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Abstract A compilation of the literature relating to the
germination of five species of polar vascular plants, Cer-
astium alpinum, Colobanthus quitensis, Silene involucrata,
Deschampsia antarctica and Poa annua, indicates that
optimal temperature conditions for seed germination have
never been identified for some of them, and the results
reported for the remaining species are largely inconclusive.
Our results and published findings suggest that significant
differences in the germinability of the analysed five species
and their species-specific germination responses to tem-
perature and cold stratification could result from variations
in their physiological dormancy levels. It is important that
seed physiological development at time of collection, seed
storing time and conditions are as equal as possible when
comparing results from different studies. Our study
revealed differences in the maximum germination per-
centages of those species, which ranged from very low (C.
alpinum, 10 %) to very high (S. involucrata, 99 %). Silene
involucrata, C. quitensis and D. antarctica have fast-ger-
minating seeds, whereas P. annua is a long germinating
species. Within the range of four tested temperatures (12,
20, 20/7 and 30/20 °C), the lowest germination percentage
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of S. involucrata seeds was observed at fluctuating tem-
perature of 30/20 °C and C. quitensis seeds at 12 °C, the
highest germination percentage of C. quitensis seeds was
reported at fluctuating temperature of 20/7 °C and P. annua
seeds at 12 °C, whereas the germination percentage of D.
antarctica was not affected by temperature. A two-month
cold stratification period stimulated germination in C.
quitensis and D. antarctica, but it did not affect the ger-
mination of C. alpinum.

Keywords Antarctic - Arctic - Seed germination -
Stratification - Temperature

Introduction

Plants are particularly sensitive to cold stress during the
reproductive phase of their life cycle (Zinn et al. 2010), and
it has been long believed that clonal growth and vegetative
reproduction, which are more effective in unstable envi-
ronments characterized by high levels of abiotic stress, play
important roles in species growing in cold regions of the
globe, including polar regions and high mountain ranges
(Billings and Mooney 1968; Bliss 1971; Callaghan and
Emanuelsson 1985; Jonsdittor et al. 1996). This conviction
was supported by numerous observations indicating, that
polar vascular plants produce very few seeds that are often
nonviable (Sgrensen 1941; Bliss 1962; Billings and
Mooney 1968; Corner 1971; Edwards 1974; Bell and Bliss
1980). The results of recent research into the reproduction
of polar plants do not confirm earlier findings. According to
Brochmann and Steen (1999), the majority of 161 species
of the Svalbard flora have mixed reproductive systems,
where 97 species are mainly sexual and 36 are mainly
clonal. Klimesova et al. (2012) demonstrated that polar
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vascular plants have less varied vegetative reproduction
organs than Central European plants, and the proportions of
clonal plants in the Arctic flora are comparable to those
estimated in Central Europe. Recent research showed that
the germination percentages of seeds produced by polar
vascular plants are much higher than previously believed
(Lewis-Smith 1994; Miiller et al. 2011; Alsos et al. 2013).
Our knowledge about the germinability of various species
of polar vascular plants is being steadily expanded, but
relatively little is known about their germination ecology,
in particular optimal conditions for germination.

Temperature is undoubtedly one of the most important
exogenous factors that regulate seed germination (Baskin
and Baskin 2001). It can significantly influence the
breaking and induction of dormancy as well as the capacity
and rate of germination of non-dormant seeds (Bouw-
meester and Karssen 1992; Bridndel and Jensen 2005).
Temperature and water availability are the major envi-
ronmental factors that inhibit the survival of organisms in
polar regions (Billings 1987; Block et al. 2009). Apart from
low temperatures, temperature fluctuations that occur
within a short period of time also considerably limit veg-
etation both in the Arctic and Antarctic (Bliss 1962;
Alberdi et al. 2002; Peck et al. 2006; Convey 2012). Easy
access of solar radiation and wind to soil surface, rocks and
the above-ground parts of plants, microtopographic varia-
tion and snow cover can considerably modify temperature
and water availability in habitats (Billings and Mooney
1968; Beyer et al. 2000; Alberdi et al. 2002; Parnikoza
et al. 2011). Strong interactions between environmental
factors and their variability contribute to high fluctuations
in temperature, which can reach 20-30 °C within hours or
minutes (Convey 2012). In view of their temperature and
water availability, polar regions are among the world’s
most unstable environments (Block et al. 2009).

