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Abstract
Mitochondrial fission shows potential as a therapeutic target in non-infectious human diseases. The compound mdivi-1 was 
identified as a mitochondrial fission inhibitor that acts against the evolutionarily conserved mitochondrial fission GTPase 
Dnm1/Drp1, and shows promising data in pre-clinical models of human pathologies. Two recent studies, however, found no 
evidence that mdivi-1 acts as a mitochondrial fission inhibitor and proposed other mechanisms. In mammalian cells, Bordt 
et al. showed that mdivi-1 inhibits complex I in mitochondria (Dev Cell 40:583, 2017). In a second study, we have recently 
demonstrated that mdivi-1 does not trigger a mitochondrial morphology change in the human yeast pathogen Candida albi-
cans, but impacts on endogenous nitric oxide (NO) levels and inhibits the key virulence property of hyphal formation (Koch 
et al., Cell Rep 25:2244, 2018). Here we discuss recent insights into mdivi-1’s action in pathogenic fungi and the potential 
and challenges for repurposing it as an anti-infective. We also outline recent findings on the roles of mitochondrial fission in 
human and plant fungal pathogens, with the goal of starting the conversation on whether the research field of fungal patho-
genesis can benefit from efforts in other disease areas aimed at developing therapeutic inhibitors of mitochondrial division.
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Introduction

Millions of people are affected by fungal infections in the 
world, including a large number of deaths estimated to sur-
pass a million per year (Brown et al. 2012). Fungal cells 
are fundamentally very similar to mammalian cells. This 
is generally thought to create a problem for developing 
antifungal compounds, while minimizing potential toxicity 
and adverse effects. Fungal models are used to understand 
human biology and disease conditions (Botstein and Fink 
2011; Hartwell 2004; Krobitsch and Lindquist 2000; Menne 
et al. 2007; Santos et al. 2018; Sun et al. 2016; van Pel et al. 

2013), and the reverse is also possible—in some instances 
the field of medical mycology might be able to exploit the 
similarities between fungal and mammalian cells, to build 
on the knowledge of cellular processes and compounds that 
are of interest in non-infectious human diseases. One such 
case is mitochondrial fission, the process by which mito-
chondria divide.

Mitochondrial fission plays physiological roles in nor-
mal cellular functions, promoting distribution of mitochon-
dria between cells during division and elimination of those 
mitochondria that have been damaged, reviewed in (Fried-
man and Nunnari 2014; Nunnari and Suomalainen 2012). 
However, excessive fission, which occurs in response to 
stressors, during programmed cell death and in human dis-
ease pathologies, leads to fragmentation of mitochondria, 
which in turn causes mitochondrial dysfunction (Ayanga 
et al. 2016; Cereghetti et al. 2010; Costa et al. 2010; Fan-
njiang et al. 2004; Frank et al. 2001; Guo et al. 2013; Iqbal 
and Hood 2014; Lutz et al. 2009; Rambold et al. 2011; 
Rehman et al. 2012; Song et al. 2011; Wang et al. 2008; 
Xie et al. 2015). Inhibiting fission of mitochondria could 
improve mitochondrial and cellular health, and is thought 
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of as a potential therapeutic strategy in neurodegenerative 
and neuropathological conditions, cardiovascular diseases 
(stroke, heart attack) and cancer (Brooks et al. 2009; Fan-
njiang et al. 2004; Gomes et al. 2011; Grohm et al. 2012; 
Ong et al. 2010; Rambold et al. 2011; Rappold et al. 2014; 
Sharp et al. 2015; Wang et al. 2017; Xie et al. 2015).

