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Abstract This paper suggests a robust asset–liability management framework for
investment products with guarantees, such as guaranteed investment contracts and
equity-linked notes. Stochastic programming and robust optimization approaches are
introduced to deal with data uncertainty in asset returns and interest rates. The statisti-
cal properties of the probability distributions of uncertain parameters are incorporated
in the model through appropriately selected symmetric and asymmetric uncertainty
sets. Practical data-driven approaches for implementation of the robust models are
also discussed. Numerical results using generated and real market data are presented
to illustrate the performance of the robust asset–liability management strategies.
The robust investment strategies show better performance in unfavorable market
regimes than traditional stochastic programming approaches. The effectiveness of
robust investment strategies can be improved by calibrating carefully the shape and
the size of the uncertainty sets for asset returns.
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1 Introduction

Investment products with guarantees offer policyholders a guaranteed stream of pay-
ments and a portion of the potential gains on an underlying asset over a fixed period
of time. Examples of such products include Guaranteed Investment Contracts (GICs),
issued by insurance companies, and Equity-Linked Notes (ELNs), issued by invest-
ment banks. Investment products with guarantees provide a smoothing of portfolio
returns to the policy (note) holders, so that the latter do not experience the full volatil-
ity of the underlying portfolio (Consiglio et al. 2006).

The basic structure of a typical GIC is as follows. The investor pays the “principal”
upfront, and then receives a guaranteed rate of return over the life of the contract (Stiefel
1984). The last payment includes the value of the principal. Guaranteed investment
contracts are popular investment vehicles—AIG notoriously used US$9 billion of
the government bailout after the crisis in the late 2000s to pay out on guaranteed
investment contracts it had sold to investors (Walsh 2008). ELNs have similar terms
to GICs. However, the payment stream is linked to the value of an equity security such
as an equity index or a portfolio of assets. A portion of the returns generated by the
equity index or the portfolio of assets over a specified period is paid to the policyholder
(Ramaswami et al. 2001; Miltersen and Persson 2003; Toy and Ryan 2000). The
principal is typically guaranteed, and hence the investor obtains fixed-income-like
principal protection of his investment with an equity market upside exposure (Hardy
2003). At maturity, the guaranteed return and added bonuses along with the original
capital invested are returned to the noteholder.

Firms issuing investment products with guarantees face an asset–liability man-
agement (ALM) problem. On the one hand, they need to invest the available capital
(assets) collected from the principal payments profitably. On the other hand, they need
to manage their obligations (liabilities) to policy holders. Insurance companies issuing
GICs typically take a different approach from banks issuing ELNs. The former pool
the premiums from the policy holders and invest them in a portfolio with a substantial
equity component (see Consiglio et al. 2006) or a fixed income component (see Chap-
ter 15 in Pachamanova and Fabozzi 2016). The latter typically hedge their exposure
by purchasing exotic options or combinations of financial derivatives.

In this paper, we focus on the particular problem faced by an issuer of an invest-
ment product with guarantees that would like to determine the optimal structure of
an underlying equity portfolio so as to maximize net portfolio return while meet-
ing liabilities. This problem has not been addressed much in the literature. At the
same time, a substantial amount of research has been directed at solving the pric-
ing problem for investment contracts with guarantees—namely, determining the best
guaranteed rate of return and optimal values for other contract features. In solving
the pricing problem, the underlying portfolio is assumed to be given exogenously
rather than structured optimally. For example, going as far back as the 1970s, Brennan
and Schwartz (1976) determine the equilibrium pricing of equity-linked life insur-
ance policies with an asset value guarantee. Brennan and Schwartz (1979) discuss
investment strategies for equity-linked life insurance policies with an asset value
guarantee. Mallier and Alobaidi (2002) develop a Vasicek model to price equity-
linked notes where the holder receives both interest payments and payments linked to
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the performance of an equity index. Bacinello (2003) studies the problem of pric-
ing a participating policy sold in the Italian market using guaranteed investment
contracts. Nietert (2003) investigates option based portfolio insurance and model
uncertainty. As shown by Consiglio et al. (2001), however, firms can substantially
increase their profits and offer higher guarantees by investing a higher proportion of
their assets in an optimally structured equity portfolio. Consiglio et al. (2006) apply
stochastic programming to find the optimal structure of the portfolio underlying an
insurance company’s fund. Consiglio et al. (2008) discuss various issues with asset
and liability modeling for participating policies with guarantees. Valle et al. (2014)
develop a mixed integer optimization model for a portfolio of assets that is designed
to deliver a constant return per time period irrespective of how the underlying market
performs.

We propose a robust optimization approach to structuring the optimal portfolio
for investment products with guarantees. The approach addresses two issues with
previously suggested computational approaches to managing the underlying portfolio
for GICs and ELNs: tractability and representation of the underlying uncertainties.
Whilewe are concernedwith optimal allocation, the proposed approach can potentially
have applications in the pricing of such contracts as well. As wementioned, the current
literature on pricing assumes that the structure of the portfolio is given exogenously.
Because this approach is computationally efficient and tractable, acceptable values
for the parameters of the contract can be derived by solving the optimal structuring
problemmultiple times to determine the parameters that will result in the highest profit
for the issuer of the contract.

Robust optimization was first introduced by Ben-Tal and Nemirovski (1998) and
El Ghaoui and Lebret (1997). Since then, it has been applied for solving various
practical problems in different areas. The robust optimization approach assumes that
the uncertain parameters in an optimization problem belong to uncertainty sets that
can be constructed from the probability distributions of uncertain factors. A robust
counterpart of the original problem requires that the optimal solution to the opti-
mization problem remain feasible for all realizations of the stochastic data within the
pre-specified uncertainty sets, including the worst-case values if they can be found.
Depending on the specification of the uncertainty sets, the robust counterparts of the
original optimization problems can be formulated as tractable optimization problems
with no random parameters. For further information on robust optimization and recent
developments, the reader is referred to Ben-Tal et al. (2009).

Robust optimization applications in finance have been primarily in asset man-
agement (for a comprehensive overview, see Fabozzi et al. 2007). The robust
mean-variance portfolio selection framework has been widely studied; see, for
instance, Goldfarb and Iyengar (2003), Gulpinar and Rustem (2007), Oguzsoy and
Guven (2007), andSoyster andMurphy (2013).Robust investment strategies in amulti-
period setting are studied in Ben-Tal et al. (2000) and Bertsimas and Pachamanova
(2008). Pinar (2007) studies a robust scenario-optimization-based downside risk mea-
sure for multi-period portfolio selection. Pae and Sabbaghi (2014) consider log-robust
portfolios after transaction costs. Gulpinar and Pachamanova (2013) develop a robust
ALMmodel for a pension fundwith time-varying asset returns using ellipsoidal uncer-
tainty sets mapped from a time series model for asset returns. The ALM model for a
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typical pension fund involves contributions from wages over the life of the contract,
and the liabilities are paid from the fund.

This paper makes three main contributions to the literature. First, we show how the
multi-period allocation problem for equity portfolios underlying investment products
with guarantees can be cast in a robust multi-period optimization framework. Sec-
ond, we are able to incorporate asymmetries in the distribution of asset returns in this
framework. The latter is important for practical implementation because there is sub-
stantial empirical evidence that asset returns are not symmetrically distributed (see, for
example, the discussion in Natarajan et al. 2008). Third, we suggest a scenario-based
data-driven approach for estimating the input parameters in the robust formulations.
We design numerical experiments to illustrate the performance of the robust ALM
models under different assumptions on the behavior of the underlying uncertainties.
We also compare the performance of robustALM investment strategieswith the perfor-
mance of expected value optimization using generated and real market data. By taking
a worst-case view, the robust optimization approach to asset-liability management of
investment products with guarantees allows for incorporating newways to analyze the
performance of investment policies that is even more important in the aftermath of
the financial crisis of 2007–2008. At the same time, computational tractability and the
ability to incorporate the asymmetry in asset returns in the models make robust opti-
mization formulations to multi-period asset management of the underlying portfolios
for investment products with guarantees an attractive and useful tool in the investment
manager’s toolbox.

The paper is organized as follows. In Sect. 2, we introduce the ALM problem
for investment products with guarantees. Section 3 presents a scenario-based sto-
chastic programming model. Robust formulations of ALM models using symmetric
and asymmetric uncertainty sets are developed in Sect. 4. Practical suggestions on
implementation and input estimation from data are provided in Sect. 5. Results from
computational experiments are presented inSect. 6. Section 7 summarizes our findings.

Notation: We use tilde (∗̃) to denote randomness; e.g., z̃ denotes random variable z.
Boldface is used to denote vectors; boldface and capital letters are used to denote
matrices. For example, a is a vector and A is a matrix. A description of the notation
used in the paper is provided in Table 1.

2 Problem statement

We are concerned with the following ALM problem for a company that issues invest-
ment products with guarantees. The company has certain obligations to policyholders
and the liabilities of the company are determined by the underlying investment prod-
ucts. The holder of a policy gets a fixed guaranteed return and, in addition, a variable
reversionary bonus. A bonus allows the policyholder to participate in the investment
returns of the company. The issuer of the product needs to ensure that the asset allo-
cation is capable of generating a surplus wealth at the end of the planning horizon to
cover the liabilities.

We assume that the investment portfolio is constructed from M risky assets over a
planning horizon T . Securities are denoted by m = 1, 2, . . . , M , and m = 0 identifies
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Table 1 Description of notation

Parameters

ψ Target funding (asset/liability) ratio

cb, cs Transaction costs for buying and selling, respectively

lt Amount (liabilities) paid out at time t

ḡ Guaranteed rate of return per period

Ct Coupon payment at t

P Capital (principal) paid

Decision variables

hm
t Holding in asset m at time t

sm
t Amount sold of asset m at time t

bm
t Amount bought of asset m at time t

Random variables

r̃m
t Return on asset m between time t − 1 and t

L̃ t Present value of the total amount of future outstanding liabilities at time t

R̃m
t Cumulative gross return on asset m at t

the risk-free asset.After an initial investment at t = 0, the portfoliomay be restructured
at discrete times t = 1, . . . , T − 1 and redeemed at the end of the investment horizon
(at t = T ). Let hm

t , sm
t and bm

t denote decision variables representing the amount of
asset m to be held, sold and bought at time t , respectively.

The ALM formulation contains two sets of uncertain parameters: the asset returns
r̃ t (including the return on the riskless asset r̃0t ) and the value of the future liabilities
L̃ t at each point in time t . The latter depends on the realized changes in interest rates
between time 0 and time t .