The aim of this study was to determine the effect of
stratification and germination temperature on germination
percentage and germination time in Cerastium alpinum,
Colobanthus quitensis, Silene involucrata, Deschampsia
antarctica and Poa annua. Moreover, our findings and
other authors’ results were used to build a comprehensive
knowledge base relating to the influence of temperature on
seed germination in the analysed species.

Materials and methods

Plant material

The study analysed the seeds of five herbaceous species of
polar vascular plants. Two of them, C. alpinum L. and S.

involucrata (Cham. and Schltdl.) Bocquet (Caryophyl-
laceae), are native to the Arctic region. The remaining
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three species, C. quitensis (Kunth) Bartl. (Caryophyl-
laceae), D. antarctica Desv. and P. annua L. (Poaceae),
grow in the Antarctic, where C. quitensis and D. antarctica
are native species, and P. annua is an alien species that was
introduced to the Antarctic several decades ago (Lewis
Smith 1996; Olech 1996).

Seed collection and storage

The capsules and seeds of C. alpinum, C. quitensis and S.
involucrata and the inflorescences and caryopses (referred
to as seeds in this study) of D. antarctica and P. annua
were collected during polar expeditions to King George
Island (South Shetland Islands, Antarctic) and Spitsbergen
(Svalbard, Arctic) in 2011-2012 (Table 1). Plant material
was transported to laboratories in the Arctic and Antarctic,
dried for several days at room temperature and transported
to Olsztyn, Poland (53°47'N, 20°30'E), where seeds were
released from capsules and inflorescences. During transport
and before germination tests, seeds were stored in paper
envelopes, in darkness, at 4 °C.

Germination percentage and germination time

Germination tests were performed 8 months after seed
harvest. Seeds for the germination test were placed on petri
dishes lined with filter paper and saturated with distilled
water. Lemmas and paleas were not removed from grass
seeds. Every tested variant was sown in four replications of
25 or 50 seeds each subject to availability (Table 1).

The germination tests were performed in a growth
chambers at two fluctuating temperatures of 20/7 °C
(16/8 h) and 30/20 °C (16/8 h) and two constant temper-
atures of 12 and 20 °C. The 16-/8-h photoperiod was
identical for all temperatures. Germinated seeds were
counted and removed daily over a period of 30 days. Water
was regularly replenished in petri dishes. Seeds were
regarded as germinated upon the emergence of the radicle.
Germination tests lasted 30 days.

The seeds of species characterized by a very low ger-
mination response to all or most tested temperatures, from
the treatment incubated at a constant temperature of 12 °C,
were left on petri dishes in darkness for 2 months at 4 °C
(C. alpinum, C. quitensis and D. antarctica). Moisture
levels were kept constant throughout the entire incubation
period. After 2 months of incubation at 4 °C, seeds were
subjected to a second germination test at 20 °C for 30 days
with a 16-/8-h photoperiod. This treatment was labelled as
12/4/20 °C. After germination, the viability of ungermi-
nated seeds was determined in a tetrazolium test according
to AOSA and SCST (2010). The tetrazolium test was
performed on the seeds of species whose maximum
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Table 1 Collection sites, dates and total number (N) of seeds used in germination experiments

Species Collection site Coll. date N
Caryophyllaceae

Cerastium alpinum

Colobanthus quitensis

Silene involucrata
Poaceae

Deschampsia
antarctica

Poa annua
Island)

Nicolaus Copernicus University Polar Station, Kaffigyra (78°41’'N, 11°51’E; Spitsbergen)
Lions Rump, King George Bay (62°08'S, 58°08'W; King George Island)
Stanistaw Siedlecki Polish Polar Station in Hornsund (77°00'N, 15°33'E; Spitsbergen)

Lions Rump, King George Bay (62°08'S, 58°08'W; King George Island)

Henryk Arctowski Polish Polar Station, Admiralty Bay (62°09'S, 58°28'W; King George

03 August 2012 400
03 March 2012 800
10 August 2012 400

15 February 800
2012

25 March 2012 800

germination percentages were less than 95 % (C. alpinum,
C. quitensis, D. antarctica and P. annua).

