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Abstract
Cross-efficiency analysis in DEA generally uses a two-stage procedure: first, opti-
mize a DMU’s individual efficiency score; next, push the efficiencies of all DMUs 
in a desired direction. In order to reduce subjective judgement in the second step, 
we provide a cross-efficiency method using only strong defining hyperplanes of 
the underlying technology. We develop a new DEA-based algorithm, and prove its 
finiteness and correctness. To reduce the computational burden, we show how one 
can combine the procedure with a known beneath-and-beyond procedure. Numerical 
investigations—comprising real-world data—demonstrate the superiority of the new 
method.
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1 Introduction

Data envelopment analysis (DEA) is a meaningful instrument for evaluating 
the efficiencies of profit and non-profit entities, so-called decision-making units 
(DMUs), cf. Charnes et al. (1978). Here, a ratio of weighted outputs to weighted 
inputs for the observed activity of a DMU will be optimized to determine its 
CCR-efficiency; the acronym CCR stands for Charnes, Cooper, and Rhodes, of 
course. The second well-studied model is that of Banker, Charnes, and Cooper 
published in 1984. It informs a DMU about its pure technical efficiency, namely 
the BCC-efficiency, as well as its qualitative and quantitative returns to scale 
(RTS), calculating a slightly different fraction as in the CCR case. For more 
details on this refer to Banker et al. (1984), Førsund (1996), Kleine et al. (2016) 
or Podinovski et al. (2009).

However, one main feature of both classical approaches is that each DMU 
optimizes its individual fraction by choosing the most favorable weights; this is 
often called self-appraisal. To overcome this flaw, cross-efficiency evaluation has 
been developed as an alternative way of efficiency evaluation and, consequently, 
to rank all DMUs; see e.g., Doyle and Green (1994). In this framework, all indi-
vidual weighting schemes are applied to the activities of all DMUs, resulting in 
a so-called cross-efficiency matrix. This matrix can be used to estimate the effi-
ciency for a DMU calculating its average cross-efficiency.

Yet, the individually determined weights are generally ambiguous, this is also 
true for cross-efficiencies. Accordingly, a two-stage procedure is often applied to 
overcome this issue effectively: first, determine a DMU’s individual efficiency 
score; next, solve a second problem that pushes the efficiencies of all DMUs in 
a desired direction, but yet fix the efficiency score of the previously optimized 
DMU. However, the latter demands for an analyst’s philosophy: in what direction 
should we push all efficiencies—benevolent or aggressive?

In Wang and Chin (2010), the authors present an approach that is called a neu-
tral DEA model for cross-efficiency evaluation; here, they seek for more neutral 
weights instead of applying benevolently or aggressively determined weights. 
However, their interpretation of a neutral DEA model seems flawed, because the 
authors control the choice of weights only from the viewpoint of the DMU which 
has been individually optimized in the first stage of the classical two-stage pro-
cedures. Consequently, this approach also has a rather subjective character. Fur-
thermore, the proposed model does not guarantee that we use hyperplanes with 
maximal support by the underlying polyhedron. Consequently, the authors only 
gather little (almost arbitrary) information from the technology. This is also true 
for the neutral cross-efficiency concept presented in Carrillo and Jorge (2018); 
here, the authors formulate a new second-stage program, where hypothetical best- 
and worst-performing units must be specified.

We provide a new cross-efficiency method that corresponds to the term neu-
trality more than the classical procedures and the aforementioned concepts, 
applying all strong defining hyperplanes of the underlying technology or produc-
tion possibility set and thus, eventually, mitigating potential conflicts associated 
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with the analyst’s subjectivity and gathering more information from the technol-
ogy. In summary, the new method neither requires a specification of hypothetical 
best- and worst-performing units like in Carrillo and Jorge (2018) nor has it the 
risk of focusing only on a few—probably strange—weight systems as in Wang 
and Chin (2010).

However, finding strong defining hyperplanes can be very expansive from a 
computational point of view. In DEA, there are some papers providing search pro-
cesses to find all strong defining hyperplanes and most of them are based on DEA 
multiplier models; see Amirteimoori and Kordrostami (2012); Davtalab-Olyaie 
et  al. (2014) or Jahanshahloo et  al. (2009). In Davtalab-Olyaie et  al. (2014) and  
Jahanshahloo et  al. (2009), for example, the authors offer approaches which are 
mainly based on the BCC multiplier problem, but the algorithms proposed here 
require evaluating all extreme solutions and respective hyperplanes which can be 
very expensive. In Amirteimoori and Kordrostami (2012), the authors develop an 
approach using data perturbations. However, this method asks for a specification 
of respective perturbation parameters. In order to avoid these issues, we determine 
all strong defining hyperplanes, using DEA models, some combinatorics, and some 
plain algebraic concepts. Furthermore, we prove that the new procedure always 
terminates and, additionally, that it always finds all strong defining hyperplanes. 
Next, we combine DEA and a well-known beneath-and-beyond algorithm—namely 
QuickHull—to radically accelerate the search process; for details on beneath-and-
beyond strategies see Joswig (2003). Computational experiments reveal the superi-
ority of the new method.

The present contribution is organized as follows. In Sect. 2, we summarize some 
basics of DEA. The concept of cross-efficiencies and the relationship between this 
concept and strong defining hyperplanes is given in Sect. 3. In Sect. 4, we develop 
both algorithms for determining all strong defining hyperplanes; here, we compare 
the technical performance of both procedures, studying different scenarios for an 
empirical application of 125 adult education centers (AECs). The quality of the effi-
ciency estimators of different approaches will be checked in Sect.  5, studying the 
empirical data of the 125 AECs again as well as performing a simulation study. Sec-
tion 6 concludes the paper.