Modeling liabilities: Let ḡ denote the guaranteed minimum rate of return and P
be the principal. The bonus payment is determined according to a participation rate
κ , which indicates the percentage of the portfolio return paid to policyholders. The
participation rate is determined as a percentage of appreciation of the underlying equity
that the policyholder receives. In addition to the guaranteed minimum rate of return,
we consider a coupon payment Ct at each time period t . The issuer aims to pay their
liabilities at each time period in the future. The future liabilities at t consist of the
coupon payment as well as the fixed rate of the capital payment and are calculated as

lt = Ct + ḡ P, t = 1, . . . , T − 1.

The issuer’s liability at the final time period under a no-bonus scheme is
lT = CT + ḡ P + P .

The bonus is paid atmaturity as a percentage of the excess returns over the promised
rate (if the terminal wealth of the portfolio exceeds the guaranteed principal P). At
maturity, the guaranteed return and added bonuses along with the original capital
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invested are returned to the holder of the product. Therefore, the liability of the com-
pany at maturity, lT , is calculated as

lT = max

{
κ

(
M∑

m=1

hm
T + h0

T − P

)
, ḡ P

}
+ P

where κ is a constant. When κ = 0, as is the case with classical GICs, the liability at
maturity is obtained as lT = P + ḡ P . In any case, one can think of the true liability to
the company at time T as lT = P + ḡ P . The added bonuses κ(

∑M
m=1 hm

T + h0
T − P)

are paid out to policy holders only if the portfolio performs well. The bonuses do not
need to be taken into consideration for the purposes of determining a safety margin
when planning on meeting future liabilities.

The liabilities lt to be paid out at each stage t are therefore known at time 0; however,
the total present value at time t of all future liabilities between t and T is unknown
because changes in the discount rates over time affect the present value of the cash
flows. The present value of the total amount of future outstanding liabilities at time t is

L̃ t =
T∑

j=t+1

l j

(1 + r̃0t+1) × · · · × (1 + r̃0j )
, t = 1, . . . , T − 1.

Asset–liability ratio: The asset–liability ratio, also called the funding ratio, is defined
as the ratio of assets to liabilities. Firms typically have internal funding ratio constraints
that inject a safety margin to enable the meeting of future liabilities. The funding ratio
constraint can be formulated as

M∑
m=0

hm
t ≥ ψ L̃ t , t = 1, . . . , T − 1

where ψ denotes the target funding ratio, typically around 0.9 or 1. Substituting the
value of future liabilities at time t , the funding ratio constraint becomes

M∑
m=0

hm
t ≥ ψ

⎛
⎝ T∑

j=t+1

C j + ḡ P

(1 + r̃0t+1) × · · · × (1 + r̃0j )
+ P

(1 + r̃0t+1) × · · · × (1 + r̃0T )

⎞
⎠ ,

t = 1, . . . , T − 1. (1)

Asset and cash holdings: The holdings in each asset m at time t are computed in terms
of the holdings and gains from trading in the previous time period t − 1 as well as the
trading at the current time period t as follows:

hm
t = (1 + r̃m

t )hm
t−1 − sm

t + bm
t , t = 1, . . . , T, m = 1, . . . , M. (2)

At time t = 0, the initial holding of risky asset m is hm
0 ≥ 0, and h0

0 = P denotes
the cash holdings. The amount of cash at t consists of value of investment at t − 1
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plus cash received from position changes and deposits (or bonus) payments minus the
current liabilities paid out at time t ,

h0
t = (1 + r̃0t )h0

t−1 +
M∑

m=1

(1 − cs)s
m
t −

M∑
m=1

(1 + cb)b
m
t − lt , t = 1, . . . , T . (3)

We assume that there is no borrowing and short sales at any time period. The holdings
of asset m at time t are thus restricted to be nonnegative:

hm
t ≥ 0, t = 1, . . . , T, m = 0, . . . , M. (4)

There is no transaction at the final time period t = T (sm
T = bm

T = 0) as well as at
initial time period t = 0 (sm

0 = bm
0 = 0). For transactions at intermediate time periods

1 ≤ t ≤ T − 1, the decision variables corresponding to the amount of asset m to be
bought or sold cannot be negative:

sm
t ≥ 0, bm

t ≥ 0, t = 1, . . . , T − 1, m = 1, . . . , M. (5)

The portfolio profit in terms of possible bonus payment at the end of investment
horizon can be calculated as the total wealth gained from each asset minus the liability
including the bonus payment at the final time period T .

The stochastic ALM model for investment products with guarantees maximizes
the expected net profit at the end of investment horizon subject to the funding ratio,
balance and non-negativity constraints, and can be formulated as follows:

(Pstoc) :

max
h,b,s

E

[
M∑

m=0

hm
T − max

{
κ

(
M∑

m=0

hm
T − P

)
, ḡ P

}
− P

]

s.t.
M∑

m=1

hm
t + h0

t ≥ ψ

⎛
⎝ T∑

j=t+1

C j + ḡ P

(1 + r̃0t+1) × · · · × (1 + r̃0j )
+ P

(1 + r̃0t+1) × · · · × (1 + r̃0T )

⎞
⎠,

t = 1, . . . , T − 1

hm
t = (1 + r̃m

t )hm
t−1 − sm

t + bm
t , t = 1, . . . , T, m = 1, . . . , M

h0
t = (1 + r̃0t )h0

t−1 +
M∑

m=1

(1 − cs)s
m
t −

M∑
m=1

(1 + cb)b
m
t − (Ct + ḡ P), t = 1, . . . , T

hm
t ≥ 0, t = 1, . . . , T, m = 0, . . . , M

sm
t ≥ 0, bm

t ≥ 0, t = 1, . . . , T − 1, m = 1, . . . , M.

The general formulation Pstoc can be thought of as a formulation that represents the
typical optimal portfolio structure problem for ELNs. When κ = 0 and the coupon
payments are fixed as Ct = 0 for t = 1, . . . , T , one obtains the ALM formulation for
a standard GIC without bonus provisions.
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1014 N. Gulpinar et al.

Next, we present stochastic programming and robust optimization formulations of
the ALM problem for investment products with guarantees. We contrast those formu-
lations with traditional expected value optimization, and compare all three approaches
in the computational experiments in Sect. 6.

3 Scenario-based asset–liability management model

Stochastic programming models describe underlying uncertainties in optimization
problems in view of expected value decision criteria. It assumes that the uncer-
tain parameters in the optimization problems follow a known distribution. There
are different methods to deal with uncertain data such as scenario-based stochastic
programming and chance-constrained optimization. A scenario-based stochastic pro-
gramming approach takes into account a finite number of realizations of the random
variables and specifies the optimal decisions in view of these scenarios (Dantzig and
Infanger 1993). Chance-constrained stochastic programming involves probabilistic
constraints to control risk in decision making under uncertainty.

There is an extensive literature on allocation strategies for ALM based on sto-
chastic programming techniques that optimize investment strategies over a set of
generated scenarios for future asset returns and liabilities (see, for example, Klaassen
1998; Ziemba andMulvey 1998; Kouwenberg 2001; Gondzio and Kouwenberg 2001;
Consigli and Dempster 1998; Boender et al. 2005; Escudero et al. 2009; Ferstl and
Weissensteiner 2011).Gerstner et al. (2008) propose a simulation approach to theALM
problem of life insurance products in particular. As we mentioned earlier, Consiglio
et al. (2006) develop a scenario-based model for insurance products with guarantees.

Let us consider a finite number of realizations, ωt = 1, . . . , St , of uncertain para-
meters r̃m

t for m = 0, . . . , M at time t = 1, . . . , T . The probability �ωT of a scenario
ωT ∈ ST at time T is called path probability and computed as multiplication of prob-
abilities of scenarios arising on the path from t = 0 to t = T . The scenarios do not
anticipate the future. In other words, all possible scenarios rm

ωt ′ for t ′ = 1, . . . , t − 1
are known by the investor at time t .

An expected value optimization (Paverage) would inject average values r̂m
t of the

random variables at time t into theALMmodel. Then the underlying problem is solved
as a deterministic problem.

More generally, a scenario-basedALM stochastic optimization problem optimizing
the expected value of the objective function also becomes a deterministic model in
view of the predefined scenarios for rm

ωt
and can be stated as follows:

(Pscen) :

max
h,b,s

∑
ωT ∈ST

�ωT

[
M∑

m=0

hm
ωT

− max

{
κ

(
M∑

m=0

hm
ωT

− P

)
, ḡ P

}
− P

]

s.t.
M∑

m=0

hm
ωt

≥ ψ

⎛
⎝ T∑

j=t+1

C j + ḡ P

(1 + r0ωt+1
) × · · · × (1 + r0ω j

)
+ P

(1 + r0ωt+1
) × · · · × (1 + r0ωT

)

⎞
⎠,

ωt ∈ St , t = 1, . . . , T − 1
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hm
ωt

= (1 + rm
ωt

)hm
p(ωt )

− sm
ωt

+ bm
ωt

, m = 1, . . . , M, ωt ∈ St , t = 1, . . . , T

h0
ωt

= (1 + r̃0ωt
)h0

p(ωt )
+

M∑
m=1

(1 − cs)s
m
ωt

−
M∑

m=1

(1 + cb)b
m
ωt

− (Ct + ḡ P),

ωt ∈ St , t = 1, . . . , T

hm
ωt

≥ 0, ωt ∈ St , t = 1, . . . , T, m = 0, . . . , M

sm
ωt

≥ 0, bm
ωt

≥ 0, ωt ∈ St , t = 1, . . . , T − 1, m = 1, . . . , M

where p(ωt ) ∈ St−1 denotes the parent node of scenario ωt ∈ St . Notice that in
the asset-funding ratio constraints, the liabilities at each time period are discounted
through a path between the parent node p(ωt ) and ω j for j = t + 1, ..., T of the
scenario tree.

The problem of finding optimal ALM policies using scenario-based optimization
can be computationally challenging to implement in practice. While computational
advances and smart implementation can make the problem manageable (for example,
IBM’s Algorithmics software splits ALM scenario calculations so that some parts of
them can be pre-calculated and the calculations are done in the cloud), the performance
of scenario-based ALM models heavily depends on the number of scenarios, and
scenario generation inherently involves estimation errors (see, for instance Gulpinar
et al. 2004).

It is worthwhile to mention that there are alternative stochastic optimization tech-
niques based on dynamic programming algorithms that require specific modelling
skills using states and actions that correspond to random paths and decisions in the
multi-stage stochastic programming setting. However, these models also suffer from
the curse of dimensionality in the state and action spaces. To deal with this, simulation-
based dynamic programming approaches have been developed to solve the underlying
problem approximately using forward dynamic programming algorithms. They have
also been successfully applied to real life applications. The reader is referred to Powell
(2011) for an overview and various applications of approximate dynamic program-
ming.