Germination results were used to determine the final
percentage of germinated seeds (referred to as germination
percentage in this study) and calculate mean germination
time (MGT) (Ranal and De Santana 2006) with the use of

Zn,*z

the following formula: MGT = S where n,: number of

seeds newly germinated on day #, £- number of days from
the beginning of the germination test to the observation on
day 7 (1, 2,...,30). The germination percentage and viability
of seeds were calculated relative to the total number of
sown seeds in a given repetition.

Statistical analyses

The significance of differences in germination percentages
at different temperatures was determined by the Kruskal—
Wallis test and the Mann—Whitney U post-test for multiple
comparisons. The above nonparametric statistics were
used, since our germination data were not normally dis-
tributed. The significance of differences in mean germi-
nation time between the analysed temperature variants was
determined by Kaplan—Meier survival curve and the log-
rank post-test. Calculations were performed separately for
each species at a significance level of o = 0.05. The results
were processed statistically in the Statistica v. 10 applica-
tion (StatSoft Polska).

Comparison with previous studies

We compiled data from research studies into the germi-
nation responses of C. alpinum, C. quitensis, S. involu-
crata, D. antarctica and P. annua seeds under controlled
laboratory conditions to compare our results with the
findings of other authors (Holtom and Greene 1967; Corner
1971; Edwards 1974; Frenot and Gloaguen 1994; Day et al.
1999; Ruhland and Day 2001; Gietwanowska et al. 2005;

Miiller et al. 2011; Alsos et al. 2013; Wodkiewicz et al.
2013). The geographic range of all five species is not
confined to the polar regions. The information concerning
C. alpinum and S. involucrata was narrowed down to the
germination of seeds collected from plants growing in the
Arctic, and the findings relating to C. gquitensis, D.
antarctica and P. annua were restricted to seeds harvested
in the Antarctic and Subantarctic. This limitation was
introduced to ensure that only the germination percentages
of seeds that developed in the same climate zone, i.e. cir-
cumpolar zone, were compared in this study. Germination
results were compared based on temperature and pho-
toperiod during germination, place of seed harvest and seed
storage conditions before the germination test.

Results

Germination percentages at different temperatures
and after cold stratification

The seeds of the analysed polar plants of the families
Caryophyllaceae and Poaceae were characterized by varied
maximum germination percentages, which ranged from
very low (C. alpinum, 10 %), through low (D. antarctica,
30.5 %, P. annua, 34 %), high (C. quitensis, 79.5 %), to
very high (S. involucrata, 99 %) (Fig. 1). The germination
responses of the studied species to temperature and strati-
fication were species specific. The most significant impact
of temperature was observed in C. quitensis whose ger-
mination percentage at fluctuating temperature of 20/7 °C
reached 70 %, and was at least 59 % lower (max. 11 %) in
the three remaining temperature variants (12, 20 and
30/20 °C, Table 2). The percentage of D. antarctica seeds
that germinated in all four temperature variants was min-
imal (1-3 %), and hence, temperature had no effect on
their germination percentages (Table 2). The seeds of the
Arctic species of S. involucrata were characterized by the
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Fig. 1 Maximum germination percentages and viability of
seeds = SD of the five polar representatives of Caryophyllaceae
and Poaceae family

lowest germination percentage at fluctuating temperature
of 30/20 °C, and no significant differences in their germi-
nation percentages were reported at the remaining three
temperatures (20/7, 12 and 20 °C, Table 2). At a constant
temperature of 12 °C, the seeds of C. quitensis germinated
least abundantly, whereas the reverse was reported for P.
annua whose germination percentage reached 34 % at
12 °C and was at least 1.5-fold higher than in the
remaining temperature variants (Table 2).

The two-month cold stratification period (darkness,
4 °C) significantly stimulated germination percentages of
C. quitensis and D. antarctica seeds (Table 2). The ger-
mination percentage of stratified seeds of C. quitensis at
20 °C (79.5 %) was similar to the germination percentage
of unstratified seeds at fluctuating temperatures of 20/7 °C
(70 %). In comparison with C. quitensis, cold stratification
did not induce a similarly stimulating effect on D.
antarctica where only 30 % of seeds germinated. A sig-
nificant improvement in the germination percentage of C.
alpinum seeds was not observed (Table 2).

Based on the number of germinated seeds and the results
of the tetrazolium test, seed viability was estimated at 60 %
in P. annua, more than 80 % in C. alpinum and more than
90 % in the three remaining species (Fig. 1).

