospholipids) and has a thickness of 10 to 200 nm. New-
generation microbubbles are filled with a high-molecular-
weight gas (e.g. perfluorocarbon or sulphur hexafluoride)
with low solubility in the bloodstream. Microbubbles have
a purely intravascular distribution even though some agents
present a post-vascular hepato- and/or spleno-specific phase
beginning 5 min after i.v. injection and lasting from 15 min
up to 1 h after injection [11, 12]. The microbubble gas
content is exhaled via the lungs 10 to 15 min after injection
while the components of the shell are metabolised by the
liver or filtered by the kidney. Adverse reactions in humans
are rare, usually transient, and of mild intensity [13, 14].
Hypotensive reactions have been observed after micro-
bubble injection, and some deaths have been reported in
cardiac patients [15–18].

At resonant frequency (fo) the microbubble radial oscil-
lation becomes efficient and exaggerated; the scattering
cross section of a microbubble is no longer simply
dependent on microbubble size, and can reach peak values
a thousand times higher than values at off-resonance. The
insonation power is usually expressed by the mechanical
index (MI) defined as p–/√fc where p– is the largest peak
negative pressure and fc is the centre frequency of the pulse.
When acoustic pressures at or near the resonant frequency
are sufficiently high, non-linear microbubble oscillation
develops producing harmonic frequencies. These frequen-
cies allow us to distinguish microbubble signal from tissue
clutter by using specialised contrast-specific US techniques.
Pulse Inversion is the best-known phase-modulation tech-
nique. Vascular Recognition Imaging combines Doppler
information with phase analysis and involves the transmis-

sion of four, alternately inverted, pulses along each imaging
line. Cadence Contrast Pulse Sequencing works by interro-
gating each imaging line a number of times with pulses with
various amplitudes and phases. Both harmonic and non-
linear fundamental signals from microbubbles are repre-
sented on a grey-scale or colour map suppressing the linear
fundamental echoes from native tissues.

Transit time measurements

Tracking the transit of a bolus of microbubbles enables
measurements of the physiology of organs. The loudness of
audio signals from spectral Doppler analysis can be used to
generate time-intensity curves to follow the wash-in and
wash-out of the microbubble bolus. In the kidney, where
the adjacent position of the artery and the vein enables
spectral Doppler measurement, the signal rises as the
microbubble bolus arrives first in the artery and then in
the vein and the directionality of spectral Doppler allows
these two signals to be separated. In the normal kidney the
arterial venous transit is less than 4 s, while it is increased
in acute renal allograft rejection [19]. The true mean transit
time can be calculated by plotting the arterial and venous
time intensity curves, applying a gamma-variate fit to select
the first pass of the contrast agent, discarding signals from
recirculating contrast, and then calculating the difference
between the centroids of the two curves. In the breast, many
studies showed that both transit time [20] and arrival time
[21, 22] in cancers is shorter than in benign masses.

In the liver, the delay between injection or arrival in the
hepatic artery and the first appearance of contrast agent in a
hepatic vein can be measured. To this end, a hepatic vein is
targeted and kept in the field of view before the micro-
bubble injection is given with the patient breathing quietly
(Fig. 2). In normal subjects, the arrival time in the hepatic
vein after peripheral i.v. injection usually occurs after 30 s
(Fig. 3a) (the lower limit of normal was found to be 25 s)
[23, 24]. In cirrhosis, an early arrival time of the contrast
bolus (<24 s) and a left shift of the time-intensity curve are

Table 1 Microbubble contrast agents classified according to the filling
gas

Perfluorocarbon Sulphur hexafluoride

- Definity (Lantheus Medical Imaging) - SonoVue (Bracco)
- Sonazoid (GE Healthcare)

- Optison (GE Healthcare)a

The list include the presently available microbubble contrast agents

Imavist (Imagent; Alliance), Quantison (Quadrant), and Echogen
(Sonus Pharmaceuticals) did not achieve the clinical use. Echovist
and Levovist (Bayer-Schering) and Albunex (Mallinckrodt) are not
presently employed. Cardiosphere (Point Biomedical) is no longer
developed. One other agent, Zhifuxian, is being developed by Chinese
hospitals and is nearing clinical use

All available agents present a phospholipid shell. SonoVue is currently
approved and marketed within European countries. Definity is
approved in USA for cardiology and in Canada for liver imaging,
while Sonazoid (GE Healtcare) is licensed in Japan for liver imaging