4 Robust ALM for investment products with guarantees

Stochastic programming enables the calculation of optimal policies under complex
conditions. However, as mentioned in the previous section, there are two main issues
with its application. One is the curse of dimensionality, which affects the computa-
tional tractability of the optimization problem formulations. The other is the difficulty
of knowing the exact distributions of the uncertainties in the optimization model.
To address these issues, in this section we introduce a robust approach to ALM for
investment products with guarantees and derive the robust counterparts of the ALM
problemwith symmetric (ellipsoidal) and asymmetric uncertainty sets. The latter were
suggested by Chen et al. (2007); see also Natarajan et al. (2008). The results of compu-
tational experiments designed to evaluate the performance of the robust formulations
derived here are presented in Sect. 6.
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The robust counterpart of the problem (Pstoc) is a formulation in which every
constraint with uncertain coefficients is replaced with a constraint requiring that the
inequality is satisfied for all values of the uncertain coefficients within pre-specified
uncertainty sets. In particular, it is satisfied for the worst-case value of the expression
in the constraint over the possible values for the uncertain coefficients. We will show
how the robust counterpart is formulated in detail but first, we make a convenient
change of variables.

We adopt a variable transformation suggested by Ben-Tal et al. (2000) and use the
cumulative returns. Representing the decision variables in terms of cumulative returns
reduces the number of constraints in which the uncertain returns appear in the ALM
problem (Pstoc). For example, the uncertain returns currently appear in all balance
constraints. Introducing cumulative returns, we have a particular uncertain parameter
in only one as opposed to multiple constraints. This helps us not only to avoid cross-
constraint correlations of uncertain parameters, which are more difficult to model, but
also to reduce the conservativeness of the robust counterpart solution.

Let us define cumulative gross returns, R̃m
t for asset m = 1, . . . , M at time

t = 1, . . . , T as

Rm
0 = 1, R̃m1 = (1 + r̃m

1 ), . . . , R̃m
t = (1 + r̃m

1 )(1 + r̃m
2 ) · · · (1 + r̃m

t ).

Introducing new decision variables for assets m = 1, . . . , M and time periods
t = 1, . . . , T ,

ξm
t = hm

t

R̃m
t

, ηm
t = sm

t

R̃m
t

, ζm
t = bm

t

R̃m
t

,

and a free variable ν for the objective function, we can rewrite the ALM problem
(Pstoc) for investment products with guarantees in terms of cumulative returns as
follows:

(Pstoc(R)) :
max
ξ,η,ζ

R̃
′
T ξ T + R̃0

T ξ0T − max
{
κ

(
R̃

′
T ξ T + R̃0

T ξ0T − P
)

, ḡ P
}

− P

s.t.
M∑

m=1

ξm
t R̃m

t + R̃0
t ξ0t ≥ ψ

⎛
⎝ T∑

j=t+1

(
C j + ḡ P

)
R̃0

t

R̃0
j

+ P R̃0
t

R̃0
T

⎞
⎠ , t = 1, . . . , T − 1

ξm
t = ξm

t−1 − ηm
t + ζm

t , t = 1, . . . , T, m = 1, . . . , M

ξ0t = ξ0t−1 +
M∑

m=1

(1− cs)
R̃m

t

R̃0
t

ηm
t −

M∑
m=1

(1+cb)
R̃m

t

R̃0
t

ζm
t − Ct

R̃0
t

− ḡ P

R̃0
t

, t = 1, . . . , T

ξm
t ≥ 0, t = 1, . . . , T, m = 0, . . . , M

ηm
t ≥ 0, ζm

t ≥ 0, t = 1, . . . , T − 1, m = 1, . . . , M
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Notice that after the transformation of the decision variables, the uncertain (cumu-
lative) returns appear only in the cash constraints, as opposed to all balance constraints.
They also appear in the objective function and the funding ratio constraint, as they did
before the transformation.

To formulate the robust counterpart of problem (Pstoc(R)), we first need to define
appropriate uncertainty sets for the uncertain parameters in the problem, which are
all terms involving the asset returns R̃m

t and the risk-free returns R̃0
t . We then find

the robust counterpart of the original optimization problem, which is an optimization
problem in which all constraints with uncertain coefficients are required to be satisfied
for any value of the uncertain coefficients in the specified uncertainty sets.

When solving optimization problems with uncertain parameters using the robust
optimization approach, the size of the specified uncertainty set is often related to guar-
antees on the probability that the constraint with uncertain coefficients will not be
violated (see, for example, Bertsimas et al. 2004). The shape of the uncertainty set
defines a risk measure on the constraints with uncertain coefficients (Natarajan et al.
2009). In practice, the shape is selected to reflect themodeler’s knowledge of the proba-
bility distributions of the uncertain parameters, keeping inmind that, ideally, the robust
counterpart problem should be efficiently solvable if the uncertainties are assumed to
belong to that uncertainty set. The ellipsoidal uncertainty set, for example, defines
a standard-deviation-like risk measure on the constraint with uncertain parameters,
and in the case of linear optimization, results in a robust counterpart to the original
problem that is a second order cone problem—a tractable optimization problem.

Next, we derive the robust counterparts of the ALMmodel for investment products
with guarantees using symmetric and asymmetric uncertainty sets. The symmetric
and asymmetric shapes of the uncertainty sets should allow us to map the uncertainty
sets better to uncertain parameters with symmetric and skewed distributions. In order
to simplify the problem statement, we use the following notation for the vectors of
random variables in the objective function, the balance constraints, and the funding
ratio constraints, respectively:

α̃ = (R̃0
T , . . . , R̃M

T ) ∈ �M+1,

ρ̃t =
(

(1 − cs)
R̃1

t

R̃0
t

, . . . , (1 − cs)
R̃M

t

R̃0
t

,−(1 + cb)
R̃1

t

R̃0
t

, . . . ,−(1 + cb)
R̃M

t

R̃0
t

,

− (Ct + ḡ P)
1

R̃0
t

)
∈ �(2M+1),

μ̃t =
(

R̃0
t , . . . , R̃M

t ,−ψ(Ct + ḡ P)
R̃0

t

R̃0
t+1

, . . . ,−ψ(Ct + ḡ P)
R̃0

t

R̃0
T

,

− ψ P
R̃0

t

R̃0
T

)
∈ �(M+T −t+2).

Let vectors α̂, ρ̂t , and μ̂t denote the expected values of the random vectors α̃, ρ̃t , and
μ̃t , respectively. For instance, α̂ = (E[R̃0

T ], . . . , E[R̃M
T ]).Similarly, we define vectors
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1018 N. Gulpinar et al.

of decision variables ε = (ξ0T , . . . , ξ M
T )′, π t = (η1t , . . . , η

M
t , ζ 1

t , . . . , ζ M
t , 1)′, and

τ t = (ξ0t , . . . , ξ M
t , 1, . . . , 1, 1)′. Using the new notation, the robust counterpart of

problem (Pstoc(R)) can be written in a compact form as follows:

(P rob(R)) :
max

ε,π t ,τ t ,ν,φ
ν

s.t. ν ≤ min
α̃∈Uo

{α̃ · ε} − φ − P

φ ≥ min
α̃∈Uo

{κ(α̃ · ε − P)}
φ ≥ ḡ P

ξm
t = ξm

t−1 − ηm
t + ζm

t , t = 1, . . . , T, m = 1, . . . , M

ξ0t ≤ ξ0t−1 + min
ρ̃t ∈Uh

t

{ρ̃t · π t }, t = 1, . . . , T

0 ≤ min
μ̃t ∈U f

t

{μ̃t · τ t } t = 1, . . . , T − 1

ξm
t ≥ 0, t = 1, . . . , T, m = 0, . . . , M

ηm
t ≥ 0, ζm

t ≥ 0, t = 1, . . . , T − 1, m = 1, . . . , M

where Uo, Uh
t and U f

t are the uncertainty sets associated with the uncertain para-
meters in the objective function, balance constraints and funding ratio constraints,
respectively. The computational tractability of P rob(R) depends on the type of the
uncertainty sets. Once the uncertainty sets are specified, the inner minimization prob-
lems are solved to derive the corresponding robust counterpart.

4.1 Symmetric uncertainty sets

Consider symmetric (ellipsoidal) uncertainty sets involving the uncertain future
asset returns R̃m

t , m = 1, . . . , M , and riskless returns R̃0
t at each point in time t ,

t = 1, . . . , T . The uncertainty sets are specified in terms of themeans vectors α̂, ρ̂t , μ̂t
and the covariance matrices �α , �ρ

t and �
μ
t of the vectors of random variables α̃, ρ̃t ,

μ̃t in the sets of constraints with uncertain coefficients as follows:

SUo =
{
α̃ |

∥∥∥∥(
�α

)− 1
2
(
α̃ − α̂

)∥∥∥∥
2

≤ θo
}

,

SUh
t =

{
ρ̃t |

∥∥∥∥(
�

ρ
t
)− 1

2
(
ρ̃t − ρ̂t

)∥∥∥∥
2

≤ θh
t

}
, t = 1, . . . , T

SU f
t =

{
μ̃t |

∥∥∥∥(
�

μ
t
)− 1

2
(
μ̃t − μ̂t

)∥∥∥∥
2

≤ θ
f

t

}
, t = 1, . . . , T − 1,

where θo, θh
t and θ

f
t determine the size of the corresponding uncertainty sets, and

are referred to as the “robustness budget” or the “price of robustness”. The size of
the uncertainty set corresponds to the amount of protection against uncertainty the
decisionmaker desires, and can often be linked to guarantees on the probability that the
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A robust asset–liability management framework 1019

constraint with uncertain coefficients will not be violated. There is a tradeoff between
the size of the uncertainty set and optimality—the larger the degree of protection
against uncertainty desired, the worse the optimal value of the objective function of
the robust counterpart.

In order to find the robust counterpart of (P rob(R)) using uncertainty setsSUo,SUh
t ,

and SU f
t , we first separate the expressions in the constraints into expressions with

uncertain coefficients and expressions with certain coefficients. We solve the inner
minimization problems (taking place in the constraints) to find the worst-case values
of the terms involving uncertain coefficients when these uncertain coefficients vary in
the given uncertainty sets.