Germination time at different temperatures
and after cold stratification

Germination time could not be determined in C. alpinum due to
very weak seed germination (Fig. 1; Table 2; Online Resource
1a). In the remaining species, short mean germination time was
reported in the seeds of S. involucrata (4.0-6.1 days) and in the
stratified seeds of C. quitensis (6.5 days) and D. antarctica
(3.7 days), most of which germinated during the first 7 days of
the test (Online Resource 1b—d). P. annua seeds were
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characterized by much longer mean germination time
(16.3-19.8 days) which covered nearly the entire period of the
test (Table 3; Online Resource 1e).

The influence of temperature on germination time was
determined only in S. involucrata, C. quitensis and P.
annua, because in only those three species, germination
percentages exceeded 10 % in response to at least two
temperatures (Table 2). In all three species, temperature
influenced seed germination time to a certain degree. The
seeds of S. involucrata germinated faster at 20 °C, and
their germination time was 1.5-2 days shorter than in the
three remaining temperature variants (Table 3). The ger-
mination percentage of unstratified seeds of C. quitensis
was higher at fluctuating temperatures of 20/7 °C than at
20 °C (Table 2), but their germination time was reduced by
2 days at the latter temperature (Table 3). P. annua seeds
germinated most profusely at a constant temperature of
12 °C (Table 2), but their germination time at that tem-
perature was 2-3 days longer than in the remaining tem-
perature variants (Table 3).

Comparison with previous studies

Our findings and the results of other studies into the ger-
minability of C. alpinum, S. involucrata, C. quitensis, D.
antarctica and P. annua seeds are presented in Table 2. We
were unable to find any published data concerning the
germination percentages of C. alpinum. The seeds of S.
involucrata from Svalbard have been germinated at only
two similar temperatures of 18 (Miiller et al. 2011) and
20 °C (Alsos et al. 2013). The above findings and our
results indicate that S. involucrata seeds are characterized
by high or very high germination percentages. In the study
by Alsos et al. (2013), the germination percentage of S.
involucrata seeds was determined at nearly 70 %, whereas
in the work of Miiller et al. (2011) and in our study, con-
ducted at two constant temperatures (12 and 20 °C) and at
fluctuating temperature (20/7 °C), the germination per-
centage of S. involucrata approximated 100 %.

To date, the germination percentages of P. annua seeds
produced in the Antarctic or Subantarctic have been iden-
tified at only one fluctuating temperature of 20/4 °C
(Wédkiewicz et al. 2013) and at three constant tempera-
tures of 5, 10 and 20 °C (Frenot and Gloaguen 1994). Our
results and the findings of Frenot and Gloaguen (1994)
indicate that P. annua seeds are able to germinate within a
wide range of temperatures, but the optimal temperature
for the germination of both Antarctic and Subantarctic
seeds is a constant temperature of 10 or 12 °C.

In the evaluated group of species, the seeds of C.
quitensis and D. antarctica have been germinated within
the widest temperature range. The above species have been
germinated at different constant temperatures which ranged
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Table 3 Mean germination time of seeds of the five polar representatives of Caryophyllaceae and Poaceae family at constant (12 and 20 °C),
and fluctuating temperatures (20/7 and 30/20 °C) and after two-month cold stratification at 4 °C (12/4/20 °C)

Species Mean germination time (days)

20/7 °C 12 °C 20 °C 30/20 °C 12/4/20 °C
Cerastium alpinum * * * * *
Colobanthus quitensis 10.8* * 8.3 * 6.5°
Silene involucrata 5.6" 6.1* 4.0° 57%° -
Deschampsia antarctica * * * * 3.7
Poa annua 17.7° 19.8° 16.3 17.4° -

* too low germination percentage of seeds (<10 %, see Table 2) to calculate MGT; —, germination test was not conducted. Values within row
marked by the different letters are significantly different at p < 0.05 according to Kaplan—Meier survival curve and the log-rank post-test

from 2 to 37 °C for C. quitensis, and from 0 to 25 °C for D.
antarctica (Holtom and Greene 1967; Corner 1971;
Edwards 1974; Day et al. 1999; Ruhland and Day 2001;
Gietwanowska et al. 2005). Significantly fewer germina-
tion tests have been conducted for the above species at
alternating temperatures (Holtom and Greene 1967,
Gielwanowska et al. 2005; Wodkiewicz et al. 2013).

