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Abstract

Exploiting the power of collective use of complementing data sources for the discovery of new correlations and findings
offers enormous additional value compared to the summed values of isolated analysis of the individual information
sources. In this article, we will introduce the concept of “cross domain fusion” (CDF) as a machine learning and pattern
mining driven and multi-disciplinary research approach for fusing data and knowledge from a variety of sources enabling
the discovery of answers of the question to be examined from a more complete picture. The article will give a basic

introduction in this emerging field and will highlight examples of basic CDF tasks in the field of marine science.

Introduction

The increased availability of data and knowledge as well
as the trend towards more interdisciplinary and trans-
disciplinary research approaches call for solutions to the
paradigm of cross domain fusion (CDF). CDF is a data-
driven and multi-disciplinary research approach that leads
towards a holistic “big picture” supporting and integrating
multiple scientific views. In our definition, views repre-
sent the various perspectives on a scene of an excerpt of
the real world. Thereby, views vary among different dis-
ciplines, different data sets, data types, and data sources
including models, and different abstraction of data ranging
from measurement records over patterns up to knowledge
representations.
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For example, physicists and biologists have different per-
spectives on some scenes in the ocean, such as the behav-
ior of saline concentration and behaviour of living organ-
isms. Also within the same scientific discipline, there may
be many varying views on entities of a general research
topic—for example, oxygen deficits in coastal regions mea-
sured by remote sensing raster data vs. series of in situ sen-
sor measurements. Since most scientific views are tradition-
ally explored in isolation, they are also restricted to specific
findings and often do not allow a broad understanding of re-
lationships and functional dependencies between multiple
concepts such as structural relationships among different
scientific views.

Defining cross domain fusion

Cross domain fusion differs from traditional concepts for
data fusion studied in the database community in terms of
focusing on the fusion of data at higher data abstraction lev-
els (including patterns and knowledge) rather than schema
mapping and data merging conducted at the (lowest) data
level.

Cross domain fusion (CDF) is a systematic approach for data
analysis techniques organically fusing data and knowledge
from various data sources referring to different abstraction
levels, including scientific models and user (stakeholder/
expert) knowledge, through a (semi)automatic big data
analytics pipeline and interactive exploration.
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Let us note that the focus here is on applications with
spatial and spatiotemporal data (e.g., climate research,
smart cities, marine science, archaeology, etc.); however,
CDF is a general paradigm not limited to these disciplines.

Examples of cross domain fusion

CDYF, for example, enables the consideration of the interplay
between a scientific model, e.g., a physical ocean current
model, and observational data sensed from the real world,
e.g., ocean current sensor data.

Considering both views induced by the data sources, re-
spectively, in an isolated way often results in a mismatch
between the model and the real world. The reason is that
models cannot cover all aspects of the real world while the
sensed data are usually highly incomplete in space and time.
The fusion of both views covering the interplay between
both is the key to overcoming the two above-mentioned
shortcomings.

Another example of CDF is the integration of multi-
ple heterogeneous views of data, e.g., spatiotemporal data
augmented with other, not necessarily spatial, context data
including text, images, sensor measurements, etc. For ex-
ample, ocean current driven trajectories of floating particles
in combination of water mass attribute data, like saline con-
centration, temperature, etc. gives ocean scientists valuable
new insights into water mass transportation in the ocean
and helps to understand the dynamics and stability of the
gulf stream. Again, the integration of the combined view on
multiple different data sources into the data analysis pro-
cedure is the key to discovering more insights into a real
world scene than from the single data sources alone.