Fungal and mammalian machineries for mitochondrial 
fission are equivalent, and the main factor which performs 
mitochondrial fission, the GTPase Dnm1 (also known as 
Drp1), is conserved. Based on this, can the medical mycol-
ogy field benefit from efforts aimed at developing mitochon-
drial fission inhibitors (Cassidy-Stone et al. 2008; Lackner 
and Nunnari 2010; Mallat et al. 2018; Numadate et al. 2014; 
Qi et al. 2013; Rosdah et al. 2016)? In other words, would 
mitochondrial fission inhibitors be of use as antifungals? To 
try to answer this question, here we discuss recent insights 
into mitochondrial fission in the main human pathogenic 
fungi (Candida albicans, Cryptococcus neoformans and 
Aspergillus fumigatus), as well as the important plant patho-
gen Magnaporthe oryzae (Chang and Doering 2018; Koch 
et al. 2018; Neubauer et al. 2015; Zhong et al. 2016). We 
also discuss our recent work on the putative mitochondrial 
division inhibitor mdivi-1 in C. albicans (Koch et al. 2018). 
Mdivi-1 was the first specific inhibitor of Dnm1/Drp1 to be 
discovered (Cassidy-Stone et al. 2008), and follow-on stud-
ies indicate therapeutic promise for non-infectious diseases, 
reviewed in (Rosdah et al. 2016). A complex and somewhat 
controversial scenario has emerged regarding the mechanism 
of action of mdivi-1. Two recent studies, ours in C. albicans 
(Koch et al. 2018) and a previous one in mammalian cells 
(Bordt et al. 2017) cast doubt on the effect of mdivi-1 on 
mitochondrial morphology and show other metabolic mech-
anisms to be involved. Nevertheless, mdivi-1 has activity 
that is of interest in fungal infections. In this mini-review, 
we will consider its mechanism of action and potential for 
repurposing as an antifungal agent.

Mitochondrial fission in pathogenic fungal 
species

Our understanding of the fungal mitochondrial fission appa-
ratus is founded in decades of studies in the model yeast 
Saccharomyces cerevisiae (Fig. 1a) (Labbe et al. 2014). 
Organelle fission is performed by the Dnm1, which forms 
rings at the location where mitochondria will divide, and 
then contracts mitochondria in a process that is coupled to 
GTP hydrolysis (Bleazard et al. 1999; Ingerman et al. 2005; 
Mears et al. 2011; Otsuga et al. 1998). Dnm1 is recruited 
to mitochondria by co-factors: Fis1, a protein in the mito-
chondrial outer membrane (Mozdy et al. 2000), and Mdv1 
that binds to both Fis1 and Dnm1 and brings them together 
(Cerveny and Jensen 2003; Cerveny et al. 2001; Karren 

et al. 2005; Tieu and Nunnari 2000; Tieu et al. 2002). Sac-
charomyces cerevisiae deletion mutants in DNM1, FIS1 or 
MDV1 display a mitochondrial fission defect, resulting in 
the formation of long, hyper-connected mitochondria, and 
also have some other cellular phenotypes related to fitness, 
as well as organelle and membrane structure and contacts 
(Dimmer et al. 2002; Elbaz-Alon et al. 2014; Gorsich and 
Shaw 2004; Kanki et al. 2009; Prevost et al. 2018; Qian et al. 
2012). Deletion of CAF1, a paralog of MDV1, does not cause 
a fission defect by itself, but it potentiates the defect of mdv1 
mutants (Griffin et al. 2005).

The mitochondrial fission apparatus in pathogenic 
fungi

In all four of the pathogenic fungal species that were recently 
studied (C. albicans, C. neoformans, A. fumigatus and M. 
oryzae), deletion of DNM1 triggered a mitochondrial mor-
phology defect consistent with reduced fission (Chang and 
Doering 2018; Koch et al. 2018; Neubauer et  al. 2015; 
Zhong et al. 2016) (Fig. 1b). This was expected, given the 
high conservation of Dnm1 and its roles in mitochondrial 
fission in eukaryotes. Deletion of the Dnm1 co-factor FIS1 
caused a mitochondrial fission defect in C. neoformans, 
A. fumigatus and M. oryzae (Chang and Doering 2018; 
Neubauer et al. 2015; Zhong et al. 2016), consistent with 
studies in S. cerevisiae (Griffin et al. 2005; Mozdy et al. 
2000). However, somewhat surprisingly, we showed that 
the C. albicans fis1 deletion mutant displays normal mito-
chondrial morphology (Koch et al. 2018) (Fig. 1B). Regard-
ing Mdv1, homologs could be found in C. neoformans, A. 
fumigatus and M. oryzae and their inactivation triggered 
a mitochondrial morphology defect (Chang and Doering 
2018; Neubauer et al. 2015; Zhong et al. 2016) (Fig. 1b). C. 
albicans was again different, as its genome does not encode 
an obvious homolog of Mdv1 (candidagenome.org). Is the 
mitochondrial fission apparatus in C. albicans really all that 
different to the other fungal species studied? Further work 
will be needed to address this interesting question. However, 
we suspect that, rather than a significant departure from the 
S. cerevisiae model, the C. albicans Fis1 homolog does have 
a role in mitochondrial fission, but perhaps loss of its func-
tion can be compensated for by another factor. That other 
factor could be a divergent, but functional homolog of Mdv1 
that can be anchored to the outer mitochondrial membrane 
to bring Dnm1 to the organelle. Our findings in C. albicans 
are paralleled by the situation in mammalian cells. In some 
mammalian cell types, inactivation of Fis1 does not lead 
to mitochondrial morphology defects, and several other co-
factors in the mitochondrial outer membrane can recruit the 
Dnm1 homolog Drp1 to mitochondria, reviewed in (Labbe 
et al. 2014). Also, like in C. albicans, no obvious homolog 
of Mdv1 can be found in mammals (Labbe et al. 2014).
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Impact of mitochondrial fission of cellular growth 
and fitness of fungal pathogens