The majority of germination tests carried out by Holtom
and Greene (1967), Corner (1971), Edwards (1974), Day
et al. (1999), Ruhland and Day (2001) and Gietwanowska
et al. (2005), and the tests performed in our study indicate
that C. quitensis and D. antarctica seeds germinate weakly or
do not germinate at all at constant temperatures, whether low
(<10 °C), medium (12-16 °C) or high (=18 °C). Less
unequivocal results were reported in tests analysing the
effects of fluctuating temperatures and cold stratification on
the evaluated species. In our study, C. quitensis seeds ger-
minated profusely at fluctuating temperature of 20/7 °C or
after 2 months of cold stratification, whereas D. antarctica
seeds were only somewhat stimulated for germination after
2 months of cold stratification. In a study by Holtom and
Greene (1967), the germination of C. quitensis and D.
antarctica seeds was visibly stimulated by fluctuating tem-
peratures of 5/18 °C and cold stratification. According to
Corner (1971), 2 months of cold stratification did not induce
germination in C. quitensis, but significantly increased the
germination percentage of D. antarctica seeds in excess of
70 %. Edwards (1974) observed that germination percent-
ages of C. quitensis and D. antarctica seeds were not influ-
enced by several days of cold stratification. Gietwanowska
et al. (2005) observed that D. antarctica seeds can remain
dormant for up to 2 years after harvest and can be released
from dormancy by both cold and warm stratification.

Discussion
The optimal range of temperatures for seed germination

generally corresponds to the thermal conditions character-
istic of their region of origin (Baskin and Baskin 1988;

Probert 2000). Polar regions are characterized by a short
and cold growing season (Savile 1972; Robinson et al.
2008), which could suggest that plant species native to the
Arctic (C. alpinum and S. involucrata) and the Antarctic
(C. quitensis and D. antarctica) should thrive at low tem-
peratures. Mean summer temperatures range from 1.5 to
3.5 °C on King George Island (Angiel et al. 2010; Kejna
et al. 2013), and from 3 to 5 °C in western Spitsbergen
(Fgrland et al. 2011). However, polar plants are exposed to
temperatures that are more supportive for growth. Due to
low and compact growth forms, Antarctic and Arctic
phanerogams grow directly above the ground and rocks
where temperature is several degrees or even more than 10°
higher than recorded by meteorological stations (Bliss
1962; Corner 1971; Edwards 1974; Chapin 1983). For this
reason, we assumed that 12 °C could be the optimal tem-
perature for the germination of C. alpinum, S. involucrata,
C. quitensis and D. antarctica seeds. Yet in the tested
temperature range (12, 20, 20/7 and 30/20 °C), germination
percentages did not improve significantly at 12 °C in any
of the above species. Constant temperatures are generally
less favourable for germination than fluctuating tempera-
tures, and selected species germinate only in response to
alternating temperatures (Baskin and Baskin 2001). The
above can be attributed to the fact that plants inhabiting
higher latitudes are usually exposed to fluctuating tem-
peratures. This is also observed in polar regions which are
characterized by highly changeable weather conditions, in
particular temperature (Bliss 1962; Block et al. 2009).
Despite the above, in our experiment, significantly higher
germination percentages at fluctuating temperatures, com-
prising alternating periods of lower (7 °C; 8 h) and higher
(20 °C; 16 h) temperatures that imitated daily temperature
cycles in the natural habitat, were observed only in C.
quitensis.

In sites that are favourably situated, shielded from the
wind and directly exposed to sunlight, ground surface
temperatures in both the Arctic and Antarctic regions may
be even several dozen Celsius degrees higher than ambient
temperature. In the Arctic, ground surface temperature was