Motivation and outline

Recent advances in exploiting the power of machine learn-
ing to fuse data/views that increase the potential of data
analysis are summarized in [1]. While most approaches
have been proposed in the field of urban analytics [2—4],
it is increasingly attracting further scientific disciplines [5,
6]. However, most existing solutions are isolated, often too
narrow, ad-hoc approaches designed for specific applica-
tions. We need more general, broader, and systematic fusion
concepts, such as CDF aims for. CDF offers significant po-
tential for fundamental research in Computer Science, e.g.,
it provides next generation methods for knowledge acqui-
sition and data science. In this article, we sketch out why
CDF as a new scientific paradigm would be beneficial for
gaining scientific wisdom and discuss the key aspects of
CDF from the Computer Science point of view. In particu-
lar, we describe typical sources of data and knowledge that
needs to be fused. Furthermore, we categorize the basic al-
gorithmic approaches and methods to implement CDF and

@ Springer

sketch preliminary ideas and opportunities for CDF. Finally,
we discuss technical challenges surrounding the execution
of CDF methods. We will point out possible research chal-
lenges for Computer Science, particularly data science as
the core research area.

Cross domain fusion: why (now)?

Over decades, scientific knowledge and wisdom have been
obtained by transforming small scale observations of real-
world phenomena into—mostly very specific—scientific
models. Scientific models typically represent a small and
isolated abstraction of the real world. The process of gain-
ing wisdom from observations/data typically follows the
four stages of the “DIKW” (data, information, knowledge,
wisdom) pyramid [7] (see left side of Fig. 1). Scientific
models may represent the upper stages, i.e., information
(such as patterns in the observations), knowledge (e.g.,
in the form of scientific models), or wisdom. We use the
term “domain” for the more general concept representing
any stage of the DIKW pyramid (including data, patterns,
models, etc.). Domains usually represent specific scientific
views (disciplines), but there may be multiple views on the
same abstraction within one discipline. Often, the domain
of scientific models are used for further exploitation to
ultimately understand the real world. Since most scientific
views and their corresponding models are traditionally
explored in isolation, they are also restricted to limited
findings and do not allow the derivation of a holistic under-
standing of functional networks between multiple concepts
such as relationships between entities among different
scientific views and disciplines.

The reasons for isolated research may be manifold, e.g.,
missing data and knowledge, limited expressiveness of sci-
entific models, or lacking awareness in domain experts
about data science methods (which in turn may be hard to
apply for inexperienced users). Many views are even sup-
posed to be incompatible to each other so far, because of
representational gaps in models, technical boundaries (e.g.,
missing tools, systems, application programming interfaces
(APIs)), semantic discrepancies of data sources (e.g., quan-
titative versus qualitative data), etc. In order to derive ex-
haustive insights, it is usually no longer sufficient to ap-
ply data analysis tools in an ad-hoc manner to data (or
more general: domains) from isolated views or to a single
source of truth integrating all relevant domains, because
these domains are heterogeneous, dynamically changing,
and mostly unstructured.

However, the generation, accessing, and processing of
diverse data sources together with the proliferation of data
science methods for the processing and analysis of these
data sources requires a multi-disciplinary, holistic research
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Fig.1 Cross domain fusion (right) integrates different stages of the data information knowledge wisdom (DIKW) pyramid (left) from different
scientific views and domains using the next generation of data science methods and tools. ML machine learning

approach. The paradigm of CDF calls for the next gen-
eration of data science methods to combine multiple do-
mains from various scientific views. CDF systematically
combines multiple ingredients (data, patterns, models, and
knowledge) to derive comprehensive wisdom (cf. Fig. 1). In
particular, knowledge in the form of patterns (e.g., derived
from multiple data sources using data mining and machine
learning) or existing models reflecting expert knowledge
(e.g., knowledge graphs or simulation models) are com-
bined with domains (data, information, knowledge) from
different views to derive higher-level models and, finally,
a higher level of wisdom. For example, to get insights for
water mass transportation, clusters of water masses (low
level patterns) are used to embed floating trajectories (fur-
ther low level pattern), which in turn are used to identify
patterns of water mass transitions (high-level patterns).