In perfluorocarbon-filled agents the filling gas is perfluorobutane (e.g.
Optison and Sonazoid), octafluoropropane (e.g. Definity), or perfluor-
ohexane (e.g. Imagent)
a Albumin shell; recently re-released to the market

Fig. 1 Two-dimensional microscopic photo of SonoVue (white
arrows) microbubbles (20× magnification; optical microscope) com-
pared with red blood cells (black arrows)
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seen because of a hepatic arterial supply and the presence
of intrahepatic shunts (Fig. 3b). This test was also shown to
be accurate in assessing the severity of diffuse liver disease
[25], and in separating between mild and moderate/severe
chronic hepatitis [26]. Hepatic vein transit time was shown
to be significantly shorter with sulphur hexafluoride-filled
than with air-filled microbubbles, even though there was
more effective differentiation between moderate or severe
hepatic fibrosis or cirrhosis from normal volunteers with
Levovist than with SonoVue [27]. As a further field of

application, arrival time has been studied in patients with
metastatic disease of the liver, and a left shift of the time-
intensity curve and a typical cut-off value of <24 s were
observed [23, 28].

Objective analysis of echo-signal intensity

Determination of the degree of tissue contrast enhancement
relies on the accurate distinction between microbubble

Fig. 2 Spectral Doppler for hepatic vein transit time measurement.
The spectral Doppler sample volume is placed on a hepatic vein
before injection of the contrast agent, in this case sulphur
hexafluoride-filled microbubbles (a), and the time when the signal

increases (b) is noted. The audio output is fed into a laptop computer
and the moment the signal increases consistently above 10% over
baseline is taken as the arrival time

Fig. 3 Time-intensity curve.
These curves have been calcu-
lated from the loudness of
Doppler signals after a bolus
injection of a contrast agent with
the sample volume placed on a
hepatic vein. The raw data,
shown as multiple dots, has a
phasic variation caused by echo-
signal variability while the in-
terpolating line is the result of
applying a nine-point smoothing
algorithm. Many temporal and
quantitative features can be
calculated from such curves.
a Normal transit time profile in
a patient with normal liver;
b Early arrival of microbubbles
with reduced transit time in a
patient with liver cirrhosis
(reproduced with permission
from Gut [26])
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backscatter signals and stationary tissue background. The
fundamental assumption is the linear relation between
video-intensity and microbubble concentration up to the
achievement of a plateau phase [29]. After achievement of
the plateau phase microbubble concentration increases
while videointensity remains constant, and at even higher

concentrations, the video intensity actually decreases
because of attenuation of the US beam by the microbubbles
themselves. Quantitative analysis of tissue perfusion using
CEUS is still limited by acoustic shadowing owing to the
inadequate compensation for microbubble attenuation, and
tissue attenuation correction algorithms or mathematical

Fig. 4 Progressive refilling of
the imaged volume after micro-
bubble destruction following
high-transmit-power insonation.
a Microbubbles are filling three
adjacent tissue volumes after the
achievement of a steady-state
concentration in the peripheral
circulation; b high-transmit-
power insonation destroys the
microbubbles in the insonation
field and creates a microbubble
void in the imaged volume; c, d
the microbubble void is
progressively re-filled by
microbubbles coming from the
adjacent regions and not in the
insonation field

Fig. 5 Quantitation of renal per-
fusion by contrast-enhanced US,
after sulphur hexafluoridefilled
microbubble injection at low-
acoustic-power insonation. The
upper figure represents the posi-
tion of the multiple square regions
of interest (ROIs) on the renal
cortex excluding the renal medul-
la (ROI 1 and ROIs 3 – 7), except
for one ROI including the renal
medulla (ROI 2).The difference in
blood kinetics between renal cor-
tex and medulla is visualized by
the different curve profile since
renal medulla (curve 2) presents a
much lower perfusion (190 ml/
min/100 g) compared with renal
cortex (400 ml/min/100 g) repre-
sented by a lower slope of the first
ascending tract and a lower value
of the plateau phase

Eur Radiol (2011) 21:604–615 607



models estimating microbubble attenuation have been
proposed [30, 31].