2  Preliminaries

Problems (1) and (2) show the classical BCC models in envelopment and multiplier 
form, cf. Banker et al. (1984). In the remainder of this study, we focus on input ori-
entation, but the proposed framework can easily be transferred to other approaches 
as output orientation or slack-based models; for an overview cf. Cooper et al. (2007).

For all k ∈ J  , with J = {1, ..., J} , solve
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(�j , �j ) ∈ ℝ
M+S
+

 are the observed inputs and outputs or the activities of all DMUs; 
here, M stands for the number of inputs and S for the number of outputs. In the 
envelopment form (1), the efficiency will be captured via �k ; the production pos-
sibility set is then formed by observed activities, the respective intensities �kj plus 
the convexity constraint. In the multiplier form (2), the efficiency will be determined 
by gk ; where �k , �k are the vectors of output and input multipliers and uk is the free 
variable, which indicates the returns to scale situation of DMU k; see e.g., (Banker 
et  al. 1984) and Førsund (1996). More precisely: if the optimal uk , from now on 
indicated by a superscript star, is >/</= 0 , then DMU k operates under increasing/
decreasing/constant returns to scale (IRS/DRS/CRS).

As discussed in Banker and Thrall (1992), Golany and Yu (1997), and Doyle 
and Green (1994), the linear program (2) might be subject to alternative optimal 
solutions. Therefore, in the aforementioned papers, the authors propose various 
two-stage procedures following different economic philosophies. Accordingly, let 
g∗
k
,�∗

k
,�∗

k
, u∗

k
 be an optimal solution of (2) for an arbitrary DMU k. In the first two 

manuscripts, the authors use (3) to fathom a DMU’s returns to scale situation; 
obviously, this leads to an interval for uk.

On the other hand, the latter paper focuses on the efficiency evaluations of the 
remaining DMUs; here, the authors force such evaluations into a desired direction, 
again under constant efficiency of DMU k. Consequently, we obtain (4).

(1)

min �k

s.t. �k�k −
∑
j

�kj�j ≧ �

∑
j

�kj�j ≧ �k

∑
j

�kj = 1

�kj ≧ 0 ∀j and hk free

(2)

max gk = ��

k
�k + uk

s.t. ��

k
�k = 1

��

k
�j + uk − ��

k
�j ≦ 0 ∀j

�k,�k ≧ � and uk free.

(3)

u−
k
= inf uk or u

+
k
= sup uk

s.t. ��

k
�k = 1

��

k
�k + uk = g∗

k

��

k
�j + uk − ��

k
�j ≦ 0 ∀j

�k,�k ≧ � and uk free
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The linear program (4) guides immediately to the concept of cross-efficiency evalua-
tion; the next section substantiates this statement.

3  From cross‑efficiencies to strong defining hyperplanes

As already indicated, cross-efficiencies are the efficiencies of DMUs from the view-
point of other DMUs, cf. Doyle and Green (1994). Again, let �∗

k
,�∗

k
, u∗

k
 be an opti-

mal weight system of a DMU k; cross-efficiencies are then defined by

Such cross-efficiencies can be arranged in a matrix ( g∗
kj

)J,J , a cross-efficiency matrix. 
Using the classical cross-evaluation scheme for ranking all DMUs means determin-
ing the average cross-efficiency column-wise from the cross-efficiency matrix  
( g∗

kj
)J,J:

Yet, what is the linking element between (4) and (5)? To answer this question, we 
need the affine equation

which is called efficiency equation of DMU j at cross-efficiency level g∗
kj

 . Replacing 
g∗
kj

 by (1 − �∗
kj
) in Eq. (7) we obtain

Compressing �∗
kj
�∗�

k
�j to s∗

kj
 and rearranging terms we have

When applying (4), we evenly push the cross-efficiencies in a particular direction: 
benevolent when minimizing and aggressive when maximizing the sum of all skj . 

(4)

min
∑
j

skj or max
∑
j

skj

s.t. ��

k
�k = 1

��

k
�k + uk = g∗

k

��

k
�j + uk − ��

k
�j + skj = 0 ∀j

�k,�k ≧ �, skj ≧ 0 ∀j and uk free

(5)g∗
kj
=

�∗�
k
�j + u∗

k

�∗�
k
�j

∀ k, j ∈ J.

(6)
1

J

∑
k

g∗
kj
=

1

J

∑
k

�∗�
k
�j + u∗

k

�∗�
k
�j

∀j.

(7)�∗�
k
�j + u∗

k
− g∗

kj
�∗�

k
�j = 0,

(8)�∗�
k
�j + u∗

k
− (1 − �∗

kj
)�∗�

k
�j = 0.

(9)�∗�
k
�j + u∗

k
− �∗�

k
�j + s∗

kj
= 0.
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The reference the cross-efficiencies are pushed away from or pushed towards is the 
supporting hyperplane

Solving (2) and (4) for an arbitrary k means determining a supporting hyperplane 
(10) that touches the respective BCC technology or production possibility set by at 
least one activity ( �j , �j ), i.e., at least one activity ( �j , �j ) j ∈ J  is BCC cross-effi-
cient from the perspective of DMU k.