Sources for cross domain fusion

One key data science aspect of CDF is what sources of
data and knowledge need to be fused. In general, the set of
sources for CDF is unbounded; however, we will focus on
prevalent sources in spatiotemporal applications and discuss
potential challenges.

Data

In virtually all scientific disciplines researchers observe
quantitative and/or qualitative data specific to the topic of
interest.

Raw data contains quantitative measurements derived di-
rectly from some source of origin, including any types of
sensors (optical, acoustic, chemical, etc.), but also humans

(recording some standard measurements, e.g., the size of
a bone, etc.). Often the raw data is already in some rep-
resentation that is suitable for data science methods, but
depending on the source of origin this usually requires
some implicit (non-transparent) processing or transforma-
tion. Raw data is also often inherently fuzzy (uncertain) due
to technical constraints of a sensor or due to personal bias.
This uncertainty needs to be taken into account when used
within a CDF framework.

Processed data contains quantitative data that has been de-
rived from raw data through explicit pre-processing. Typi-
cal pre-processing includes aggregations (e.g., along some
concept hierarchy), normalization, transformations (e.g., the
derivation of new features), etc.

Interpreted data contains qualitative aspects derived from
raw or processed data through an additional interpretation
step that usually introduces some bias. For example, the
aggregation of a scientific questionnaire involves interpre-
tations by humans. Another example is the (temporal, cul-
tural, etc.) classification of an archaeological finding by an
expert.

While the majority of data science methods focus on the
analysis of either quantitative data or qualitative data only,
one particular challenge for CDF is the fusion of qualitative
and qualitative data.

Information and knowledge

Scientific models Scientific models describe more or less
complex systems that cover a particular part or feature of
the real world, aiming at making the world (or particular
aspects of the world) easier to understand, define, quantify,
visualize, or simulate. These models are usually built on

@ Springer



274

Informatik Spektrum (2022) 45:271-277

existing and commonly accepted domain knowledge and
are represented using some mathematical formalism, e.g.,
some differential equations. As mentioned above, these sci-
entific models are usually limited in the following aspects:
First, the models do not cover all aspects of the real scene,
so they do not exactly match the data observed from the
real world. Second, the models are inferred by (individual)
interpretations of observations or built on (individual) hand
selected features. This often leads to multiple concurrent
and sometimes even contradicting models. Third, models
for particular scenes are still missing altogether. In such
cases, general approximate models derived from some hy-
pothesis that may be significantly removed from the real
world are frequently used.

As a consequence, we typically see a mismatch between
the data a scientific model generates and the real world,
i.e., the observations about the concept the model repre-
sents. A possible solution to overcome this mismatch is to
integrate the two different views on the real world (scien-
tific model and observational data) using the paradigm of
CDE

Categories of cross domain fusion methods

CDF ranges over multiple data abstraction levels and falls
into the following fusion categories.

Cross domain data fusion

To pave the path towards CDF, a novel, fundamental, and
systematic framework of methods is needed that enable the
fusion of data, patterns, knowledge, etc., i.e., the fusion
of multiple potentially heterogeneous views and stages of
data from diverse domains. Existing approaches to cross
domain data fusion can be classified into three categories:
stage-based, feature-based, and semantic-based data fusion
methods [2, 8]. Most of these approaches have been applied
in the field of urban analytics fusing traffic data with other
urban attributes [2—4]. In the following, we give a brief
overview of these fusion categories.

Stage-based fusion Stage-based methods apply tailored
data mining algorithms to different views and stages, e.g.,
combine raw trajectory data with patterns derived from
spatial data representing points of interest. In general, dif-
ferent views can be combined at any stage without any
constraints regarding the consistency of their modalities,
syntax, and semantics.

Feature-based fusion Feature-based methods extract fea-

tures from the involved views. The simplest way to do this
feature extraction is to use “manually” designed features, to
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concatenate these features into one common feature space,
and to apply standard data mining or machine learning tech-
niques to this common feature space. Since each (extracted)
feature is treated equally, this approach may be too simple
if the representation, distribution, and scale of the extracted
features is very different. Instead of simply concatenating
manually designed features, recent representation learning
approaches that automatically learn a common feature rep-
resentation, typically using deep learning, have been inves-
tigated. A downside of these approaches is that the learned
feature spaces are usually hard to interpret.