Backscatter signals from microbubbles are processed
into pixels of brightness for video presentation in the US
system in order to express echo-power values that reflect
instantaneous in situ concentration of microbubble contrast
agents. The translation of echo amplitude values to a scale
of display brightness or color appropriate to human visual
perception is performed through a series of steps. Loga-
rithmic compression is employed for displaying signals
with a large dynamic range on US monitors that have
smaller dynamic ranges. Beside logarithmic compression,
other methods are employed to provide pleasing images at
visual perception including the use of different post-
processing curves or color maps and signal filtering for
edge enhancement. Time-intensity curves may be calculat-
ed by positioning a manually defined or automatically
copied region of interest (ROI) over a parenchymal region
and by correlating the measured video intensity (VI: 0–255
grey-scale levels) with time in seconds [30, 31]. Based on
the mathematics of logarithms the mean video intensity in
an ROI is:

mean VI ¼ 1

N
�
XN

j¼1

10log10
Ij
Iref

� �

where N indicates the pixel number within the ROI, Ij is the
acoustic intensity and Iref is an intensity reference level
determined through equipment gain [32].

The direct visual assessment of the degree of log-
compressed video-intensity is the least accurate method
because the background tissue signal varies widely within

the US sector, because of heterogeneities of acoustic power
and differences in the attenuation and absorption of US
energy by tissue. A practical approach consists of collecting
imaging-converted video data, log-compressed and palle-
tised as grey-scale or colour-coded 8-bit data, in the form of
DICOM files. In this case, however, proper linearisation
needs to be applied before curve-fitting and analysis, in
order to reverse the effects of log-compression and possibly

Fig. 6 Different functions that have been proposed to approximate the
refilling kinetics in tissues. a Negative exponential curve; β=slope of
the first ascending tract (~ blood flow velocity), A=maximum
amplitude of the re-filling curve (~fractional blood volume). The
distortion from the linear model is due to microbubble diffusion within
the vessels during the arrival time. b Sigmoid curve [48] expressed by

the equation Cn tð Þ ¼ C0
ð1þtlÞn � 1� 1þ Σ

n�1

i¼1

bi ti

i!

� �
e�bt

� �
, where Cn(t)

is the refilling evolution of the microbubble concentration in the
subvolume n, C0 is the concentration of microbubbles in blood vessels
that enter the ROI (number of microbubbles per litre) which is
assumed to be constant with time, t is time, λ represents the fraction of
microbubbles destroyed by the US beam per second which is assumed
to be constant, 1=t ¼ F=Vb where F is the rate of the inflow (equal to
the rate of outflow) and Vb is the volume of flow in the ROI, and β is
equal to: ð1þ tlÞ=tÞ. The approximation lines indicate the curve
shape without considering the percentage of microbubbles destroyed
by low-transmit-power insonation. The distortion from the linear model
is due to the percentage of microbubbles destroyed by low transmit
power insonation. c Comparison between the echo-signal (linear scale)
data set approximation obtained by a negative exponential function
(mean square error, 0.2) and by piecewise linear function with 2 linear
tracts (mean square error, 0.15) both obtained in a human kidney

b
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non-linear palette rendering [33]. The quantitation of echo-
signal intensity after anti-logarithmic transformation is the
most accurate method, and eliminates the influence of
logarithmic compression, colour maps, postprocessing
curves, and techniques for edge enhancement on the input
signal mapping for video presentation. Software packages
access the raw data before application of non-linear
modifications and allow image alignment, signal averaging
and background subtraction.

A parametric image is an image where each pixel/voxel
value represents the value of given parameters (e.g. blood
flow or velocity or tissue perfusion) derived from multiple
images at that location. Parametric images may be obtained
after background subtraction in a pixel-by-pixel evaluation
from the analysis of harmonic grey-scale imaging data
through the use of dedicated software packages for the
automated colour-coded depiction of the different kinetic
parameters [34, 35].

Reperfusion methods

The achievement of a steady-state microbubble concentra-
tion in the peripheral circulation is preferable in tissue
perfusion studies [36]. When microbubbles are adminis-
tered as a constant infusion, the steady state is achieved
after 2–3 min. This is obtained by dedicated microbubble
injectors usually equipped with a rotating syringe to avoid
microbubble sedimentation. At steady state the inflow and
outflow of microbubbles in any microcirculatory unit is
constant, proportional to the fractional blood volume of that
unit, and dependent only on the flow rate of microbubbles.

Local tissue perfusion may be calculated by analysing
the replenishment kinetics of the volume of microbubbles

after their destruction by initial high-transmit-power inso-
nation [37, 38]. After microbubble destruction the system is
switched to a low transmit power so that the refill rate of
microbubbles returning to the imaged volume can be
monitored (Fig. 4). One of the main limitations of the
technique is that perfusion data are acquired from a single
tissue plane, a situation unlikely to accurately reflect global
perfusion of the tissue or organ under consideration. The 3-
D volumetric haemodynamics of the reperfusion are
complex and have not yet been fully modelled. The
opposite approach, known as diminution kinetics [39, 40],
can also be implemented, i.e. by observing the rate of decay
of microbubbles exposed to a high intensity beam, but this
cannot be performed in real time.