Example 1 Figure 1 shows the classical BCC technology for 6 DMUs with a single 
input and a single output each. Here, we illustrate two arbitrary supporting hyper-
planes H1 and H3 and the cross-efficiency projection point for DMU 4 on H1 , namely 
the supporting hyperplane from the perspective of DMU k = 1 . ⋄

It is well-known that a supporting hyperplane (10) is a subspace of the 
real coordinate space ℝM+S , and it is of full-dimension if its dimension equals 
M + S − 1 . The intersection of such a hyperplane and respective BCC technology 
is called facet. In addition, we now present the following definitions, see Jahan-
shahloo et al. (2007):

Definition 1 If a supporting hyperplane Hk passes through M + S BCC efficient 
DMUs, which are affinely independent, then Hk is a defining hyperplane.

This definition implies that when Hk is a defining hyperplane, then M + S 
DMUs are cross-efficient g∗

kl
= 1 , with l = j1,… , jM+S , and their respective activi-

ties have to be affinely independent of each other.

Definition 2 If Definition 1 holds and, additionally, we have (�∗
k
,�∗

k
) > � , then Hk is 

a strong defining hyperplane.

(10)Hk

∧
= �∗�

k
� + u∗

k
− �∗�

k
� = 0.

Fig. 1  Arbitrary supporting 
hyperplanes and cross-efficiency 
projection
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To make the above concepts more transparent, we continue the example.

Example 2 In Fig. 2, one can see that H1 is a defining hyperplane but not a strong 
defining one due to �∗

1
= 0 . H3 is just a supporting hyperplane, and not even a defin-

ing one, due to the fact that it only touches the activity of DMU 3. The two hyper-
planes corresponding to the bold marked facets are the only available strong defin-
ing hyperplanes in this example, see Fig. 3. Here, the strong defining hyperplane H2 
is spanned via DMU 2 and DMU 3, the second one H4 is constructed by DMU 3 and 
DMU 4. ⋄

However, applying Eqs. (2) and (3) or (4) only ensures that we use supporting 
hyperplanes to calculate cross-efficiencies (5) and the respective averages via (6), 
but it does not guarantee that these hyperplanes have any of the properties intro-
duced in Definition  1 and Definition  2. From an analyst’s point of view, it might 
be more reasonable to assess a DMU’s average cross-efficiency with respect to all 

Fig. 2  Supporting vs. defining 
hyperplanes
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Fig. 3  Strong defining hyper-
planes
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strong defining hyperplanes, because these hyperplanes are not degenerated and 
have maximal support by the underlying technology, i.e., by the empirical data 
points. This is the guiding principle for the subsequent developed approach.

Let H be the set of all strong defining hyperplanes and |H| its cardinality. Still, 
there could be several problems when focussing only on strong defining hyper-
planes: First, if the technology is ill-conditioned, as discussed in Olesen and Petersen 
(1996), then there is no strong defining hyperplane (H = �) that can be used for ana-
lytical purposes. Therefore, in Olesen and Petersen (2015) a test for the existence 
of at least one strong defining hyperplane is presented. In the case of H = � , the 
DEA database has been poorly selected and hence should be reviewed, see again 
(Olesen and Petersen 1996). Second, and more importantly, finding all strong defin-
ing hyperplanes can be a difficult and computationally expensive exercise. This is 
subject of the next section.

4  Finding all strong defining hyperplanes

4.1  A DEA‑based procedure

Finding all strong defining hyperplanes (SDHs) is an important task in DEA. In 
order to illustrate this, Davtalab-Olyaie et al. (2014) provides a list of research topics 
and respective references where SDHs are of interest. However, to the best of our 
knowledge, there is no study that has paid any attention to cross-efficiency evalua-
tion in this context. To fill in this gap, Definition 1 and Definition 2 offer the relevant 
information for finding all strong defining hyperplanes, applying only DEA models, 
some combinatorics, and some algebra. In doing so, the new DEA-based algorithm 
for determining all strong defining hyperplanes is as follows: 

Step 1: Solve problem (1) for all DMUs; let Jeff be the set of (weak) efficient DMUs 
and Jineff be the set of inefficient DMUs.

Step 2: Determine the set of all possible index combinations, where each combina-
tion includes M + S different indices of Jeff . With n ∶= |Jeff| being the cardinal 
number  of  the  respec t ive  index  set ;  obvious ly,  there  a re 

I ∶=

(
n

M + S

)
=

n!

(M+S)!⋅(n−M−S)!
 possible combinations. Let I  be a matrix with 

I rows and M + S columns.
Step 3: Next, we delete each line i of I  , containing indices of affinely dependent 

activities. This can simply be checked by solving 

 If we only obtain the trivial solution �i1 = �i2 = ⋯ = �iM+S
= 0 , then the respec-

tive activities are affinely independent; otherwise delete the corresponding row 
in I  . Let Ired be the reduced index matrix with Ired lines.

�i1�i1 + ⋯ + �iM+S
�iM+S

= 0

�i1�i1 + ⋯ + �iM+S
�iM+S

= 0

�i1 + ⋯ + �iM+S
= 0
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Step 4: The activities of an index combination (one row) of Ired do not necessarily 
span a supporting hyperplane, i.e., the respective hyperplane may cut the technol-
ogy. Therefore, for each row i of Ired , with i = 1,… , Ired , solve 

 If s−
i
> 0 or if at least one weight of the unique �∗

i
,�∗

i
 equals zero, then delete 

line i in Ired . Let Ifin be the final index matrix, containing all M + S-tuples for 
Ifin strong defining hyperplanes.

The gist of this procedure will be illustrated via the already introduced example.

Example 3 From Sect. 3 we have learned that the algorithm should find two strong 
defining hyperplanes. Accordingly, 

Step 1: We solve the classical BCC problems for all six DMUs. The result is the 
index set Jeff = {1,… , 4} of all (weak) efficient DMUs.

Step 2: Next, we determine the matrix I  , containing all possible index combinations. 