Let us illustrate how one would derive the robust counterpart of the first constraint.
The constraint

ν − α̃ · ε + φ + P ≤ 0

should be satisfied even if the vector of uncertain parameters takes their worst-case
values within the uncertainty set. The worst-case value of uncertain expression is
attained when α̃ · ε is at its minimum value for any α̃ selected from the set SUo.
Therefore, the robust formulation of the first constraint,

ν − min
α̃∈SUo

{α̃ · ε} + φ + P ≤ 0,

is obtained by solving the inner minimization problem

min
α̃

α̃ · ε

s.t.

∥∥∥∥(
�α

)− 1
2
(
α̃ − α̂

)∥∥∥∥
2

≤ θo

and by reinjecting the optimal solution,

(
α̃∗)′ · ε = α̂

′
ε − θo

√
ε′�αε,

into the constraint. The robust counterparts of the remaining constraints in (P rob(R))

are derived in the samemanner. They all include the expected values of the expressions
with uncertain coefficients, aswell as penalty-like terms that are related to the uncertain
coefficients’ standard deviations.

Based on the discussion so far, we can obtain the robust counterpart of (P rob(R))

under uncertainty sets SUo, SUh
t and SU f

t for the uncertain parameters α̃, ρ̃t , μ̃t as
follows:

(Psym) :
max

ε,π t ,τ t ,ν,φ
ν

s.t. ν ≤ α̂
′
ε − θo

√
ε′�αε − φ − P
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1020 N. Gulpinar et al.

φ ≥ κ
(
α̂

′
ε − θo

√
ε′�αε − φ − P

)
φ ≥ ḡ · P

ξm
t = ξm

t−1 − ηm
t + ζm

t , t = 1, . . . , T, m = 1, . . . , M

ξ0t ≤ ξ0t−1 + ρ̂
′
tπ t − θh

t

√
π t

′�ρ
t π t , t = 1, . . . , T

0 ≤ μ̂
′
tτ t − θ

f
t

√
τ t

′�μ
t τ t , t = 1, . . . , T − 1

ξm
t ≥ 0, t = 1, . . . , T, m = 0, . . . , M

ηm
t ≥ 0, ζm

t ≥ 0, t = 1, . . . , T − 1, m = 1, . . . , M

Note that for the ellipsoidal uncertainty sets that are described in terms of the means
and the covariance matrices of the uncertain coefficients, the robust counterparts of the
constraints include the expected values of the expressions with uncertain coefficients,
as well as penalty-like terms that are related to their standard deviations. Therefore,
the robust counterpart to the original ALM problem (Psym) becomes a second order
cone program that is a tractable optimization problem.

4.2 Asymmetric uncertainty sets

Symmetric uncertainty sets can represent uncertainties well when these uncertainties
follow symmetric probability distributions such as the normal distribution. As it has
been shown empirically, however, both short- and long-horizon stock returns can be
skewed and highly leptokurtic (see, for example, Duffee 2002). Chen et al. (2007)
define measures of backward and forward deviation of probability distributions to
allow for representing possible asymmetries in the uncertain cumulative returns better.

The forward and the backward deviation measures for a random variable z̃ are
defined as p(z̃) = inf{P(z̃)} and q(z̃) = inf{Q(z̃)}, where (see Chen et al. 2007):

P(z̃) =
{
γ : γ > 0,E

(
exp

(
φ

γ
z̃

))
≤ exp

(
φ2

2

)
∀φ > 0

}
, (6)

and

Q(z̃) =
{
β : β > 0,E

(
exp

(
−φ

β
z̃

))
≤ exp

(
φ2

2

)
∀φ > 0

}
. (7)

It can be shown (Chen et al. 2007) that for a random variable z̃ with zero mean, p(z̃)
and q(z̃) are always greater than or equal to the standard deviation of the distribution.
In general, p(z̃) and q(z̃) are finite if the support [−z, z̄] of the distribution for z̃ is
finite. If the support is infinite, p(z̃) and q(z̃) are not guaranteed to be finite. However,
in the important case of a normally distributed random variable z̃, p(z̃) and q(z̃) are
finite, and equal the standard deviation.

In order to apply the framework from Chen et al. (2007), we first represent
the uncertain parameters in each set of constraints in terms of independent factors
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A robust asset–liability management framework 1021

z̃α ∈ �Gα
, z̃ρt ∈ �Gρ

t and z̃μt ∈ �Gμ
t with zero means. Let �α , �

ρ
t , and �

μ
t be the

covariancematrices for the vectors α̃, ρ̃t , and μ̃t , respectively.We assume that the vec-
tors of uncertain coefficients α̃, ρ̃t , and μ̃t can be defined in terms of the independent
factors z̃α , z̃ρt and z̃μt as follows:

α̃ = α̂ + (
�α

) 1
2 · z̃α,

ρ̃t = ρ̂t + (
�

ρ
t
) 1
2 · z̃ρt ,

μ̃t = μ̂t + (
�

μ
t
) 1
2 · z̃μt .

Let Po, Ph
t , and P f

t be the diagonal matrices with backward deviations and Qo, Qh
t ,

and Q f
t be the diagonal matrices with forward deviations for factors z̃α , z̃ρt and z̃μt ,

respectively. The asymmetric uncertainty sets for the uncertain factors z̃α , z̃ρt and z̃μt
for t = 1, . . . , T are specified as

AUo =
{
zα : ∃vo, wo ∈ RM+1+ , zα = vo − wo,

∥∥∥(Po)
−1vo + (Qo)

−1wo
∥∥∥
2

≤ �o,

zα ≤ z̃α ≤ zα
}

,

AUh
t =

{
zρt : ∃vh

t , wh
t ∈ R2M+1+ , zρt = vh

t − wh
t ,

∥∥∥(Ph
t )

−1
vh

t + (Qf
t )

−1
wh

t

∥∥∥
2

≤ �h
t ,

zρ
t ≤ z̃ρ

t ≤ zρ
t

}
, for t = 1, . . . , T ; and

AU f
t =

{
zμt : ∃vf

t , wf
t ∈ RM+T −t+2+ , zμt = vf

t − wf
t ,

∥∥∥(Pf
t )

−1
vf

t + (Qf
t )

−1
wf

t

∥∥∥
2

≤ �
f
t ,

zμ
t ≤ z̃μ

t ≤ zμ
t

}
, for t = 1, . . . , T − 1.

Given the representation of the uncertain coefficients as linear combinations of factors,
the constraints can be written in bilinear form. For example, the constraint

α̃′ε − φ − P − ν ≥ 0

can be written in terms of the uncertain factors z̃α as

α̃′ε − φ − P − ν = α̂
′
ε − φ − P − ν +

M+1∑
j=1

e′
j

((
�α

) 1
2

)′
ε · z̃α

j ,

where e j is a vector of zeros of appropriate dimension with 1 in the j-th position. The
robust counterpart of the constraint α̃′ε − φ − P − ν ≥ 0 when the uncertain factors
z̃α vary in uncertainty set AUo is

min
z̃α∈AUo

{α̃′ε} − φ − P − ν ≥ 0.
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Applying Proposition 3 from Chen et al. (2007), the robust counterpart of the corre-
sponding constraint can be represented by the following set of constraints:

α̂
′
ε − φ − P − ν ≥ �o

∥∥uα
∥∥
2 + (

rα
)′ (zα) + (

sα
)′ (zα)

uα
j ≥ −po

j

(
e′

j

((
�α

) 1
2

)′
ε + rα

j − sα
j

)
, j = 1, . . . , M + 1

uα
j ≥ qo

j

(
e′

j

((
�α

) 1
2

)′
ε + rα

j − sα
j

)
, j = 1, . . . , M + 1

rα, sα ≥ 0

The robust counterpart of the constraint

φ − min
z̃α∈AUo

{κ(α̃′ε − P)} ≥ 0

involves the same type of constraints plus

φ − κ(α̂
′
ε − P) ≥ κ

(
�o

∥∥uα
∥∥
2 + (

rα
)′ zα + (

sα
)′ zα

)

Next, we extend the same derivation to the set of constraints

ξ0t ≤ ξ0t−1 + min
ρ̃t ∈AUh

t

{ρ̃t · π t },

for t = 1, . . . , T to find their robust counterparts. The following constraints are
reinjected into the robust model:

ξ0t ≤ ξ0t−1 + ρ̂
′
tπ t − �h

t

∥∥∥uh
t

∥∥∥
2
− (

rρ
t
)′ zρt − (

sρt
)′ zρt , t = 1, . . . , T

uρ
t, j ≥ −pρ

j

(
e′

j

((
�

ρ
t
) 1
2

)′
π t + rρ

t, j − sρ
t, j

)
, t = 1, . . . , T, j = 1, . . . , 2M + 1

uρ
t, j ≥ qρ

j

(
e′

j

((
�

ρ
t
) 1
2

)′
π t + rρ

t, j − sρ
t, j

)
, t = 1, . . . , T, j = 1, . . . , 2M + 1

rρ
t , sρt ≥ 0

Finally, we apply the same procedure to the set of constraints

min
μ̃t ∈AU f

t

{μ̃t · τ t } ≥ 0, for t = 1, . . . , T − 1.

The robust counterpart of (P rob(R)) under asymmetric uncertainty setsAUo,AUh
t and

AU f
t , can be written in a compact form as follows:
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(Pasym) :
max

ε,π t ,τ t ,ν,φ,w
ν

s.t.