Fig. 7 Apical perfusion defect (arrows) visualised on contrast myocardial echocardiography. In the apical myocardium vascularised by a stenotic
coronary artery the rate of refilling is slower (a–d) in comparison to the other myocardial regions (courtesy from doctor Gaibazzi, Parma)

Fig. 8 Contrast myocardial echocardiography after sulphur
hexafluoride-filled microbubble injection. Reversible apical and
infero-lateral myocardial perfusion defect (arrows) visualised under
pharmacological stress (courtesy from Bracco Imaging)
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The analysis of the refilling process (Fig. 5) provides
semiquantitative data related to tissue perfusion values [36,
41, 42]. These include time to peak intensity, the initial
slope of the refill (β~blood flow velocity), the maximum
amplitude of the re-filling curve (A~fractional blood
volume), the area under the curve (~blood volume) and
the mean transit time. According to the central volume
theorem tissue perfusion may be calculated as the ratio of
the fractional vascular volume to the mean transit time [43].
The product of A (cm3/g of tissue)×β (s−1), corresponding
to the area under the curve, is correlated with perfusion.
Unfortunately, this cannot be converted to true perfusion as
the volume of the perfused tissue is not known because the
beam thickness and shape are complex and dependent on
machine settings (e.g. the focus position) and patient
variables (e.g. attenuation).

Mathematical models for perfusion quantification

Different mathematical models have been proposed to fit
the refilling kinetics. In the first model [36, 44, 45], the
exponential behaviour is a consequence of microbubble
diffusion and the refill curve has a rising exponential form
described by the equation:

Signal intensity ¼ Að1� e�btÞ:

Unfortunately, the exponential function (Fig. 6a) does
not take into account the fluid dynamics including the
different blood velocity during systole and diastole and the
different velocity profile of arteries and veins, and it fails to

Fig. 9 Normal refilling curve measured in a kidney of a 45-year-old
volunteer. a The echo-signal intensity is quantified by a manually-
defined ROI positioned over a region of renal parenchyma excluding
renal medulla by proprietary software (HDI Lab, version 1.90a and
Qlab, version 3.0; Advanced Technology Laboratories–Philips). b
Linear echo-signal intensity data were plotted vs time and fitted
according to a negative exponential function by the software
MATLAB 7.0.1 (The MathWorks, Natick, MA, USA)

Fig. 10 Reduced renal parenchymal perfusion due to renal artery
stenosis in patients without any pharmacological treatment. a The
echo-signal intensity is quantified in a manually-defined ROI
positioned over a region of renal parenchyma excluding the renal
medulla by proprietary software (HDI Lab, version 1.90a and Qlab,
version 3.0; Advanced Technology Laboratories–Philips). b Linear
echo-signal intensity data were plotted vs time and fitted according to
a negative exponential function by the software MATLAB 7.0.1 (The
MathWorks, Natick, MA, USA). In comparison to the case in Fig. 9a
lower slope of the first ascending tract of the curve (related to the
blood flow velocity) and a lower plateau phase (related to the
fractional vascular volume) is observed
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predict the experimental results if the percentage of micro-
bubble destruction in the vessels feeding the ROI is not
null. Further limitations of this model include the assump-
tion of a constant concentration of microbubbles entering
the ROI immediately after the destruction pulse and the
neglect of the different directions of the vessels inside the
examined ROI.

Potdevin et al. [37, 38] developed a dual model with a
cross-plane and an in-plane vascularity for both the renal
medullary and cortical regions, in which the whole refilling
process is a weighted average of all possible elemental refill
curves. Krix et al. [46] proposed a multivessel model that
neglects diffusion, the microbubble movement from an area

of high concentration to an area of lower concentration,
and does not present exponential features, but assumes
and takes into account a particular geometry of the
vessels in the ROI. In all these mathematical models the
time-intensity curves frequently present a wide data
dispersion during both the ascending and the second
plateau phase of the curve [47]. Lucidarme et al. [48]
proposed a model described by a sigmoid function
(Fig. 6b) which is based on the assumption that micro-
bubble destruction actually occurs in the feeding vessels
that reach the ROI. Another model [49] states that the
refilling kinetics depends on the distribution of vessel
transit times and flows in the kidney, resulting in a
piecewise linear function where the transit times are the
times that separate the linear tracts, and the slopes are
directly related to the flows (Fig. 6c).