Disrupting mitochondrial fission had drastically different 
effect on growth rates and cellular fitness between yeasts 
and filamentous fungi. In the yeasts C. albicans and C. 
neoformans mitochondrial fission mutants did not show 
any obvious growth defects in vitro, not even under stress-
ful conditions such as elevated temperature, non-preferred 
and non-fermentable carbon sources or in response to 
stressors (Chang and Doering 2018; Koch et al. 2018) and 

(Koch and Traven unpublished). The C. neoformans mito-
chondrial fission mutants also displayed normal growth 
in vivo in the lung in the murine inhalation model of 
cryptococcal infections, and survived normally in innate 
immune phagocytes (macrophages) in vitro (Chang and 
Doering 2018). In contrast, in the filamentous pathogens 
A. fumigatus and M. oryzae mitochondrial fission mutants 
showed drastically reduced hyphal growth in vitro (Neu-
bauer et al. 2015; Zhong et al. 2016), and the M. oryzae 
mitochondrial fission mutants were less virulent in a plant 
infection model (Zhong et al. 2016). Virulence of the A. 

Fig. 1  The mitochondrial fission apparatus in fungal species. a Car-
toon of the mitochondrial fission machinery as known in S. cerevi-
siae. b Effects on mitochondrial morphology and growth following 
inactivation of mitochondrial fission components in fungal species. 
For those species where we indicate no growth defect, this is under 
standard and optimal laboratory conditions. Some cellular fitness 

changes have been reported for the S. cerevisiae mutants under spe-
cific conditions, but we want to make the point that the general fitness 
effects of mitochondrial fission mutations are profoundly different 
between yeast and filamentous fungi. Data for pathogens are based on 
Chang and Doering (2018), Koch et al. (2018), Neubauer et al. (2015) 
and Zhong et al. (2016)
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fumigatus mitochondrial fission mutants was only tested 
in the Galleria mellonella larvae model, where they dis-
played normal virulence (Neubauer et al. 2015). It remains 
to be seen how they grow and infect a mammalian host. 
The conclusion that inactivation of mitochondrial fission 
has a bigger effect on cellular growth in filamentous fungi 
compared to yeasts is supported by the previous work in 
model fungal species (Gerstenberger et al. 2012; Mozdy 
et al. 2000; Otsuga et al. 1998).

Is mitochondrial fission important for filamentous 
hyphal growth of yeast species?

Since mitochondrial fission is important for hyphal growth 
of the filamentous molds A. fumigatus and M. oryzae, an 
interesting question is whether it is necessary for hyphal 
growth of a yeast species. Our data in C. albicans suggest 
“no”. While C. albicans grows in yeast morphology under 
default conditions, it forms filamentous hyphae in response 
to a variety of environmental signals. This process of mor-
phology change is linked to pathogenicity (Sudbery 2011). 
The C. albicans dnm1 displayed a modest shortening of 
invasive hyphae on solid medium (plates) (Koch et al. 2018). 
However, in liquid medium, where there is no resistance to 
hyphal growth, it formed wild type-looking hyphae (Koch 
et al. 2018). The shorter hyphae on solid medium suggested 
to us that perhaps the dnm1 mutant strain might form hyphae 
with less invasive capacity. We tested this idea using the 
worm infection model, because worm killing by C. albi-
cans depends on the ability of fungal hyphae to penetrate the 
animal’s cuticle. Indeed, the dnm1 mutant was moderately 
less virulent in the worm model (Fig. 2). Whether reduced 
hyphal invasion potential of the C. albicans dnm1 mutant 
translates to reduced virulence in mice awaits testing.

So, is inhibiting mitochondrial fission promising 
as an antifungal strategy?