α̂′ε − φ − P − ν ≥ �o
∥∥∥uα

∥∥∥
2

+ (
rα

)′ zα + (
sα

)′ zα
uα

j ≥ −pα
j

(
e′j

((
�α

) 1
2

)′
ε + rα

j − sα
j

)
, j = 1, . . . , M + 1

uα
j ≥ qα

j

(
e′j

((
�α

) 1
2

)′
ε + rα

j − sα
j

)
, j = 1, . . . , M + 1

α̂′ε + φ + κ P ≥ κ
(
�o

∥∥∥uα
∥∥∥
2

+ (
rα

)′ zα + (
sα

)′ zα)
rα, sα ≥ 0

ξm
t = ξm

t−1 − ηm
t + ζm

t , t = 1, . . . , T, m = 1, . . . , M

ξ0t ≤ ξ0t−1 + ρ̂′
tπ t − �h

t

∥∥∥uh
t

∥∥∥
2

− (
rρt

)′
zρt − (

sρt
)′
zρt , t = 1, . . . , T

uρ
t, j ≥ −pρ

j

(
e′j

((
�

ρ
t
) 1
2

)′
π t + rρ

t, j − sρ
t, j

)
, t = 1, . . . , T, j = 1, . . . , 2M + 1

uρ
t, j ≥ qρ

j

(
e′j

((
�

ρ
t
) 1
2

)′
π t + rρ

t, j − sρ
t, j

)
, t = 1, . . . , T, j = 1, . . . , 2M + 1

0 ≤ μ̂′
tτ t − �

f
t

∥∥∥uμ
t

∥∥∥
2

− (
rμt

)′
zμt − (

sμt
)′
zμt , t = 1, . . . , T − 1

uμ
t, j ≥ −pμ

j

(
e′j

((
�

μ
t
) 1
2

)′
τ t + rμ

t, j −sμ
t, j

)
, t =1, . . . , T, j = 1, . . . , M + T − t+2

uμ
t, j ≥ qμ

j

(
e′j

((
�

μ
t
) 1
2

)′
τ t + rμ

t, j − sμ
t, j

)
, t = 1, . . . , T, j = 1, . . . , M + T − t + 2

rρt , sρt , rμt , sμt ≥ 0 t = 1, . . . , T

ξm
t ≥ 0, t = 1, . . . , T, m = 0, . . . , M

ηm
t ≥ 0, ζm

t ≥ 0, t = 1, . . . , T − 1, m = 1, . . . , M

where w consists of all the new variables (uα, rα, sα, uρ
t , rρ

t , sρt , uμ
t , rμ

t , sμt for
t = 1, . . . , T ) that are introduced for the robust counterpart to the original ALM
problem (Pasym). This is also a tractable optimization problem; however, the number
of decision variables and constraints is larger due to the nature of the asymmetric
uncertainty set.

5 Implementation

This section discusses practical aspects of the implementation of the robust ALM
models for investment products with guarantees. We also explain the design of a
series of computational experiments in Sect. 6 to study the performance of the optimal
strategies from the robust formulations. These experiments aim to show how themodel
parameters and the choice of uncertainty sets affect the robust investment strategy.

The robust optimization strategy, abbreviated as R, is obtained by solving the robust
counterpart of (P rob(R)) for symmetric and asymmetric uncertainty sets for different
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values of the price of robustness. For this strategy, the robustness budget parameters
(i.e., θo, θh

t , θ
f

t for symmetric uncertainty sets and �o,�h
t ,�

f
t for the asymmetric

uncertainty sets at time t) associated with the objective function and the constraints
containing uncertain coefficients are fixed.

The computational performance of the robust optimization strategy is compared
with the performance of a nominal (expected value) strategy and a stochastic pro-
gramming investment strategy. The nominal strategy, abbreviated as N , calculates the
optimal investment strategy assuming that all uncertain coefficients in the optimization
problem (P rob(R)) are at their expected values. This strategy is equivalent to the robust
strategy when the price of robustness is zero. In this case, the optimization problem
formulation is a deterministic problem solved by a risk-neutral investor, and is only
used as a benchmark.

The stochastic programming strategy, abbreviated as S, maximizes the expected
value of the objective function over the generated scenarios.

The simulation experiments use a rolling horizon optimization procedure that
involves T iterations. At each iteration, a set of S scenarios for each length of time
period is generated and the input parameters for the multi-period optimization prob-
lems are estimated. The optimization problem with new input parameters is solved
and the first step recommended by the optimal strategy is taken. Actual realizations of
the returns with respect to the predefined market structure are simulated again. These
generated returns are used to compute the realized performance of the strategy and
the first time period holdings are updated. The next iteration follows the same steps
with reduced time horizon for the optimization models. This procedure is repeated in
the same manner until the last time period. The portfolio positions at the last period
represent the final realized wealth. We also consider an alternative approach, called
fixed-horizon strategy, for the simulation experiments. This procedure applies the
same investment strategy (obtained by solving the ALM optimization model) at the
beginning of the planning horizon to evaluate with a number of future realisations.

All models are implemented in Matlab and solved with YALMIP (Löfberg 2004).
The computational experiments are run on a Macbook pro 2.6 GHz CPU and 16 Gb
of RAM.

5.1 Data

We consider generated and real market data for the computational experiments. For
all experiments, investment decisions for the portfolio allocation are made at discrete
time periods t = 0, 1, 2, 3. The portfolio is redeemed at the end of the investment
horizon, T = 4.

The generated data set is simulated for 10, 20 and 30 risky assets and one risk-free
asset using the factor model described in Ben-Tal et al. (2000). Specifically, the returns
of the risky assets and the risk-free asset are computed as

ln(1 + rm
t ) = β ′

m[δ · e + σ · vt ], t = 0, 1, . . . , N − 1, m = 1, . . . , M (8)

ln(1 + r0t ) = δ, t = 0, 1, . . . , N − 1
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Table 2 Statistical summary of
the historical data (returns for
each period)

t = 0 t = 1 t = 2 t = 3

Mean return

Risky asset 0.029 0.051 −0.003 0.005

Risk-free asset 0.014 0.012 0.007 0.005

Standard deviation

Risky asset 0.054 0.069 0.082 0.095

Risk-free asset 0.005 0.001 0.004 0.005

p: Forward deviation

Risky asset 0.054 0.070 0.082 0.095

Risk-free asset 0.005 0.001 0.005 0.005

q: Backward deviation

Risky asset 0.070 0.069 0.085 0.101

Risk-free asset 0.005 0.002 0.004 0.005

where v0, v1, . . . , vN−1 are independent k-dimensional Gaussian random vectors
with zero mean and the unit covariance matrix (the identity matrix). In addition,
e ∈ �K = (1, . . . , 1)′; βm ∈ �K+ are fixed vectors; and δ, σ > 0 are fixed reals.
Using this model, the expected values and the covariances of the cumulative returns
at time t can be computed in closed form. All simulation parameters are selected as
in Ben-Tal et al. (2000).

The real market data set is obtained from Goyal and Welch (2008) and consists of
two assets: the S&P 500 index and a Treasury bill. The only reason for selecting a
small number of assets for investment and a short investment horizon is to illustrate
specific characteristics of various investment strategies. A sample period of 24 years
of quarterly data between 1987 and 2010 is considered to generate the scenarios for
Rt as well as the cumulative risk-free rate R0

t at each time period t . The historical
data with quarterly prices over 24 years is divided into four time periods. The mean
cumulative return of each asset at each time period is estimated using the corresponding
data set. The estimated expected values of the returns and the factors, as well as other
descriptive statistics, such as standarddeviations andbackward and forwarddeviations,
are presented in Table 2.

The descriptive statistics of the factors z̃α , z̃ρt and z̃μt extracted from the real market
data set are summarized in Table 3. The estimation procedure is described in more
detail next.

5.2 Parameter estimation for the robust formulations

While the input parameters to the robust formulations can be calculated in closed
form for certain types of processes followed by the uncertain parameters, a practical
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Table 3 Descriptive statistics for the entries of the vectors of factors z̃α , z̃ρt and z̃μt extracted from real
data

z̃α : Factors 1 2

Std dev 0.99906 0.97472

p: Forward dev 1.02573 0.99454

q: Backward dev 0.99906 0.97472

z̃ρt : Factors 1 2 3

t = 1 Std dev 1.03192 1.05277 0.95624

p: Forward dev 1.03192 1.05277 0.95626

q: Backward dev 1.03398 1.05487 0.95624

t = 2 Std dev 0.96412 0.98360 0.95167

p: Forward dev 0.96428 0.98376 0.95169

q: Backward dev 0.96412 0.98360 0.95167

t = 3 Std dev 0.93665 0.95557 0.95059

p: Forward dev 0.93718 0.95611 0.95061

q: Backward dev 0.93665 0.95557 0.95059

t = 4 Std dev 0.91791 0.93646 0.95750

p: Forward dev 0.91843 0.93699 0.95752

q: Backward dev 0.91791 0.93646 0.95750

z̃μt : Factors 1 2 3 4 5 6

t = 1 Std dev 0.99852 0.96851 1.01065 1.10211 1.14325 1.15469

p: Forward dev 0.99852 0.96880 1.01324 1.10368 1.14500 1.15645

q: Backward dev 1.00034 0.96851 1.01065 1.10211 1.14325 1.15469

t = 2 Std dev 0.99897 0.98629 1.09494 1.13022 1.14152

p: Forward dev 0.99914 0.98708 1.09646 1.13222 1.14354

q: Backward dev 0.99897 0.98629 1.09494 1.13022 1.14152

t = 3 Std dev 0.99868 0.97976 1.13039 1.14170

p: Forward dev 0.99923 0.98068 1.13155 1.14286

q: Backward dev 1.01170 0.99253 1.14512 1.15657

approach to estimating them for any assumptions on their dynamics is to generate
scenarios for the realizations of the uncertain vectors α̃, ρ̃t and μ̃t . These scenarios can
then be used to extract the necessary information. In our computational experiments,
the latter scenario approach is used for generating the inputs in both the symmetric
and the asymmetric uncertainty set formulation, and with both the generated and the
real data set.

Symmetric uncertainty set: Suppose we have scenarios for the vectors of cumulative
returns Rt at each time period t and the cumulative risk-free rate R0

t for t = 1, . . . , T .
They are used to create scenarios for the uncertain vectors (α̃, ρ̃t and μ̃t ) in each
constraint of the optimization problem. These scenarios in turn are used to estimate
the expected value vectors α̂, ρ̂t and μ̂t , as well as the covariance matrices �α , �ρ

t
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and �
μ
t that are input parameters to the robust optimization models with symmetric

uncertainty sets (Psym).

Asymmetric uncertainty set: In the case of asymmetric uncertainty set, we need esti-
mates of the forward and backward deviations of the factors z̃α , z̃ρt , and z̃μt . Similarly
to the case of symmetric uncertainty set, we use generated scenarios for vectors of
cumulative returns Rt at each time period t and the cumulative risk-free rate R0

t for
t = 1, . . . , T to create scenarios for the uncertain vectors α̃, ρ̃t and μ̃t in each con-
straint of the optimization problem. A set of scenarios for the uncorrelated factors z̃α ,
z̃ρt , and z̃

μ
t for each constraint can then be derived from the scenarios for α̃, ρ̃t and μ̃t as

z̃α = (
�α

)− 1
2 · (

α̃ − α̂
)
,

z̃ρt = (
�

ρ
t
)− 1

2 · (
ρ̃t − ρ̂t

)
,

z̃μt = (
�

μ
t
)− 1

2 · (
μ̃t − μ̂t

)
.