In this particular case, we have I ∶=
(

n

M + S

)
=

(
4

2

)
= 6 of such combina-

tions: 

Step 3: Checking the activities pairwise for affine dependencies, we obtain the 
matrix Ired ; in this particular case, we maintain the matrix of step 2: 

Step 4: Now, solving (11) for Ired leads to the correct index matrix for spanning the 
two strong defining hyperplanes: 

(11)

s−
i
= min

∑
j

s−
ij

s.t. ��

i
�j = 1 arbitrary j ∈ I

red
i

��

i
�j + ui − ��

i
�j = 0 ∀j ∈ I

red
i

��

i
�j + ui − ��

i
�j + s+

ij
− s−

ij
= 0 ∀j

�i,�i ≧ �, s+
ij
, s−

ij
≧ 0 ∀j and ui free

I =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2

1 3

1 4

2 3

2 4

3 4

⎞⎟⎟⎟⎟⎟⎟⎠

I
red =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2

1 3

1 4

2 3

2 4

3 4

⎞⎟⎟⎟⎟⎟⎟⎠
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 If we construct, for example, a hyperplane by DMU 1 and DMU 3, see the sec-
ond line of Ired , then we cut the technology, i.e., s∗−

2
> 0 due to DMU 2; refer 

again to Fig. 2 or 3. For the hyperplane constructed by the DMUs 1 and 2, see 
the first line of Ired , we obtain a defining hyperplane with �∗

1
= 0 ; hence, the 

first line of Ired must be eliminated as well. The remaining lines in Ired must be 
checked analogously. ⋄

Proposition 1 The DEA-SDH algorithm always terminates.

Proof The proof follows simply from the fact that a finite number of activities is 
considered, since this then implies that we have a finite number of (weak) efficient 
activities, and hence for the binomial coefficient it always holds that 

I ∶=

(
n

M + S

)
<< ∞ . This ultimately means that the respective index matrix has a 

finite number of rows, which have to be checked iteratively without any loop.   ◻

Theorem 1 The DEA-SDH algorithm always finds all strong defining hyperplanes.

Proof We prove this statement by contradiction for each of the four algorithm steps 
separately. 

Ad 1: A strong defining hyperplane can, per definition, only be spanned uniquely 
via M + S affinely independent extreme vertices. This means: if there is a hidden 
strong defining hyperplane, the indices of all extreme vertices—only defined by 
observed activities—might not be fully determined in the first step. This, however, 
obviously contradicts the basic principle of DEA, see (1).

Ad 2: A hidden strong defining hyperplane can occur when I  does not contain all 
possible index pairs of strong defining hyperplanes. However, this can only be 
the case if Jeff is incomplete, thus, again contradicting DEA; see once more (1).

Ad 3: Due to Definition 1, defining and strong defining hyperplanes consist of 
affinely independent activities, meaning that the activity submatrices build up 
a system of equations which can only be solved trivially. Now, elimination of 
a line in I  which corresponds to a submatrix of affinely independent activities 
contradicts the proposed procedure.

Ad 4: A strong defining hyperplane implies that it supports the technology. Assum-
ing now that ∃s−

ij
> 0 , with j ∈ J  , such that s−

i
> 0 for an aribtrary strong defin-

ing hyperplane i contradicts the optimality of (11); the algorithm never deletes a 
strong defining hyperplane accidentally. However, the last statement does not 
ensure that only strong defining hyperplanes are detected so far. Finally, we have 
to check whether a defining hyperplane can happen to remain unrevealed, still. 
This cannot be the case because step 3 guarantees that all submatrices contain 
affinely independent activities. Consequently, each hyperplane—corresponding 
to an index pair in Ired—is uniquely defined. This implies that a defining hyper-

I
fin =

(
2 3

3 4

)
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plane, which is not strong defining, has at least one zero weight and hence, the 
corresponding index tuple will always be erased.

  ◻

In Davtalab-Olyaie et al. (2015), the authors propose a mixed-integer program-
ming-based algorithm to obtain all defining hyperplanes; they call them weak effi-
cient full-dimensional facets. We can detect them as well, but without applying 
mixed-integer programming:

Corollary 1 If the last if-then condition (step 4) concerning the weights �∗
i
,�∗

i
 is 

omitted, then the algorithm finds all defining hyperplanes—including all strong 
defining hyperplanes, of course.

Proof The proof follows the same logic as for Theorem 1, but without claiming to 
delete a hyperplane in the fourth step if it is constructed by at least one zero weight.  
 ◻

Once all hyperplanes of interest are detected via the new approach(es), we can 
determine the cross-efficiencies regarding each i-th hyperplane:

Calculating (12) for DMU j ∈ J  and for i = 1,… , Ifin , we get

namely the average SDH cross-efficiency of DMU j.

Remark 1 In DEA there is a wide range of literature dealing with so-called weight 
restrictions to obtain more reasonable technologies; for more details on this topic 
refer to Dellnitz (2016), Dyson and Thanassoulis (1988), Kuosmanen and Post 
(2001), and Podinovski and Bouzdine-Chameeva (2015). It is a well-known simple 
fact that when embedding such constraints, the corresponding dual procedure then 
adds virtual activities to the input/output database. Consequently, the here proposed 
new algorithm to obtain all strong defining hyperplanes is also applicable in the 
presence of weight restrictions, calculating BCC problems for the virtual activities 
and updating respective index sets, if necessary.