Based on the growth defects of mitochondrial fission 
mutants, it could be for filamentous pathogens. It is, how-
ever, worth noting that recent work showed that killing of 
A. fumigatus by human immune cells results in mitochon-
drial fragmentation (Ruf et al. 2018). This would suggest 
that inhibiting mitochondrial fission might help the patho-
gen to evade immune responses. Hyper-fused mitochondria 
have also been previously linked to increase survival of 
Cryptococcus gattii in macrophages (Ma et al. 2009; Voelz 
et al. 2014). Clearly, much more fundamental knowledge 
is needed on the roles of mitochondrial fission in fungal 
pathogenesis before we know if its targeting is warranted 
for therapy.

The putative mitochondrial fission inhibitor 
mdivi‑1: what roles does it play in fungal 
pathogens?

Ten years ago, the lab of Jodi Nunnari reported the discov-
ery of mdivi-1, a compound that triggers a mitochondrial 
fission defect (Cassidy-Stone et al. 2008). The mechanism 
is conserved between the model yeast S. cerevisiae and 
mammalian cells, and it involves allosteric inhibition of 
Dnm1 self-assembly into rings. That Dnm1 is the mdivi-1 
target was established with in vitro experiments with the 
purified yeast protein (assaying for GTPase activity and 
the effects of mdivi-1 on the formation of Dnm1 spirals 
using electron microscopy), and also by target overexpres-
sion with mammalian Drp1 in cell culture to demonstrate 
reduced effects of the compound (Cassidy-Stone et al. 
2008). A subsequent study used in vitro GTPase activ-
ity assays to show that mdivi-1 inhibits mammalian Drp1 
(Numadate et al. 2014), and a recent review of the litera-
ture concluded that, overall, there is substantial experi-
mental support for the notion that mdivi-1 inhibits mito-
chondrial fission in mammalian cells (Smith and Gallo 
2017). Mdivi-1 has shown therapeutic promise in a range 
of disease models, including animal studies of cardiovas-
cular dysfunction, brain cancer, and Parkinson’s disease 
(Brooks et al. 2009; Grohm et al. 2012; Lackner and Nun-
nari 2010; Ong et al. 2010; Rappold et al. 2014; Rehman 
et al. 2012; Wang et al. 2017; Xie et al. 2015).

Mdivi‑1 might not always inhibit mitochondrial 
fission

The notion that the primary cellular target of mdivi-1 is 
Dnm1 and mitochondrial fission was challenged by two 
recent reports: (1) we showed that mdivi-1 does not cause 
a steady state mitochondrial morphology defect in the 
pathogenic yeast C. albicans, and deletion of DNM1 does 
not replicate the phenotypic effects of mdivi-1 on C. albi-
cans cells (Koch et al. 2018). Our results contrast with the 
reported inhibition of mitochondrial fission by mdivi-1 in 
S. cerevisiae (Cassidy-Stone et al. 2008). (2) Bordt et al. 
showed that mdivi-1 does not trigger changes in mito-
chondrial morphology in mammalian cells and it does not 
inhibit mammalian Drp1 GTPase activity in vitro (Bordt 
et al. 2017). Their results contrast with the original study 
by Cassidy-Stone et al. (2008) and subsequent reports in 
various mammalian systems, including the aforementioned 
demonstration of mdivi-1-dependent inhibition of Drp1 
in vitro (Numadate et al. 2014). Bordt et al. were, how-
ever, able to show that mdivi-1 inhibits S. cerevisiae Dnm1 
in vitro (Bordt et al. 2017), similarly to the initial report 
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by Cassidy-Stone et al. (2008), opening up the possibility 
that mdivi-1 has different effects on fungal and mamma-
lian Dnm1. But is S. cerevisiae a good model for other 
fungal species in this case? As mentioned, our study in C. 
albicans showed the opposite results regarding the ability 
of mdivi-1 to inhibition of mitochondrial fission to what 
has been shown in S. cerevisiae (“yes” in S. cerevisiae and 
“no” in C. albicans) (Koch et al. 2018), (Cassidy-Stone 
et al. 2008). We are aware of only one other fungal species 
in which the effects of mdivi-1 on mitochondrial morphol-
ogy were tested. In the filamentous pathogen M. oryzae 
mdivi-1 did trigger a mitochondrial morphology change 
towards less punctate and more fused structures, consistent 

with inhibition of organellar fission (Zhong et al. 2016). 
Why these contrasting effects of mdivi-1 are seen in differ-
ent systems is not clear at the moment. “Trivial” explana-
tions such as the source of the compound, concentrations 
used, stock solutions, and solubility in water (mdivi-1 is 
poorly water-soluble), do not appear to be the reason for 
the discrepancies in mammalian systems (Smith and Gallo 
2017). Regarding fungi, we do not know why C. albicans 
behaves differently to S. cerevisiae and M. oryzae, but we 
note the differences in the mitochondrial fission apparatus 
in C. albicans compared to the other fungi, as shown in 
our recent study (Koch et al. 2018), and discussed above.