The scenarios for z̃α , z̃ρt , and z̃μt are used to estimate the factors’ backward and for-
ward deviations, which are then plugged into the robust ALM formulation (Pasym).
For example, the backward and forward deviations for the i th factor of z̃α can be
computed by solving the optimization problems

pi (z
α)= sup

ϕ>0

{√
2
ln(E(exp(ϕ.zα))))

ϕ2

}
and qi (z

α)= sup
ϕ>0

{√
2
ln(E(exp(−ϕ.zα)))

ϕ2

}

The reader is referred to Natarajan et al. (2008) for a proof of this relationship. If
the forward and backward deviation matrices are equal (i.e., pi (z) = qi (z) for all i),
then the asymmetric uncertainty set robust formulation produces the same portfolio
composition as the ellipsoidal uncertainty set does.

6 Computational results

In this section, we discuss the results of the computational experiments to illustrate the
performance of the ALM investment strategies obtained with the nominal, robust opti-
mization, and scenario-based stochastic programming models under different market
conditions. Due to length constraints, we only present representative sets of com-
putational results. In a normal market regime, we assume that the market behaves
as expected. In other words, future return scenarios for evaluating performance are
generated with the originally estimated mean (μ) and variance (σ 2). For an unfavor-
able market regime, we assume that the investor invests optimally given a particular
expected return, but in actuality asset returns follow a distribution that is worse than
expected on average. Specifically, the future return scenarios are generated with a
mean value of (μ−kσ) and the same estimated variance (σ 2) as in the normal market
conditions. The factor k = 0, 25, 0.5, 0.75, 1.0 denotes the level of unfavorable mar-
ket. Note that k = 0 refers to the normal market regime. We evaluate the performance
of the robust strategies in several ways:
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• relative to the performance of the nominal and the stochastic programmingmodels
in terms of summary statistics for the realized final wealth;

• in terms of the optimal asset allocation at the first step of the multi-period opti-
mization problem as well as the CPU time taken to obtain an investment strategy;

• in terms of the effect of using asymmetric versus a symmetric uncertainty set in
the robust formulation; and

• in terms of the effect of the magnitude of different parameters associated with the
robust formulation, such as the budget of robustness.

For the numerical experiments, other inputs to the robust ALM models are selected
as follows. We assume that there is no initial investment in the fund. The principal
amount is P = $1000. The guaranteed rate of return is ḡ = 1 % per period for the
real market data and ḡ = 5 % per period for the generated data set. The principal plus
some return accumulated over time are withdrawn at the end of investment horizon.
We keep track only of the excess return. The participation rate (κ) is selected as 0.5. It
is assumed that there is no coupon payment at any time period. Transactions costs for
buying (cb) and selling (cs) are both fixed at 1 %. The funding ratio (ψ) is set at 0.9.
The values selected for the budget of robustness for the symmetric and asymmetric
uncertainty sets associated with the funding ratio and balance constraints as well as
the objective function are between 0.1 and 1.

For the stochastic programming models, a scenario tree with a fan of individual
scenarios is considered. More precisely, the scenario tree consists of 100 scenar-
ios branching in the first time period and no branching at further stages over 4 and
10 time periods. It should be emphasized that the scenario-based stochastic opti-
mization formulation in this case is a deterministic problem, and is only used as
a benchmark. On average, the investment strategy obtained by the scenario-based
stochastic model will always outperform the robust decisions given the fact that
it optimizes the expected wealth, while the robust strategy focuses on worst-case
outcomes.

In the rolling horizon and fixed horizon simulation procedures, the optimal invest-
ment strategies are evaluated for 1000 realized future asset returns to compute the
final wealth. The statistical analysis of simulated values of the final wealth is pre-
sented in terms of mean, variance, minimum and maximum out of 1000 simulations.
We also compute tail risk measures reminiscent of Value-at-Risk (VaR) and Condi-
tional Value-at-Risk (CVaR). The “VaR” at 5 % is found by taking the 50th smallest
realized portfolio value whereas the “CVaR” is calculated as the average of the 50
smallest portfolio values in all simulations.

With a slight abuse of terminology but for simplicity’s sake, when we discuss
computational results in the rest of this section we will refer to products with the more
general structure defined in Sect. 2 as ELN, and to products with the more simple
structure with κ = 0 and fixed coupon payments as GIC.

Problem structure and asset allocation: We first illustrate the problem structure and
performance characteristics of the different ALMmodels for ELN products in Table 4.
It is worthwhile to mention that all types of ALM models for GIC and ELN show
similar characteristics. The sizes of problems for the nominal, stochastic and robust
optimizationmodels are defined in terms of the number of variables and constraints. As
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Table 4 Problem structure and performance of the ALM models

ALM
models

Problem structure Solution
time

Final
wealth

Transaction
cost

# Assets
invested

(T, M) Variables Constraints

N (4, 2) 30 46 0.020 7.560 9.800 1

Sym-R(1) (4, 2) 62 70 0.030 4.011 9.540 2

Asym-R(1) (4, 2) 78 102 0.050 4.010 9.540 2

SP (4, 2) 3029 13,934 0.120 7.340 10.030 1

N (4, 11) 126 174 0.030 74.645 10.176 1

Sym-R(1) (4, 11) 222 262 0.040 −44.046 7.768 11

Asym-R(1) (4, 11) 302 422 0.060 −44.744 7.568 11

SP (4, 11) 12,725 26,038 0.340 68.546 9.870 2

N (4, 21) 246 334 0.054 76.106 10.161 1

Sym-R(1) (4, 21) 422 502 0.120 −24.230 8.528 17

Asym-R(1) (4, 21) 582 822 0.491 8.519 8.519 17

SP (4, 21) 24,845 41,168 0.410 69.540 9.177 3

N (4, 31) 366 494 0.101 80.869 10.122 1

Sym-R(1) (4, 31) 622 742 0.233 −15.767 8.526 24

Asym-R(1) (4, 31) 862 1222 0.751 −18.417 8.520 24

SP (4, 31) 36,965 56,298 1.707 75.392 10.320 4

N (10, 11) 222 432 0.512 260.832 17.681 1

Sym-R(1) (10, 11) 462 652 0.860 −17.359 9.554 7

Asym-R(1) (10, 11) 617 1052 1.342 −30.201 8.393 8

SP (10, 11) 22,421 52,024 2.084 217.452 15.790 2

N (10, 21) 612 832 0.609 318.852 17.687 1

Sym-R(1) (10, 21) 1052 1252 0.910 128.918 16.060 17

Asym-R(1) (10, 21) 1452 2052 1.913 125.504 16.010 17

SP (10, 21) 61,811 91,334 2.365 295.459 14.054 2

N (10, 31) 1512 2432 1.342 332.553 11.650 1

Sym-R(1) (10, 31) 1552 1852 1.456 151.101 8.776 14

Asym-R(1) (10, 31) 2152 3052 2.726 134.322 8.541 14

SP (10, 31) 92,111 130,644 2.908 296.953 12.948 2

mentioned before, the size of scenario based stochastic programming models depends
on the investment horizon (T ), the number of assets (M) and the branching structure
of the scenario tree.

In our experiments, the stochastic programming problems can be classified as large
size linear programming whereas the robust models are medium size nonlinear pro-
gramming problems. The performance of the ALM models is displayed in terms of
final wealth and the CPU time (in seconds) taken to solve the underlying optimization
problem. It is not quite appropriate to compare the efficiency of the stochastic and
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robust optimization models because different solution algorithms are used; however,
one can see that the CPU time increases when the size of the problem increases.

The nominal approach (expected value optimization) always results in the highest
expected wealth compared to the stochastic programming and robust optimization
models (Table 4). Table 4 also summarizes the total transaction cost paid over the
investment horizon as well as the number of assets invested in the first time period. The
realized transaction costs tend to be the lowest for the robust optimization approaches.
This is consistent with previous observations in the literature that robust optimization
portfolio allocation schemes reduce portfolio turnover (Fabozzi et al. 2007).

From the results in Table 4, we observe that the robust strategies prefer to invest in a
smaller number of risky assets as the length of the investment horizon is increased from
4 to 10 time periods. The financial intuition for this behaviour could be that when the
investment horizon gets longer, by virtue of being more inert and conservative robust
optimization strategies are better at compensating for possible losses in some periods
by not trading, so diversification is less important as a way to achieve a goal. The
stochastic programming and nominal strategies do not change as much as the number
of time periods changes. They also prefer to invest in fewer assets than the robust
strategies, resulting in worse diversification. We should note that the topology of the
scenario tree plays an important role for diversification strategies suggested by the
stochastic optimization model.

Table 5 presents the optimal asset allocations (in a risky asset and a risk-free asset
abbreviated as RK and RF, respectively) obtained by solving the nominal and robust
models under the normal market regime for the real market data for various values of
the budget of robustness. We look at the first step of the rolling horizon simulation
approach (the step that is actually implemented). Note that the initial allocation of the
capital between risk-free and risky assets does not remain the same at the following
stages of the investment process due to updates for the future realizations of returns.
The scenario-based stochastic programming ALM models for both types of products
suggests investing the whole capital (952.7) in the risky asset in the first time period.
The asset allocation at the next stagesmay be different because it depends on the future
return realizations.