According to the remark, if the technology is improperly shaped, then one can 
add weight restrictions to achieve a more reasonable technology. In this case, the 
algorithm remains unchanged; we just add the corresponding virtual activities 
to our activity set and run the algorithm as provided in Sect.  4.2. Using a BCC 
model sometimes leads to negative cross-efficiencies, for example. For a geometric 

(12)g∗
ij
=

�∗�
i
�j + u∗

i

�∗�
i
�j

∀j ∈ J.

(13)g
∗

j
=

1

Ifin

Ifin∑
i=1

g∗
ij
=

1

Ifin

Ifin∑
i=1

�∗�
i
�j + u∗

i

�∗�
i
�j

,
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interpretation of negative cross-efficiencies see Lim and Zhu (2015); they show that 
negative cross-efficiencies can be related to free lunch or free production of outputs. 
In order to avoid such unreasonable evaluations, one can incorporate weight restric-
tions as proposed in Wu et  al. (2009). The dual of the more constrained problem 
then discloses the requisite virtual activities to feed the algorithm.

4.2  First computational results

In general, educational efficiency is important for the overall prosperity of a country. 
This is confirmed by the large number of publications, dealing with DEA in this 
field of research; for a broad overview with respect to educational efficiency see De 
Witte and López-Torres (2017).

To show the computational performance of the new method, we study 125 pub-
lic facilities, so-called Adult Education Centers (AECs), which are part of Germa-
ny’s educational landscape. The more than 900 of these institutions in Germany are 
organized into 16 associations, one association per state, which are subordinated to 
one umbrella association. Measuring the efficiency of such AECs is a complex task 
due to their non-profit status and the fact that education is not an instantenous phe-
nomeon but shows its effects over the medium term. However, for demonstration 
purposes, we consider three inputs:

• Full-time equivalents (FT) of main educational staff (permanent contract)
• Full-time equivalents (PT) of part-time educational staff (avocational staff)
• Full-time equivalents (FT) of administrative staff

and two outputs:

• Number of regular course hours
• Number of one-off events

We restrict our analysis to the 125 AECs related to the association of North Rhine-
Westphalia, the most densely populated federal state of Germany. This ensures that 
all AECs are subject to the same local regulations and the same environmental con-
ditions. Table 1 displays some descriptive statistics for the business year 2013. In 
addition, we give correlations among the considered inputs and outputs in Table 2. 
All calculations were done on a Windows 10 PC, using MATLAB R2018b (64-bit).

Table 1  Descriptive statistics 
for 125 AECs

FT educ PT educ FT admin Course hours Events

Min value 1 72 0.6 37.79 1
Max value 70.6 987 61.7 2,223.86 630
Mean 6.2 258.7 6.3608 226.58 114.5
SD 10.3 185.8 8.0142 679.1 114.2
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First, we focus on the two educational staff inputs and one output (the course 
hours) to visualize the results. Performing the DEA-based algorithm, we obtain 8 
strong defining hyperplanes in approximately 15.703 seconds. Figure  4 illustrates 
the facets which correspond to the determined strong defining hyperplanes. Figure 5 
presents the histogram of the average cross-efficiencies using (13). Here, the hori-
zontal axis shows the respective average cross-efficiencies and the ordinate axis the 
number of DMUs (Figs. 6, 7, 8).

Next, we consider the first two inputs and both outputs. In this case, the computa-
tional time to find the 37 strong defining hyperplanes increases significantly 
(440.4585 seconds). This deterioration is primarily due to an increasing number of 
(weak) efficient DMUs (from n1 = 20 to n2 = 31 ) and, consequently, an exploding 

binomial coefficient; the latter increases from I1 ∶=

(
n1
3

)
= 1140 to 

I2 ∶=

(
n2
4

)
= 31465 . This leads to the question: is there a less time-consuming 

way to obtain the same results? The next section answers this question.

Table 2  Correlations between inputs and outputs

FT educ PT educ FT admin Course hours Events 
Fig.

FT educ 1.0000 0.7336 0.7571 0.8875 0.5657
PT educ 0.7336 1.0000 0.8212 0.8171 0.6604
FT admin 0.7571 0.8212 1.0000 0.8222 0.6085
Course hours 0.8875 0.8171 0.8222 1.0000 0.4922
Events 0.5657 0.6604 0.6085 0.4922 1.0000

Fig. 4  Facets corresponding to 
all SDHs
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4.3  Speed up by combining DEA and QuickHull

Finding the convex hulls of polyhedra is a topic investigated in-depth in math-
ematics, especially in combinatorial geometry and in operations research. One 
of the most prominent procedures for generating such convex hulls is called 
beneath-and-beyond (see again Joswig 2003), working incrementally via pro-
gressively adding points to an already constructed convex hull. Here, one pow-
erful implementation is QuickHull, which is also made available by MATLAB. 

Fig. 5  Histogram of the average 
cross-efficiencies

Fig. 6  Convex hull for the AECs 
with two inputs and one output
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For further details regarding QuickHull refer to Barber et  al. (1996) or Olesen 
and Petersen (2015). The latter authors use QuickHull to study marginal rates of 
substitution of DEA facets. When using QuickHull, we obtain the indices of all 
facets of the underlying polyhedron. The next figure shows the outcome for the 
three-dimensional case as introduced in Sect. 4.2:

Now, we combine our DEA-based algorithm and QuickHull to ultimately 
obtain the same information as provided in the Sects. 4.1 and4.2. The modified 
procedure comprises the following steps: 

Step 1: Solve problem (1) for all DMUs; let Jeff be again the set of (weak) efficient 
DMUs and Jineff be the set of inefficient DMUs.

Step 2: Determine the QuickHull index matrix IQHull with IQHull rows and M + S 
columns.