Fig. 2  C. albicans Dnm1 plays a role in hyphal invasion in the worm 
infection model. a The worm C. elegans (glp-4; sek-1) was infected 
with C. albicans strains as follows: wild type, a DNM1 deletion strain 
∆∆dnm1 or a complemented mutant strain (+ DNM1). The strains are 
described in (Koch et al. 2018), and the worm C. albicans infection 
method is described in detail in our previous publication (Koch et al. 
2017). Shown are representative images after 48  h of infection. b 
The worm infection protocol was performed as in a and dead worms 
killed due to penetrative hyphal growth of C. albicans were counted 

after 48  h. Two independent ∆∆dnm1 strains were used (labeled as 
C1 and C2). Four biological replicates were done for the wild type 
and the ∆∆dnm1 strain, while the complemented (+ DNM1) strain 
was assayed in three of the biological replicates. The independent 
experiments are color coded. Shown are the mean and standard devia-
tion. Statistical significance was determined with one-way ANOVA 
and Tukey’s multiple comparisons test. **p > 0.001, ***p > 0.0001, 
****p < 0.0001
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Mdivi‑1 is a novel inhibitor of hyphal growth in C. 
albicans

Although it did not affect mitochondrial morphology in 
C. albicans, mdivi-1 inhibited hyphal growth (Koch et al. 
2018). Since hyphal formation is an important virulence-
related process, we decided to discern the processes affected 
by mdivi-1 in C. albicans. A detailed RNAseq experiments 
over a time course of 2 h following addition of mdivi-1 to 
a hyphal culture revealed that transcript levels for genes 
expressed during hyphal growth were reduced, and there 
were several changes to metabolism-related gene expres-
sion indicative of mitochondrial and metabolic stress (Koch 
et al. 2018). Genes encoding subunits of the mitochon-
drial respiratory complexes were transiently inhibited by 
mdivi-1 and, at the same time expression of alternative oxi-
dases was increased. These results suggested that perhaps 
mdivi-1 inhibited mitochondrial respiration in some way, 
which would be consistent with the study of Bordt et al. that 
reported that the second target of mdivi-1 in mammalian 
cells is respiratory complex I (Bordt et al. 2017). While we 
cannot exclude this mechanism, treatment of C. albicans 
with mdivi-1 did not phenocopy complex I mutants with 
respect to growth phenotypes (Koch et al. 2018). Other tran-
scriptional changes related to metabolism include upregula-
tion of the glyoxylate cycle, gluconeogenesis and fatty acid 
oxidation, as well as a large upregulation of amino acid bio-
synthesis-related genes, particularly arginine biosynthesis. 
Some of the these metabolic changes triggered by mdivi-1 
also occur to C. albicans following phagocytosis by mac-
rophages (Lorenz et al. 2004; Tucey et al. 2018), indicating 
that mdivi-1 creates a metabolic situation which is in part 
similar to the macrophage phagosome. However, C. albicans 
transitions from yeast to hyphae in macrophages, while in 
the presence of mdivi-1 it cannot transition from yeast to 
hyphae, and it also cannot maintain hyphal growth when 
mdivi-1 is added to pre-formed hyphae (Koch et al. 2018). 
How metabolic stress signals control hyphal formation in 
these different scenarios remains to be understood.

Another mdivi‑1‑dependent cellular pathway 
discovered in C. albicans

In addition to metabolic changes, we showed that mdivi-1 
triggered a reduction of endogenous nitric oxide (NO) lev-
els in C. albicans cells, and used this discovery to show 
for the first time that endogenous NO plays an important 
role in hyphal formation by C. albicans (Koch et al. 2018). 
Our data suggest that the main transcriptional repressor of 
hyphae-specific genes, Nrg1, is downstream of mdivi-1 
and NO-dependent regulation of hyphal gene expression 
and hyphal growth (Koch et al. 2018). With these data, we 
established that, in addition to mitochondrial morphology 

and respiration via complex I inhibition, mdivi-1 also targets 
NO-dependent signaling in cells. Signaling via NO is an 
important physiological process in mammalian cells, and 
it will be interesting to test if mdivi-1 interferes with it in 
mammalian systems.