Based on the results in Table 5, it appears that the optimal asset allocation strategy
obtained with the nominal model prefers to invest heavily in the risky asset rather than
the risk-free asset at each time period. With regard to the robust strategy, the choice of
uncertainty sets and the structure of the guaranteed investment contract do not have any
substantial impact on diversification (i.e., the relative magnitude of investments in the
risky versus the risk-free asset). The level of diversification of the robust investment
strategy depends on the pre-specified price of robustness. If the price of robustness
is low, the capital is invested mainly in the risky asset. As the price of robustness
increases, the robust strategies become more risk-averse. Investment in the risky asset
decreases while investment in the risk-free asset increases to hedge for the increase in
risk associated with investing in the index. There appears to be a threshold (0.5) for

123



A robust asset–liability management framework 1031

Ta
bl

e
5

A
ss
et
al
lo
ca
tio

n
ob
ta
in
ed

fo
r
th
e
re
al
m
ar
ke
td

at
a
ov
er

fo
ur

tim
e
pe
ri
od
s

M
od
el
ty
pe
s

Sy
m
m
et
ri
c
un
ce
rt
ai
nt
y
se
t

A
sy
m
m
et
ri
c
un
ce
rt
ai
nt
y
se
t

t
=

1
t
=

2
t
=

3
t
=

4
t
=

1
t
=

2
t
=

3
t
=

4

R
K

R
F

R
K

R
F

R
K

R
F

R
K

R
F

R
K

R
F

R
K

R
F

R
K

R
F

R
K

R
F

G
IC

-N
95

2.
7

0.
0

93
4.
0

10
.0

93
4.
0

0.
0

92
4.
7

0.
0

95
2.
7

0.
0

93
4.
0

10
.0

93
4.
0

0.
0

92
4.
7

0.
0

G
IC

-R
(0
.1
)

95
1.
2

0.
0

93
2.
5

10
.0

93
2.
5

0.
0

92
3.
2

0.
0

95
1.
2

0.
0

93
2.
5

10
.0

93
2.
5

0.
0

92
3.
2

0.
0

G
IC

-R
(0
.3
)

94
8.
4

0.
0

92
0.
1

20
.0

92
0.
1

10
.0

92
0.
1

0.
0

94
8.
4

0.
0

92
0.
1

20
.0

92
0.
1

10
.0

92
0.
1

0.
0

G
IC

-R
(0
.5
)

28
9.
2

67
0.
8

26
0.
8

69
0.
8

26
0.
8

68
0.
8

26
0.
8

67
0.
8

28
1.
6

67
8.
5

25
3.
3

69
8.
5

25
3.
3

68
8.
5

25
3.
3

67
8.
5

G
IC

-R
(0
.7
)

82
.0

88
2.
0

53
.5

90
2.
0

53
.5

89
2.
0

53
.5

88
2.
0

81
.9

88
2.
0

53
.4

90
2.
0

53
.4

89
2.
0

53
.4

88
2.
0

G
IC

-R
(0
.9
)

56
.2

90
8.
0

37
.1

91
8.
0

37
.1

90
8.
0

36
.8

89
8.
6

56
.2

90
8.
0

37
.1

91
8.
0

37
.1

90
8.
0

36
.7

89
8.
6

G
IC

-R
(1
.0
)

36
.0

92
9.
0

36
.0

91
9.
0

36
.0

90
9.
0

35
.6

89
9.
6

35
.8

92
9.
1

35
.8

91
9.
1

35
.8

90
9.
1

35
.5

89
9.
8

E
L
N
-N

95
2.
7

0.
0

93
4.
0

10
.0

93
4.
0

0.
0

92
4.
7

0.
0

95
2.
7

0.
0

93
4.
0

10
.0

93
4.
0

0.
0

92
4.
7

0.
0

E
L
N
-R

(0
.1
)

95
1.
2

0.
0

93
2.
5

10
.0

93
2.
5

0.
0

92
3.
2

0.
0

95
1.
2

0.
0

93
2.
5

10
.0

93
2.
5

0.
0

92
3.
2

0.
0

E
L
N
-R

(0
.3
)

94
8.
4

0.
0

92
0.
1

20
.0

92
0.
1

10
.0

92
0.
1

0.
0

94
8.
4

0.
0

92
0.
1

20
.0

92
0.
1

10
.0

92
0.
1

0.
0

E
L
N
-R

(0
.5
)

28
3.
9

67
6.
2

25
5.
5

69
6.
2

25
5.
5

68
6.
2

25
5.
5

67
6.
2

28
2.
2

67
7.
9

25
3.
8

69
7.
9

25
3.
8

68
7.
9

25
3.
8

67
7.
9

E
L
N
-R

(0
.7
)

82
.7

88
1.
3

54
.2

90
1.
3

54
.2

89
1.
3

54
.2

88
1.
3

82
.0

88
1.
9

53
.5

90
1.
9

53
.5

89
1.
9

53
.5

88
1.
9

E
L
N
-R

(0
.9
)

56
.1

90
8.
1

37
.0

91
8.
1

37
.0

90
8.
1

36
.7

89
8.
7

56
.2

90
8.
0

37
.1

91
8.
0

37
.1

90
8.
0

36
.7

89
8.
7

E
L
N
-R

(1
.0
)

35
.8

92
9.
2

35
.8

91
9.
2

35
.8

90
9.
2

35
.4

89
9.
8

35
.8

92
9.
2

35
.8

91
9.
2

35
.8

90
9.
2

35
.4

89
9.
8

123



1032 N. Gulpinar et al.

the budget of robustness. As the budget of robustness gets higher than the threshold,
the weight of the risky (risk-free) asset rapidly decreases (increases).

Simulation results: We are now concerned with performance comparison of the nom-
inal, robust and stochastic approaches under normal and unfavorable market regimes.
Table 6 presents the results of the rolling horizon simulation approach using generated
data with 10 risky assets and one risk-free asset within the normal (top) and unfavor-
able with k = 1.0 (bottom) market regimes. In addition to the simulation statistics, we
also display the average realized transaction cost (T-cost) in Table 6. From the results
in Table 6 we observe that

• The investment strategies obtained from the stochastic and nominal ALM models
provide higher expected wealth (as well as higher average transaction costs) than
the investment strategies obtained from the robust ALM models using symmetric
and asymmetric uncertainty sets under the normal market regime. This is not sur-
prising because stochastic programmingmaximizes the expected profit over known
discrete scenarios whereas robust optimization uses a worst-case decision-making
criterion. Moreover, under normal market regime, the future return scenarios are
realized as expected.

• If the future asset returns follow the same distribution as the distribution used as
input to the robust formulation, then the expected terminal wealth and the variance
of terminal wealth obtained by all robust models decrease when the robustness
budget increases (see, for example, the results under normal market regime). In
other words, there is a trade-off between the average performance and the amount
of protection desired. The nominal and stochastic investment strategies provide
higher average wealth than the robust strategy for a high budget of robustness.

• On the other hand, the robust investment strategies at (high) budget of robustness
appear to perform better than those obtained with the stochastic and nominal
formulations in unfavorable market regimes. Recall that in the unfavorable market
regime, the future return realizations are generated by the expected value μ − kσ

(that is k standard deviation lower than the estimated expected value from the
data) and the standard deviation (σ ). As shown in Table 6, the terminal wealth
obtained by all robust models when future realized asset returns are worse than
expected increases as the robustness budget increases, and the variance of final
wealth decreases. Both the nominal and the stochastic investment strategies result
in lower expected wealth than the robust strategy for symmetric and asymmetric
uncertainty sets at high value of the price of robustness. This argues for using
robust optimization in unfavorable market scenarios.

• The robust strategies with asymmetric uncertainty sets result in slightly higher
wealth (and/or lower variance) than the wealth obtained for robust strategies gen-
eratedwith the symmetric uncertainty sets formulation for any degree of robustness
(apart from the lowest value 0.1) under unfavorablemarket regimes. This is because
the future return realizations for the generated data have asymmetric characteris-
tics. It appears that the distribution of various price realizations and the choice of
uncertainty set impact the performance of the robust investment strategy.

• In both market regimes, the robust GIC models result in a slightly higher expected
value and variance of wealth than the robust ELN models regardless of the type
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A robust asset–liability management framework 1035

Fig. 1 Distribution of final wealth for the ALM models using ELN (top) and GIC (bottom) products
in the normal (left) and unfavorable (right) market regimes. Clockwise from top left: an ELN stochastic
formulation under a normal market regime; an ELN stochastic formulation under a unfavorable market
regime; a GIC stochastic formulation under a unfavorable market regime; a GIC stochastic formulation
under a normal market regime

of uncertainty sets. This is because the extra return on the terminal wealth is paid
to the holder of ELNs. On the other hand, we observe that the ALM models for
GIC products produce lower expected transaction cost than those provided by the
ALM models using ELN regardless the market conditions.

Figure 1 displays the distribution of the final wealth computed from the simulation
experiments using data for 10 assets with 4 time periods. In the unfavorable market
regime, the future return realizations are generated with a lower mean (μ − σ). The
histograms of final wealth outcomes for the robust optimization models with price of
robustness of 0.5 and 1.0 are plotted with solid lines.

Interestingly, the relative advantage of the robust strategies increases as the mar-
ket worsens - the position of the distribution of wealth under the robust strategies
relative to the other two types of strategies is farther to the right. Hence, the robust
approaches represent effective hedging strategies with respect to the given risk expo-
sures (uncertainties). This can be viewed as a strong argument for adopting them in
practice.

Sensitivity analysis: We also run a sensitivity analysis to determine the possible effect
of the selection of model parameters on the performance of the investment strategies.
We consider differentmarket conditionswhere future realizations of uncertain parame-
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Fig. 2 Average wealth obtained for the ALM strategies for ELN (left) and GIC (right) products using 2,
10, 20 and 30 (top to bottom panels) assets in various market regimes

ters are generated with different expected value (μ−kσ) and the same variance (σ ) as
estimated from the data. As k varies from 0 (normal market regime) to 1, the expected
values of the returns in future scenarios decrease. Next, we summarize observations
about the effect of various parameters and factors on the ALM investment strategies
obtained with the nominal, stochastic and robust optimization models.

• Number of risky assets and diversification: We first extend the simulation exper-
iments conducted for the 2-asset real market case to a set of generated data with
a larger number of assets (10, 20 and 30). The average wealth obtained with the
stochastic, nominal and robust (at fixed budget of robustness of 0.3, 0.7 and 1.0)
strategies is displayed in Fig. 2. As the market conditions deteriorate, the robust
strategies with high budget of robustness outperform both the nominal and the
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A robust asset–liability management framework 1037

Fig. 3 Performance comparison of the ALM strategies for ELN (top) and GIC (bottom) products in various
market regimes obtained by different simulation methods using 10 (left) and 30 (right) assets

stochastic ones. However, the gap between the expected wealth obtained with the
stochastic programming and the robust optimization models diminishes as the
number of assets increases due to the impact of diversification. Diversification
appears to help the stochastic programming strategies do well even in unfavorable
market conditions. For instance, while the deteriorating point for stochastic pro-
gramming strategies is at k ≈ 0.15 for the 2-asset case, it is at k ≈ 0.5 for the
10-asset case.

• Performance evaluation approaches:Weconsider static and dynamic performance
evaluation approaches using cases with 10 and 30 assets. As explained before, the
rolling horizon method updates the strategy as more info is received whereas the
fixed horizon applies the prior strategy over time. Their results are shown in Fig. 3.
We see that the average wealth obtained by the robust models is higher than the
one obtained by the nominal model for smaller values of k (at lower levels of the
unfavorable regime) if the number of assets is large. This is because diversification
has a stronger effect when there are more investment alternatives.