Step 3: Next, delete each line of IQHull , containing indices of inefficient activities. 
Let Idel be the reduced matrix with Idel rows.

Step 4: Now, for each row i of Idel , with i = 1,… , Idel , solve 

 Again, if s−
i
> 0 or if at least one weight of the unique �∗

i
,�∗

i
 equals zero, then 

we delete line i in Idel . Eventually, Ifin is the final index matrix, containing only 
index pairs of strong defining hyperplanes.

The roots of QuickHull date back to the late 1970s; its name stems from Preparata 
and Shamos, refer to Preparata and Shamos (1985). It is proven that this algo-
rithm detects the full convex hull of a polyhedron, see e.g., Barber et al. (1996). 
From the perspective of DEA this means that we obtain all extreme points on the 
convex hull, containing efficient as well as inefficient DMUs. More importantly, 
the QuickHull algorithm does not only search for strong defining hyperplanes. 
In fact, we obtain all extreme points on the convex hull, regardless of whether 
the activities are spanning either a strong defining hyperplane or just a defining 
hyperplane. Consequently, we need the additional calculations (Steps 3 and 4) 
in the combined algorithm. Due to the latter elimination steps and the fact that 
the DEA-SDH algorithm is proven to be correct, we can say that both algorithms 
must lead to the same part of the efficient boundary.

Now comparing both procedures, we have a clear picture: the combined ver-
sion outperformes the DEA-driven algorithm significantly. The impressive num-
bers for the 125 AECs are summarized in Table 3:

(14)

s−
i
= min

∑
j

s−
ij

s.t. ��

i
�j = 1 arbitrary j ∈ I

del
i

��

i
�j + ui − ��

i
�j = 0 ∀j ∈ I

del
i

��

i
�j + ui − ��

i
�j + s+

ij
− s−

ij
= 0 ∀j

�i,�i ≧ �, s+
ij
, s−

ij
≧ 0 ∀j and ui free
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Table 3  Performance 
comparison

Case #SDH Time DEA (sec) Time Quick-
Hull/DEA 
(sec)

2 inputs, 1 output 8 15.703 0.0583
2 inputs, 2 outputs 37 440.459 0.3147
3 inputs, 2 outputs 93 7481.459 0.8614

Fig. 7  Cross-effs via model (16)
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Fig. 8  Cross-effs using CCR 
SDHs

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30



457

1 3

Efficiency evaluation in data envelopment analysis using…

Computational performance is only one important issue, but a further key ques-
tion has to be addressed: why is the present concept more dispassionate or superior 
to other approaches? The next section stresses this point.

5  Increasing objectivity via (strong) defining hyperplanes

5.1  Discussion of the neutral concept of Wang and Chin

As already mentioned in the introduction, the authors in Wang and Chin (2010) also 
develop a neutral cross-efficiency concept. In order to assess more precisely the dis-
advantages of their two-stage approach compared with our method, we provide the 
equations as given in Wang and Chin (2010). The first stage of their approach is 
based on the classical CCR model (15), see also Charnes et al. (1978); from now on, 
we change from vector to sigma notation to make the concept more transparent.

Let g∗∗
k

 be the optimal CCR-efficiency regarding (15). Next, the authors provide the 
fractional optimization problem (16).

When considering (16), we see that the authors use a Chebyshev distance in order 
to push the efficiency configuration of DMU k as much as possible. This means that 
the authors seek for a new composition of DMU k’s CCR-efficiency ( g∗∗

k
 ) regard-

less of the cross-efficiency compositions of the other DMUs. Ultimately, the authors 

(15)

max gk =

S∑
s=1

uskysk

s.t.

M∑
m=1

vmkxmk = 1

S∑
s=1

uskysj −

M∑
m=1

vmkxmj ≦ 0 ∀j

usk, vmk ≧ 0 ∀s,m

(16)

max � = min

�
u1ky1k∑M

m=1
vmkxmk

;… ;
uSkySk∑M

m=1
vmkxmk

�

s.t.

M�
m=1

vmk

� J�
j=1

xmj

�
= 1

∑S

s=1
uskysk∑M

m=1
vmkxmk

= g∗∗
k

∑S

s=1
uskysj∑M

m=1
vmkxmj

≦ 1 ∀j ≠ k

usk, vmk ≧ 0 ∀s,m
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use the optimal solutions of the above nonlinear problem to calculate the cross-effi-
ciencies of all DMUs. As a consequence, their neutral concept is mainly driven by 
DMU k; hence, this concept follows more a philosophy as in classical self-appraisal. 
Furthermore, the authors only apply their concept to CCR models because BCC for-
mulations like  in (17) can be unbounded due to the free variable uk , which limits the 
model’s usability significantly.

where g∗
k
 is the optimal efficiency of BCC problem (2).

A further problem is that their model always produces efficiency scores even 
if the technology is ill-conditioned, as discussed in Sect.  3 or in Olesen and 
Petersen (1996). In such a degenerated case, the optimal weight vectors often 
or always consist of at least one zero weight. From an economic point of view, 
zero weights pose a problem: such a weight implies that the corresponding input 
or output is unessential. Our approach informs the analyst if the technology is 
ill-conditioned, i.e., if we have no or only a few (strong) defining hyperplanes. 
Furthermore, our approach does not favor any specific weight composition; here, 
we gather all essential information of the production possibility set. Addition-
ally, our method can be applied to different technologies (like constant, non-
decreasing or non-increasing returns to scale) by adding virtual activities in the 
QuickHull input data or simply via changing the models in the DEA-based pro-
cedure proposed in Sect. 4.1. For the CCR case, we give the following remark:

Remark 2 As is well known, using a CCR model means to envelop all decision-mak-
ing units in a convex cone. Consequently, every CCR SDH consists of M + S − 1 
efficient DMUs plus the zero point. To realize this, we can add the zero point to our 
data matrix and then passing it on to the DEA-based QuickHull algorithm (Step 2 of 
our combined procedure).