Mdivi‑1 as an antifungal agent?

Development of mdivi-1 as human therapeutic agent is of 
interest, but, as recently reviewed, it is not trivial (Rosdah 
et al. 2016). Mdivi-1 is poorly soluble in water, and in our 
study in C. albicans we used a fungal strain in which the 
genes encoding major efflux pumps were deleted (Koch et al. 
2018). Comparing this strain with an efflux-competent strain 
is indicative of mdivi-1 being effluxed. Also, the safety and 
pharmacological properties of mdivi-1 are still to be char-
acterised in detail (Rosdah et al. 2016).

Effects of mdivi‑1 on fungi in infection

Treatment with mdivi-1 reduced infection of barley leaves 
with M. oryzae (Zhong et al. 2016), showing promising 
antifungal properties in a plant infection model. Regard-
ing human fungal pathogens, our study in C. albicans is 
to our knowledge the first one to test the effects of mdivi-1 
on virulence-related biology. When mdivi-1 was added to 
C. albicans macrophage co-cultures, hyphal formation was 
represssed and two important hyphae-dependent immune 
cell processes were compromised: cell death of macrophages 
caused by C. albicans infection was reduced, and mac-
rophages were not inducing maturation of the inflammatory 
cytokine IL-1β as efficiently as in control conditions (Koch 
et al. 2018). Mdivi-1 also reduced hyphae that C. albicans 
makes  in the worm C. elegans (Koch et al. 2018). How 
mdivi-1 behaves in a mammalian model of fungal infection 
has not been tested yet. The effects of mdivi-1 in vitro sug-
gest that this compound could modulate levels of inflamma-
tion and reduce hyphae-dependent pathogenicity.

Effects of mdivi‑1 on immune cells in infection

If it was to be used as antifungal agent, mdivi-1 would not 
only target fungal cells, but would also have an effect on host 
cells. A recent manuscript reported that mdivi-1, when cou-
pled with a mitochondrial fusion-promoting compound M1, 
is able to drive the formation of more fused mitochondrial 
network structure in T cells, which had beneficial effects 
in mouse models of tumorigenesis and infection (Buck 
et al. 2016). When T cells that were treated ex vivo with 
mdivi-1 plus M1 were transferred into mice, the animals 
mounted an improved T cell response to the bacterium Lis-
teria monocytogenes (Buck et al. 2016). The same study also 
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showed that mdivi-1 reduced the switch to Warburg metabo-
lism (aerobic glycolysis) in murine bone marrow-derived 
macrophages, which were activated by the bacterial ligand 
lipopolysaccharide (LPS) and interferon gamma. In the same 
scenario, mdivi-1 also reduced the expression of Nos2 in 
macrophages, which is the nitric oxide synthase needed for 
making NO to kill microbial invaders. A similar effect to 
reduce aerobic glycolysis was seen in LPS-treated dendritic 
cells. It is important to note that in both macrophages and 
dendritic cells, the switch to increased aerobic glycolysis 
upon encountering LPS was still occurring in a substantial 
manner in mdivi-1-treated cells, and mdivi-1-treated mac-
rophages expressed Nos2 upon LPS activation above resting 
levels (Buck et al. 2016). This suggests that mdivi-1 reduces, 
but does not prevent innate immune activation by LPS.

The switch of innate immune cells to aerobic glycolysis 
upon activation is a conserved feature and also occurs upon 
C. albicans challenge, where it is important for mounting 
cytokine responses and survival of mice upon systemic 
infection (Cheng et  al. 2016; Dominguez-Andres et  al. 
2017). However, we have recently shown that the absolute 
reliance of macrophages on glycolysis once they switch to 
Warburg metabolism opens a window of opportunity for 
C. albicans, whereby the pathogen can outcompete mac-
rophages for glucose and kill them in the process (Tucey 
et al. 2018). Therefore, modulation of glucose homeostasis 
and immune cell metabolism might require a balance for 
optimal antimicrobial responses, which mdivi-1 might help 
to achieve. Reduction of the glycolytic shift in activated 
immune cells by mdivi-1 might also act to dampen inflam-
mation and prevent hyper-inflammatory pathology in infec-
tion. Since mdivi-1 has mostly been studied as a drug lead 
in non-infectious condition, its potential benefits in infection 
are highly speculative at the moment. Further work should 
clarify its effects on fungal pathogens and immune cells in 
infection.
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