• Uncertainty sets: In order to understand how the size and the shape of the sym-
metric and asymmetric uncertainty sets affect the robust investment strategies, we
vary the budget of robustness for the uncertainty sets associated with the uncertain
coefficients in the objective function and the balance constraints. The numerical
experiments indicate that the budget of robustness for the funding ratio constraints
does not have a substantial effect on the investment decisions; hence those results
on are not included here.
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Fig. 4 Impact of the budget of robustness under various market conditions for ELN (top) and GIC (bottom)
products using symmetric (left) and asymmetric (right) uncertainty sets

The simulation results presented in terms of average final wealth in Fig. 4 illustrate
the effect of the budget of robustness (θo, θh

t , θ
f

t ) and (�o,�h
t ,�

f
t ) for symmetric

and asymmetric uncertainty sets, respectively, on the robust decisions under normal
and unfavorable market regimes. For instance, in order to understand the impact
of θo, we vary θo within the interval [0, 1] and fix θh

t and θ
f

t at 0.1. Similarly,

for θh
t we select the same values from the interval [0, 1] while θo = θ

f
t = 0.1.

These two cases are abbreviated as (1, 0.1, 0.1) and (0.1, 1, 0.1), respectively,
in Fig. 4. The computational results indicate that the budget of robustness (for
both symmetric and asymmetric uncertainty sets) plays an important role for the
performance of robust investment strategies in terms of the realized final expected
wealth. The budget of robustness associated with the uncertain coefficients in the
balance constraints has higher impact on the final expected wealth than the budget
of robustness for the objective function. This may be because of the cumulative
effect of multiple time periods. Note that there is a balance constraint at each time
period whereas the objective function involves only the terminal date.
Finally, we observe that the setting of (1, 0.1, 0.1) produces the highest expected
wealth under any market regime regardless the choice of model. This may be
due to the high impact of the budget of robustness (the first parameter) related to
the original objective function on the final wealth. Similarly, when the budget of
robustness of the asymmetric uncertainty set is fixed at (1, 1, 1), it leads to almost
the same expected wealth for any market regime for the GIC and ELN types of
ALM models.
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7 Concluding remarks

In this paper, we considered the asset–liability management problem for investment
products with guarantees where the optimal structure of the underlying fund is deter-
mined and exogenous uncertainties in asset returns and interest rates are incorporated
in the model using a multi-period robust optimization framework. We introduced
a tractable robust approach to solving the problem using symmetric and asymmet-
ric uncertainty sets, and described practical approaches for estimating the inputs.
The performance of the robust formulations of ALM models for investment products
with guarantees were evaluated in computational experiments with simulated and real
market data, contrasted with the performance of strategies based on stochastic pro-
gramming, and benchmarked against the performance of expected value optimization.
The robust investment strategies have better performance in terms of variability and
relative return under unfavorable market regimes where the future realizations follow
probability distributions with lower means than expected. The numerical results also
show that the robust model parameters and the size of the uncertainty sets play an
important role for the performance of robust optimization models.

When deciding on the approach for determining the optimal structure of portfolios
underlying investment products with guarantees, one should note that there are philo-
sophical differences between the application of the robust optimization approach and
the stochastic programming approach. First, the representation of the uncertainties is
done differently. In the stochastic programming approach, one solves the optimiza-
tion problem to come up with an exact strategy to be followed for each scenario.
One expects that if nature behaves very similarly to the scenarios one has generated,
the optimal strategy will perform well on average. The robust optimization approach
attempts to find a more general strategy (one not tied to specific scenarios) that works
well in terms of worst-case performance. This is effective in practice, as demonstrated
in the computational experiments. Second, the sizes of the resulting optimization prob-
lems are very different. Generally, robust optimization formulations based on summary
measures of the probability distributions of the uncertainties have a much smaller size
than stochastic programming formulations. This allows for the calculations to be run
multiple times with little additional computational effort for a range of design parame-
ters for investment products with guarantees, and addresses the problem of the optimal
pricing of such contracts as well.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bacinello AR (2003) Fair valuation of a guaranteed life insurance participating contract embedding a
surrender option. J Risk Insur 70:461–487

Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

123

http://creativecommons.org/licenses/by/4.0/


1040 N. Gulpinar et al.

Ben-Tal A, Margalit T, Nemirovski A (2000) Robust modeling of multi-stage portfolio problems. In: Frenk
H, Roos K, Terlaky T, Zhang S (eds) High-performance optimization. Kluwer Academic Publishers,
Dordrecht, pp 303–328

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Bertsimas D, Pachamanova D (2008) Robust multiperiod portfolio management in the presence of transac-

tion costs. Comput Oper Res 35:3–17
Bertsimas D, Pachamanova D, Sim M (2004) Robust linear optimization under general norms. Oper Res

Lett 32:510–516
Boender G, Dert C, Heemskerk F, Hoek H (2005) A scenario approach of ALM. In: Zenios SA, Ziemba

WT (eds) Handbook of asset and liability management. North-Holland, Amsterdam
Brennan MJ, Schwartz ES (1976) The pricing of equity-linked life insurance policies with an asset value

guarantee. J Financ Econ 3(3):195–213
Brennan MJ, Schwartz ES (1979) Alternative investment strategies for the issuers of equity linked life

insurance policies with an asset value guarantee. J Bus 52(1):63–93
Chen X, Sim M, Sun P (2007) A robust optimization perspective on stochastic programming. Oper Res

55(6):1058–1071
Consigli G, Dempster MAH (1998) Dynamic stochastic programming for asset-liability management. Ann

Oper Res 81:131–162
Consiglio A, Cocco F, Zenios SA (2001) The value of integrative risk management for insurance products

with guarantees. J Risk Financ 2(3):6–16
Consiglio A, Saunders D, Zenios SA (2006) Asset and liability management for insurance products with

minimum guarantees: the UK case. J Bank Financ 30:645–667
Consiglio A, Cocco F, Zenios SA (2008) Asset and liability modeling for participating policies with guar-

antees. Eur J Oper Res 186(1):380–404
Dantzig GB, Infanger G (1993)Multi-stage stochastic linear programs for portfolio optimization. Ann Oper

Res 45:59–76
Duffee G (2002) The long-run behavior of firms stock returns: evidence and interpretations. Working paper,

Haas School of Business, University of California at Berkeley, Berkeley, CA
El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J

Matrix Anal Appl 18(4):1035–1064
Escudero LF, Garín A, Merino M, Pérez G (2009) On multistage stochastic integer programming for

incorporating logical constraints in asset and liability management under uncertainty. Comput Manag
Sci 6:307–327

Fabozzi F, Kolm P, Pachamanova D, Focardi S (2007) Robust portfolio optimization and management.
Wiley, Hoboken

Ferstl R,Weissensteiner A (2011) Asset-liability management under time varying investment opportunities.
J Bank Financ 35(1):182–192

Gerstner T, Griebel M, Holtz M, Goschnick R, Haep M (2008) A general asset-liability management model
for the efficient simulation of portfolios of life insurance policies. Insur Math Econ 42:704–716

Goldfarb D, Iyengar G (2003) Robust portfolio selection problem. Math Oper Res 28(1):1–37
Gondzio J, Kouwenberg R (2001) High performance computing for asset-liability management. Oper Res

49(6):879–891
Goyal A,Welch I (2008) A comprehensive look at the empirical performance of equity premium prediction.

Rev Financ Stud 21:1455–1508
Gulpinar N, Pachamanova D (2013) A robust optimization approach to asset-liability management under

time-varying investment opportunities. J Bank Financ 37(6):2031–2041
Gulpinar N, Rustem B (2007) Worst-case optimal robust decisions for multi-period portfolio optimization.

Eur J Oper Res 183(3):981–1000
Gulpinar N, RustemB, Settergren R (2004) Simulation and optimization approaches to scenario generation.

J Econ Dyn Control 28:1291–1315
Hardy M (2003) Investment guarantees: modeling and risk management for equity-linked life insurance.

Wiley, New York
Klaassen P (1998) Financial asset-pricing theory and stochastic programming models for asset-liability

management. Manag Sci 44(1):31–48
Kouwenberg R (2001) Scenario generation and stochastic programming models for asset liability manage-

ment. Eur J Oper Res 134(2):279–292

123



A robust asset–liability management framework 1041

Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the
CACSD conference, Taipei, Taiwan

Mallier R, Alobaidi G (2002) Pricing equity-linked debt using the Vasicek model. Acta Math Univ Comen
71(2):211–220

Miltersen KR, Persson SA (2003) Guaranteed investment contracts: distributed and undistributed excess
return. Scand Actuar J 4:257–279

Natarajan K, Pachamanova D, SimM (2008) Incorporating asymmetric distributional information in robust
value-at-risk optimization. Manag Sci 54(3):573–585

Natarajan K, Pachamanova D, Sim M (2009) Constructing risk measures from uncertainty sets. Oper Res
57(5):1129–1141

Nietert B (2003) Portfolio insurance and model uncertainty. OR Spectr 25:295–316
Oguzsoy CB, Guven S (2007) Robust portfolio planning in the presence of market anomalies. OMEGA:

Int J Manag Sci 35(1):1–6
Pachamanova DA, Fabozzi FJ (2016) Portfolio construction and analytics. Wiley, Hoboken
Pae Y, Sabbaghi N (2014) Log-robust portfolio management after transaction costs. OR Spectr 36:95–112
Pinar M (2007) Robust scenario optimization based on downside-risk measure for multi-period portfolio

selection. OR Spectr 29(2):295–309
Powell WB (2011) Approximate dynamic programming. Wiley, New York
Ramaswami M, Lieberman PK, Baez G (2001) Equity-linked notes. Global Equity Derivatives, Lehman

Brothers
Soyster AL, Murphy FH (2013) A unifying framework for duality and modeling in robust linear programs.

OMEGA: Int J Manag Sci 41(6):984–997
Stiefel JD (1984) The guaranteed investment contract (GIC). Soc Actuar 36:265–285
Toy WW, Ryan MD (2000) Public equity-linked debt. In: Francis JC, Toy WW, Whittaker JG (eds) The

handbook of equity derivatives. Wiley, New York, pp 329–342
Valle CA, Meade N, Beasley JE (2014) Absolute return portfolios. OMEGA: Int J Manag Sci 45:20–41
Walsh MW (2008) Where did AIG’s cash go? The New York Times, October 30
Ziemba WT, Mulvey JM (1998) Worldwide asset and liability modeling. Cambridge University Press,

Cambridge

123


	A robust asset--liability management framework for investment products with guarantees
	Abstract
	1 Introduction
	2 Problem statement
	3 Scenario-based asset--liability management model
	4 Robust ALM for investment products with guarantees
	4.1 Symmetric uncertainty sets
	4.2 Asymmetric uncertainty sets

	5 Implementation
	5.1 Data
	5.2 Parameter estimation for the robust formulations

	6 Computational results
	7 Concluding remarks
	References