Semantic-based fusion Semantic-based methods try to ac-
count for the semantics of each view and the relations be-
tween features across different views and, thus, they are
typically very specific and tailored to a given problem. They
rely on understanding that the fusion has a semantic mean-
ing (and insights) derived from the ways that people think of
a problem with the help of multiple views. General methods
used in this category include multi-view-based, similarity-
based, probabilistic dependency-based, and transfer learn-
ing-based methods.

Knowledge fusion through inter-active systems

As the fusion of information from diverse data sources has
tremendous potential for the discovery of new and relevant
knowledge, it becomes clearly obvious that the incorpora-
tion of background knowledge from the user or stakeholder
would significantly increase this potential.

Knowledge fusion based on human computer interaction
addresses three key questions: 1) what objects (data or in-
formation) the user is allowed to interact with, 2) how the
data is presented to the user, and 3) how the user can inter-
act with the objects. While most work in this field has been
done concerning the two latter questions mainly addressing
visualization and modes of human computer interaction, the
identification of objects or information presented to the user
and enabled for interaction is a far underrepresented field
of study. Usually, the decision on what the user can interact
with are predefined and often hard-coded. With interac-
tion-driven knowledge fusion, however, we have a different
situation as different users want to interact with different
things and in a different way. Traditional information sys-
tems require exact specification of the information to be
extracted by the system, requiring precise knowledge about
the data and information organized in the system, which is
infeasible for data-rich systems. Instead, techniques capa-
ble of filtering the data that is most relevant for the users or
stakeholders are required. Machine learning-driven recom-
mender engines, mostly used for product recommendation
like amazon, or recommendation in social networks [9] like
linked-in or Facebook, could be a promising blueprint for
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a solution to the aforementioned problem. The idea of such
a system, adapted from ordinary recommendation architec-
tures [10], is depicted in Fig. 2. The backbone of the sys-
tem is a user input analysis layer with a component for data
selection analysis, collaborative filtering, a component for
user behavior analysis, and a query engine. The components
of this layer are connected to data and model repositories
managing the data and models the user wants to interact
with, as well as a database managing the data about the
interaction between the user/stakeholder and the system.
All interaction activities including selection and manipu-
lation of certain data or models, data/model exploration
tasks, queries, and attribute-setting of models will be mon-
itored and maintained in the user behaviour database. This
database will be used to predict further data and/or mod-
els that are potentially relevant for the user based on certain
user—system interaction events supported by machine learn-
ing techniques. The identified data is recommended to the
user, potentially in a fashion like “Based on your interaction
with dataset A, you might be also interested in dataset B”
and together with explanations of the relationship between
these two datasets.

Fusion of data and models

The fusion of pure data-driven models using machine learn-
ing approaches and scientific models enables the combina-
tion between the real world and our parametric description
of the world. By means of bidirectional interfaces such hy-
brid approach aims to achieve a synergetic effect between
formalized and data-driven models. Two key questions arise
in this context: 1) how can we advance models by data
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measured from the real world? and 2) how can we augment
measured data with data from models?

The interplay of the two different views represented by
scientific models and by observation (data) is key to CDF.
Scientific models for spatiotemporal abstractions such as
differential equations are (almost) complete in space and
time, i.e., for any input from the continuous space and time
dimensions, the models will be able to compute an output.
However, due to the mismatch between model and obser-
vation mentioned above, the view of scientific models is
incomplete with respect to the real world, i.e., the output of
the model often does not match the real world. In contrast,
data observed from the real world is inherently incomplete
(sparse) in space and time since we only have a limited
set of observations from the infinite space-time continuum.
However, this view is (obviously by design) complete with
respect to the real world. One key challenge for CDF will
be to fill the gaps of both views by fusing these views. The
fusion of the different views will aim at deriving a more
complete view, i.e., a model that is shifted towards com-
pleteness in both dimensions, space and time, as well as
the real world (see Fig. 3).