The next section studies the results of different approaches to underpin our 
statements.

(17)

max � = min

�
u1ky1k∑M

m=1
vmkxmk

;… ;
uSkySk∑M

m=1
vmkxmk

�

s.t.

M�
m=1

vmk

� J�
j=1

xmj

�
= 1

∑S

s=1
uskysk + uk∑M

m=1
vmkxmk

= g∗
k

∑S

s=1
uskysj + uk∑M

m=1
vmkxmj

≦ 1 ∀j ≠ k

usk, vmk ≧ 0 ∀s,m and uk free;
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5.2  Comparative results and reasoning

Here, we compare the results between the Wang and Chin approach and the new 
cross-efficiency method, studying the 125 AECs with three inputs and two outputs 
in a CCR technology. In doing this, we make use of Remark 2.

The following two figures (Figs. 7 and 8) show the average cross-efficiencies for 
the neutral model (16) of Wang and Chin and the CCR SDH approach; where again 
the horizontal axis displays the average cross-efficiencies and the ordinate axis the 
number of DMUs.

The two distributions look pretty similar: they are both unimodal and approxi-
mately symmetric, the skewness of the left distribution equals 0.3788 and the skew-
ness of the right is 0.4218. Interestingly, the kurtosis of each distribution is close to 
3, which means that the shapes are nearly normal; the kurtosis of the left distribu-
tion equals 2.7797, and for the right one it is 2.9191. The average and maximum 
cross-efficiency of the CCR SDH model are higher (0.5827, 0.9475) than those of 
the approach of Wang and Chin (0.5771, 0.9167).

When taking a closer look at the underlying weight systems, then we recognize 
that the production possibility set is enveloped by 28 strong defining hyperplanes. 
Applying the approach of Wang and Chin, we obtain 125 weight systems to deter-
mine all cross-efficiencies. However, from these 125 weight systems, only 64 weight 
systems are unique and 34 of them are non-degenerated weight systems. Surpris-
ingly, we get at least 24 of the 28 SDHs, but on the other hand, we neglect the infor-
mation of 4 SDHs, i.e., 4 weight systems, which also contain important information 
of the production possibility set. To say it more clearly: In our context, the cross-
efficiency assessments via the neutral model of Wang and Chin are based on 24 out 
of the 28 SDHs. This means that the weight systems are either orthogonal to these 
24 SDHs or only touch one of these facets. However, the remaining 4 SDHs are 
totally disregarded when applying the model of Wang and Chin.

Now, analyzing the 125 AECs in the presence of a BCC model, we obtain the 
following average cross-efficiency distributions, where the horizontal axis again 
shows the average cross-efficiencies and the ordinate axis the number of DMUs. 
Here, Fig. 9 illustrates the average cross-efficiencies for the new approach, apply-
ing 93 strong defining hyperplanes; Fig. 10 provides the benevolent average cross-
efficiencies, maximizing Eq. (4).

Unsurprisingly, a comparison of the two figures shows that the benevolent 
method leads to a more dense distribution and higher averages than the new method. 
The overall averages illustrate this point even more clearly: in the BCC SDH case, 
we obtain 0.5214; in the benevolent case, we have 0.5608. Furthermore, the his-
togram  in Fig. 10 exhibits a right-skewed form, which means that there are more 
AECs (namely 73) with an average cross-efficiency below of 0.5 than in the benevo-
lent case (only 45 AECs).

If we try to compute (17), two of the 125 optimization problems are unbounded 
and 45 weight systems lead to negative cross-efficiencies. We eliminate these nega-
tive cross-efficiencies adding ��

k
�j + uk ≧ 0 ∀j in (2) and (17), see Wu et al. (2009); 

with these additional restrictions (17) is always bounded. After eliminating such 45 
weight systems, we obtain the cross-efficiency histogram illustrated in Fig. 11. As 
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mentioned above, the BCC production possibility set comprises 93 SDHs; however, 
model (17) just uses 17 out of the 93 SDHs to evaluate all DMUs, which means that 
the model (17) gathers only little information of the whole technology in this par-
ticular case.

It is the first time that Adult Education Centers undergo a DEA-driven efficiency 
analysis. From a global perspective it becomes apparent that major parts of the 
125 AECs are inefficient—no matter what model we prefer. On average, the sav-
ings potential with regard to both the administration and the teaching staff is approx. 

Fig. 9  Cross-effs using BCC 
SDHs
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40%. Unfortunately, such a dissipation is unacceptable for a country because the ser-
vices of AECs are financed by more than 60% by public and local authorities. In 
particular, this demonstrates that measuring such educational efficiency is an impor-
tant task, but often we do not know the correct underlying technology. From a tech-
nical perspective, still, it is an open question whether the new procedure leads to 
more reasonable and reliable estimations than the classical methods. More on that in 
the next section.