Clinical applications of organ perfusion

In humans, CEUS has been applied to quantify brain
perfusion in acute cerebral stroke [50–54]. In cardiac
imaging, CEUS has an established role in left ventricle
opacification and endocardial border definition to assess
myocardial function and ejection fraction [55–57]. The
quantification of myocardial perfusion through reperfusion
kinetics [57, 58] is accurate in the detection of coronary
artery stenosis [59], and provides similar results to SPECT
and stress echocardiography [60]. In normal conditions
during pharmacological stress, the myocardium is fully
replenished by microbubbles 1 to 1.5 s after the end of a
high-transmit-power pulse train [58], while in regions
subserved by stenotic coronary arteries the rate of filling
is slower depending upon the severity of stenosis (Fig. 7).
The filling abnormalities are frequently seen to be more

Fig. 11 Renal parenchyma perfusion defect after microbubble
injection in a New Zealand white rabbit. In all animals the abdominal
aorta and both kidneys were surgically exposed after midline
laparotomy. The blood flow was stopped by manual compression of
the sub-renal abdominal aorta for approximately 5 s, while 2 ml of
polyvinyl alcohol embolising particles (150–250 μm in diameter)
were injected directly into the supra-renal abdominal aorta, below the
level of the superior mesenteric artery and coeliac trunk, through a 22-
gauge needle. This procedure caused random occlusion of one or more
renal segmental arteries, with the production of focal ischaemic renal
perfusion defects. The multiple perfusion defects (arrows) are clearly
visible after microbubble injection

Fig. 12 Renal artery embolisation in an 82-year-old male patient
presenting at the emergency unit with acute right-sided flank pain.
Contrast-enhanced ultrasound after sulphur hexafluoride-filled micro-

bubble injection. Multiple bilateral renal parenchymal perfusion
defects (arrows), involving mainly the right kidney, due to embolisa-
tion of an ulcerated plaque of the thoracic aorta
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marked in the subendocardial layer and, in the case of
milder stenoses, may be localised only within the sub-
endocardial layer. Besides the detection of coronary artery
disease, myocardial contrast echocardiography has been
incorporated in the assessment of acute myocardial infarc-
tion and of myocardial viability. Fixed myocardial perfu-
sion defects are those that are evident both during resting
and during physical or pharmacological stress. Reversible
myocardial perfusion defects (Fig. 8) are those that become
evident during physical or pharmacological stress and
disappear during resting [61, 62]. The same technique
may be applied in the detection of damaged but viable
myocardium (“hibernating myocardium”) [63, 64] as
dysfunctional segments demonstrating contrast enhance-
ment have better recovery of wall motion than segments
with no reflow. Myocardial contrast echocardiography
offers real-time frame rates and the direct correlation
between flow and wall motion. It has many potential
advantages over conventional methods, particularly SPECT,
with regard to both cost and exposure to ionising radiation
[65], and could reduce the number of inappropriate
admissions of patients with non-cardiac stress pain [66].

Contrast-enhanced ultrasound quantitation of tissue
perfusion has been applied in kidneys [45, 49, 67]
(Fig. 9) and renal transplants [68–70]. In patients with
renal artery stenosis (Fig. 10) or other vascular abnormal-
ities, the re-filling curve revealed an increased time-to-peak
and reduced slope of the wash-in tract and maximum
amplitude [49, 67–70]. Animal models were initially
employed to assess the capabilities of CEUS in the
detection of renal perfusion defects [71–75], which appear
as single or multiple focal wedge-shaped areas of absent,
diminished or delayed contrast enhancement in comparison
to the adjacent renal parenchyma (Figs. 11, 12) [76, 77].
The identification of small renal perfusion defects in the
sub-capsular renal region is penalised by the limited spatial
resolution of CEUS which cannot identify renal perfusion
defects smaller than 5 mm. Other fields of application of
CEUS in tissue perfusion quantitation are the liver [78, 79],
skeletal muscle [80, 81], free skin flaps [82], joints [83],
testis [84, 85] and prostate [86]. Moreover, CEUS is
capable of quantifying tumor tissue perfusion via their
neoangiogenesis [87–94], also by the use of microbubbles
targeting the tumor antigens [95].

Concluding remarks

Tissue perfusion quantitation represents one of the most
promising new fields of application for CEUS. Measure-
ment of transit time has been shown to be feasible and has
started to become accepted as a clinical tool, especially in
the liver. Reperfusion kinetics represents a reliable tech-

nique for obtaining semiquantitative parameters related to
local tissue perfusion.
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