Examples for CDF tasks

Interplay of scientific models and observational data In ma-
rine science, scientific models describe an abstraction of the
real world using some mathematical formalism, e.g., a set of
differential equations. While these models are by design (al-
most) complete in space and time, i.e., provide an output for
any input from the continuous space and time dimensions,
the models suffer from an observational gap, i.e., a mis-
match between the data a scientific model generates and
the real world. The reasons for this gap may be manifold,
e.g., the models cannot cover all aspects of the real world,
the models are inferred by (individual) interpretations of
observations or built on (individual) hand selected features
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(which often leads to multiple concurrent and sometimes
even contradicting models), as well as models for particu-
lar aspects are still missing altogether (general approximate
models derived from some hypothesis which may be sig-
nificantly removed from the real world are frequently used
in such cases). In contrast, observational data obviously
does not suffer from an observational gap, but is inherently
incomplete in space and time (we will never have obser-
vations at any possible spatiotemporal coordinate), i.e., has
a spatiotemporal gap. To overcome these different gaps,
the two different views (scientific model and observational
data) need to be integrated using the paradigm of CDF.

Integrating multiple views and/or stages into data-driven
analysis In spatiotemporal data analysis, integrating het-
erogeneous views and stages is a common challenge. Pure
spatiotemporal data is usually enriched by other data modal-
ities such as text, images, general sensor readings, etc. The
integration of these different, typically very heterogeneous
modalities into the data analysis process is often the key
to success. This integration often needs to be done along
multiple stages. A simple example of such a stage-based
CDF approach is described in the following (cf. Fig. 4).
The shown stage-based CDF approach aims at identify-
ing insights of water mass transportation. The approach is
based on two input data sets, Eulerian water mass data (data
set 1) and Lagrangian water flow trajectories (data set 2).
In the first fusion stage (stage 1), Eulerian water mass data
(saline concentration and temperature) is transformed into
categories by means of clustering and mapping techniques.
In stage 2, Lagrangian water flow trajectory data is fused
with the water mass patterns derived from stage 1 and
embedded into sequences of water mass states that are
subsequently used to derive the final water mass transition
model in stage 3. This example illustrates how different
data sources can be fused on different data abstraction

— - % —-b Stage 1
Eulerian Data CIuéieFﬁng
(Data Source 1)
o\ -
£ M—\ — Tj L Stage 2
- . i Seeding /
Langrangian Data Ba0s @c 00 0nge
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Fig.4 Discovery of water mass transportation model based on stage-
based cross domain fusion paradigm as in [11]
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levels with the help of machine learning techniques using
the stage-based fusion concept.

Conclusion

From the data science perspective, CDF offers a plethora of
new research challenges. The general ideas of cross domain
fusion are not entirely new, particularly in spatiotemporal
applications. Triggered by the big data era, early incarna-
tions of these ideas in the spatiotemporal domain include
the paradigm of “enriched geo-spatial data.” However, ex-
isting work in this direction consists of several, mostly iso-
lated and application-specific approaches for fusing differ-
ent views. Rather, to leverage the paradigm of CDF, a funda-
mental and systematic framework of new data science meth-
ods that enable the fusion of multiple views and stages is
needed. This includes (but is not limited to) innovative con-
cepts dealing with the combined analysis of heterogeneous
and unstructured data sources, data types, and data formats,
the fusion of any stage from data to knowledge including
the fusion of different stages with research methods and
tools, the management and analysis of fusion provenance,
fusion quality, and fusion reliability, as well as interactive
fusion (e.g., “human-in-the-loop” concepts) and the visual-
ization of the fusion.
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