5.3  Reasonable efficiency estimations via SDHs: a simulation study

In order to answer the question, which has been raised previously, we perform a 
simulation study applying bootstrapping à la Simar and Wilson; for more details on 
this refer to Simar and Wilson (1998). Here, we assume a function of type Cobb-
Douglas as a benchmark to calculating the true efficiencies; that is, first, we solve

where ỹsj, x̃mj are the logarithmized outputs and inputs, �, � , �m are the functional 
parameters to be estimated, and �j are respective error terms, which are supposed to 
be independent normally distributed. Next, we apply an affine transformation in 
order to obtain an efficiency frontier, as done in corrected ordinary least squares 

(18)

min

J∑
j=1

𝜖2
j

s.t. ỹ1j − 𝛼 −

M∑
m=1

𝛽mx̃mj + 𝛾 ỹ2j − 𝜖j = 0 ∀j

𝛾 , 𝛽m ≧ 0 ∀m, 𝛼 and 𝜖j free in sign ∀j;

Fig. 11  Cross-effs via the BCC 
model (17)
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(COLS); cf. e.g., Greene (2008) and Richmond (1974). Thus, let �∗, �∗, �∗
m
, �∗

j
∀m, j 

be the optimal solution regarding (18). Then the efficiency equation for each DMU 
is given by ỹ1j = �̂� +

∑M

m=1
𝛽mx̃mj − �̂� ỹ2j + 𝜖j , with �̂� ∶= 𝛼∗ +maxj{𝜖

∗
j
}, �̂� ∶= 𝛾∗,

𝛽
m
∶= 𝛽∗

m
, and 𝜖j ∶= 𝜖∗

j
−maxj{𝜖

∗
j
} ∀m, j ; now, the true efficiencies are simply 

determined via ĝj = e−𝜖j ∀j.
Due to the affine transformation and the fact that the Cobb-Douglas specification 

(18) leads to an R squared of nearly 0.8712, we check the methods assuming that a 
BCC technology better approximates the underlying functional relationship than the 
CCR case does. The simulation procedure now comprises the following steps: 

Step 1: The simulation is based on N = 7 scenarios; in each scenario ( n = 1, … , N ), 
we generate different numbers of virtual activities via bootstrapping, namely 
J1 = 100, J2 = 200, J3 = 300, J4 = 400, J5 = 500, J6 = 600, J7 = 700.

Step 2: Each scenario of the simulation consists of 1000 iterations. In doing so, we 
draw Jn activities at random from the set {(�j , �j)} and from the set of efficien-
cies {ĝj} in each iteration. To construct a virtual activitiy, we fix the outputs of 
the randomly drawn activitiy but divide respective inputs by a randomly drawn 
efficiency. Consequently, in the latter scenario, for example, we generate 1000 
times 700 virtual activities.

Step 3: Next, in each iteration, we estimate the true efficiencies of all virtual activi-
ties using the translated coefficients of (18). Additionally, we compute the effi-
ciency scores of the virtual activities applying the classical BCC model (2), the 
benevolent version of (4), and the new SDH approach; we refrain from solving 
(17) due to the flaws revealed in Sect. 5.1.

Step 4: Ultimately, we calculate the euclidean distances between the true efficiencies 
and the DEA-based efficiency scores. In each scenario and iteration, we get Jn 
true efficiencies and Jn efficiency estimates per model; such vectors are the basis 
for calculating distances over all 1000 iterations.

The relative performance between the methods are summarized in Table 4.

The second column displays the relative performance of the SDH method versus 
the BCC model. In the first scenario comprising J1 = 100 virtual activities, the SDH 

Table 4  Relative performance 
measures of the simulation

Scenarios SDH vs. BCC SDH vs. 
benev. 
cross

J
1

= 100 0.869 0.548
J
2

= 200 0.844 0.607
J
3

= 300 0.822 0.579
J
4

= 400 0.819 0.566
J
5

= 500 0.825 0.593
J
6

= 600 0.828 0.533
J
7

= 700 0.831 0.583
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approach better approximates the true efficiencies than the BCC model in 86.9% of 
the 1000 iterations; this implies that the SDH method leads to smaller distances in 
869 iterations. The last column presents the relative outperformance (e.g., 54.8% 
in the first scenario) of SDH over the benevolent cross-evaluation. Obviously, SDH 
is superior to the benevolent cross-efficiency approach; and this outperformance is 
pretty stable over all seven scenarios. Interestingly, based on our simulation, we can 
conclude that one should prefer the SDH-based cross-efficiency analysis.

In general, one should use as much information as possible to assess profit or 
non-profit entities. This is important, inter alia, in order to mitigate the influence 
of outlier institutions. Choosing the right model is difficult due to the fact that it 
depends on the corresponding economic situation, which is subject to many uncer-
tainties. As consequence, if the economic situation is rather ambiguous, one should 
prefer the SDH concept proposed for the following reasons:

• It is a more dispassionate concept because choosing an optimization philosophy 
or objective function as shown in (3), (4) or (16) becomes obsolete.

• It processes and embeds in general more information of the production possibil-
ity set than provided by (3), (4) or (16).

• It immediately reveals deficiencies of the underlying technology.
• Due to the second bullet point, the new SDH method can lead to more reasonable 

efficiency estimations, as demonstrated in the simulation study.

6  Conclusions and the road ahead

In this paper, we show how one can determine all strong defining hyperplanes 
(SDHs) in data envelopment analysis (DEA) using only DEA models. However, the 
computational time of this approach is rather poor and can be radically accelerated 
by combining DEA with a well-known beneath-and-beyond implementation called 
QuickHull. The strong defining hyperplanes are then applied to calculate the average 
cross-efficiencies and, hence, to determine more objective efficiency estimates than 
proposed by classical cross-efficiency evaluation frameworks. However, the question 
whether the new estimates are more reasonable and reliable from an economic per-
spective than those of classical procedures might be an interesting issue for empiri-
cal research. A first step in this direction has been taken applying a bootstrapping-
based simulation. In this study, the new method significantly outperformed the 
efficiency approximations of the classical methods.
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