@ Springer



1762

Polar Biol (2015) 38:1753-1765

determined at 50 °C on sunny days, and maximum tem-
perature reached 68 °C (Gates 1980). In East Antarctic
near the Molodezhnaya station, the highest recorded
ground surface temperature was 42 °C (MacNamara 1973
in Campbell and Claridge 1987). Extremely high soil
temperatures are noted very rarely, on cloudless and
windless days, and over short periods of time, usually
around noon. In most polar locations, very high tempera-
tures or temperature fluctuations were reported mostly on
rocks or gravel (Scherrer and Korner 2010). Temperature
fluctuations and maximum temperatures are buffered by
water in moist sites. Germination is only expected in
the moist sites, but it is unlikely to succeed on rocks and
gravel. Despite the above, germination tests in our study
were conducted at a high temperature of 30/20 °C because
according to Billings and Mooney (1968), the optimal
temperature range for seed germination of Arctic species
falls in the range of 20-30 °C. In our study, no differences
in the germination percentages of S. involucrata were
observed at 12, 20 or 20/7 °C, but significantly lower
germination percentage was noted at a high alternating
temperature of 30/20 °C. Baskin and Baskin (2001) have
rightly observed that in many studies, the germination
percentages of Arctic plants were tested at only one tem-
perature. Therefore, the ensuing conclusion that seeds
require high temperatures for germination may not be
entirely correct. Bell and Bliss (1980) reported a lower
range of optimal temperatures at 12-20 °C for the germi-
nation of Arctic species.

The fifth species analysed in this study was P. annua, a
species native to Eurasia that has spread widely across the
globe (Soreng 2007). In addition to Poa pratensis (Pertierra
et al. 2013), it is the only alien vascular plant species to
have colonized the Maritime Antarctic several decades ago
(Lewis Smith 1996; Olech 1996; Molina-Montenegro et al.
2012). The high colonization capacity of P. annua can be
attributed to its very high reproductive potential. During
the growing season, an annual bluegrass produces several
dozen to several hundred inflorescences containing thou-
sands of maturing seeds (Warwick 1979). Those seeds can
germinate within a wide range of temperatures, but the
optimal temperature can differ between ecotypes (see
Vargas and Turgeon 2004). In our study, the seeds of
annual bluegrass also germinated at all four tested tem-
peratures, but the highest percentage of germinated seeds
was noted at 12 °C. The optimal temperature for the ger-
mination of P. annua seeds harvested from a Subantarctic
island was similar (10 °C) in the study by Frenot and
Gloaguen (1994). The common germination response of P.
annua seeds from the Maritime Antarctic and Subantarctic
could indicate those populations have adapted to the tem-
peratures of polar regions. Significant morphological and
physiological differences between ecotypes inhabiting

@ Springer

different environments testify to considerable adaptive
potential of P. annua (Ellis 1973; Lush 1989; Dionne et al.
2001).

Most vascular plant species native to Arctic tundra
(McGraw and Vavrek 1989; Cooper et al. 2004) and two
indigenous Antarctic phanerogams (McGraw and Day
1997; Ruhland and Day 2001) have large soil seed banks
that comprise seeds at various phases of dormancy. For this
reason, significant variations in the maximum germination
percentages of C. alpinum, S. involucrata, C. quitensis and
D. antarctica (10-99 %) and their species-specific germi-
nation responses to temperature and stratification could be
attributed to their different levels of dormancy. The seeds
of the analysed species were characterized by significant
differences in germination percentages, but all of them
were highly viable. The release from non-deep dormancy
can be triggered by various physical factors. Such seeds
often germinate within a very narrow range of temperatures
or after several days or weeks of cold or warm stratification
(Baskin and Baskin 2001). Seeds with intermediate or deep
dormancy are unable to germinate at any temperature
unless they are subjected to a relatively long period of cold
stratification (Baskin and Baskin 2001). High germination
percentage of C. quitensis seeds only in response to fluc-
tuating temperature of 20/7 °C or after cold stratification at
4 °C could be indicative of non-deep physiological dor-
mancy. Very low germination of non-stratified D. antarc-
tica seeds and only partial improvement in their
germination percentage after two-month cold stratification
period point to intermediate or deep physiological dor-
mancy. The results reported by Baskin and Baskin (2001)
coming from studies of seeds from the Arctic tundra
indicate that dormant seeds of Arctic plant species of the
genera Cerastium and Silene are characterized by physio-
logical dormancy. Those species are inclusive of S.
involucrata (syn. Melandrium furcatum) which, in our
study, was characterized by high germination percentages
at all four temperatures without prior stratification. Our
germination tests were conducted 8 months after harvest,
and those seeds were probably released from dormancy
during that period. Very low germination percentages of C.
alpinum seeds, even after cold stratification, could indicate
that this species has different dormancy breaking require-
ments. For example, Cerastium beeringianum, an Alpine
species, has to go through an after-ripening period at room
temperature to overcome dormancy (Bonde 1965).

The viability of P. annua seeds (approximately 60 %)
was relatively low in comparison with the very high seed
viability of the remaining Antarctic phanerogams (above
90 %), and those differences could be attributed to seed
maturity at harvest. Although P. annua seeds were har-
vested at the end of austral summer (Table 1), a large part
of seeds inside inflorescences had not reached full maturity.
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The above could have also contributed to the low germi-
nation percentages (max. 34 %) of P. annua seeds in our
experiment. We were unable to determine with full cer-
tainty whether seed immaturity lowered their vigour or
whether their low germination percentages resulted from
dormancy. Other studies indicate that in the Antarctic, the
size of the soil seed bank of P. annua (Wodkiewicz et al.
2013, 2014) is comparable to that of C. quitensis and D.
antarctica (McGraw and Day 1997; Ruhland and Day
2001). Moreover, P. annua seeds isolated from the soil
bank in the Antarctic are viable, and their germinability
exceeds 80 % (Wodkiewicz et al. 2014).

Successful seed germination is determined not only by
germination capacity, but also by germination rate which
can be expressed by germination time (Ranal and De
Santana 2006). Our study revealed that S. involucrata seeds
and stratified seeds of C. quitensis and D. antarctica ger-
minate within nearly 1 week, which indicates that those
seeds are capable of germinating rapidly when dormancy is
broken. In view of a very short growing season in polar
regions, this strategy contributes to the establishment suc-
cess of seedlings before the onset of winter.

To date, the majority of research into germination of
polar vascular plants focused on their germination per-
centages, but very few studies analysed their germination
rates (Frenot and Gloaguen 1994; Hagen 2002; Wodkie-
wicz et al. 2013). The germination time of two vascular
plants native to the Antarctic, C. quitensis and D. antarc-
tica, and the alien species P. annua, reported by Wodkie-
wicz et al. (2013) differs considerably from our findings
and indicates that P. annua can germinate as fast as or even
faster than C. quitensis and D. antarctica. The above dif-
ferences could result from variations in physiological state
of seeds. Firstly, the compared seeds matured in different
growing seasons. Secondly, Wodkiewicz et al. (2013)
harvested seeds from previous year’s inflorescences that
had wintered on plants, whereas the seeds for our experi-
ment were collected from current year’s inflorescences. In
our study, the incomplete maturity of P. annua seeds could
have significantly prolonged their germination time. The
differences in results could also be attributed to pre-ger-
mination treatments and different germination conditions.
In our experiment, stratification and germination tempera-
ture influenced germination time of the analysed species.

Conclusion

The results of our study and other research investigating the
germination percentages of five polar vascular plant species
in a controlled environment revealed numerous discrepan-
cies, which demonstrates that further work is needed to
determine optimal germination conditions and dormancy

mechanisms in the seeds of the evaluated species. There are
hardly any published data relating to the germination
requirements of two Arctic species, C. alpinum and S.
involucrata. Published information about P. annua seeds
formed in the Antarctic is also scarce. The latter species has
been widely investigated as a cosmopolitan weed (e.g.
Warwick 1979; Vargas and Turgeon 2004), but research into
its reproductive ability in the Antarctic has been undertaken
only in recent years (Wodkiewicz et al. 2013, 2014). Many
studies analysing the germination capacity of indigenous
Antarctic phanerogams contain incomplete data about their
seed storage or germination conditions (e.g. Holtom and
Greene 1967; Edwards 1974).

Our results and published findings suggest that the species-
specific germination responses of the five analysed species to
temperature and stratification can be attributed to differences in
their levels of physiological dormancy. However, seed dor-
mancy levels of those species are difficult to determine with full
certainty. Seed dormancy status is influenced by environmental
conditions during seed development, and in mature seeds,
dormancy status continues to change in response to external
factors (Finch-Savage and Leubner-Metzger 2006). The vari-
ations observed in the environmental conditions of polar
regions across years (Callaghan et al. 1999; Kejna 1999; Ferron
et al. 2004) suggest that seeds harvested in various growing
seasons, in particular seeds collected from previous year’s
inflorescences, could differ in their dormancy levels and,
consequently, their germination percentages at the same tem-
perature. Varied storage conditions in a controlled environment
can also significantly modify seed dormancy levels and con-
tribute to different germination responses under exposure to the
same temperature. The majority of studies conducted to date
did not analyse the viability of ungerminated seeds of polar
vascular plants, and therefore, lack of germination respon-
siveness could also be attributed to their low seed viability.
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