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A discrete, size-structured model of phytoplankton
growth in the chemostat
Introduction of inhomogeneous cell division size

Received: 9 February 2000 / Revised version: 10 October 2001 /
Published online: 23 August 2002 – c© Springer-Verlag 2002

Abstract. We introduce inhomogeneous, substrate dependent cell division in a time discrete,
nonlinear matrix model of size-structured population growth in the chemostat, first intro-
duced by Gage et al. [8] and later analysed by Smith [13]. We show that mass conservation
is verified, and conclude that our system admits one non zero globally stable equilibrium,
which we express explicitly. Then we run numerical simulations of the system, and compare
the predictions of the model to data related to phytoplankton growth, whose obtention we
discuss. We end with the identification of several parameters of the system.

Introduction

A chemostat is a continuous culture device in which organisms (bacteria, phyto-
plankton) grow, submitted to a flow of nutrient. Chemostats have been extensively
studied mathematically (see [14]), mainly using ordinary differential equations.
The global behaviour of a chemostat is well known, using models such as the Mo-
nod model or the Droop model. But these models describe the behaviour of the
total biomass of the system.

One of the possible ways to gain further insight on the behaviour of chemostats
is to use structured models, describing the evolution of the population in more de-
tail. Moreover, it is now possible to obtain long time series of structured data from
chemostats (e.g., with the automated device described in [5], which will be de-
scribed more thoroughly in Section 4). Therefore comparison of model behaviour
to the data is possible, and should lead to refinements of the models [4].

However, structured models of the chemostat are less known. Most works on the
latter use partial differential equations. In [10] a size structured model is presented,
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which is extended to the competition case in [6], while [11] introduces cell cycle
structuration. However, the mathematical analysis of these models can be hard (one
often has to reduce the model to an ODE system by considering moments of the
density), so as their numerical integration.

Another kind of structured modelling is the use of discrete time, discrete struc-
ture systems (see [7, chapters 1 and 3] for a review of structured discrete time
models). While the mathematical analysis of such systems can be as tedious as in
the continuous case, they have the advantage that they are easy to simulate.

Such a model, time discrete and structured in biomass (size) classes, was intro-
duced for the chemostat in [8] by Gage et al.. They showed that a stable distribution
of the biomass is reached, in which the biomass is constant and equal for all size
classes. They also studied numerically the influence of various factors (number of
size classes, flow rate) on the convergence speed. Later, Smith [13] corrected a mis-
take in the formulation of the model, showed mathematically that the equilibrium
is globally stable, and also introduced competition between two species, showing
that the competitive exclusion principle holds. Recently, he and Zhao [15] extended
this result to the n-species case.

But this model is based on a very strong assumption: all cells are born with the
same biomass b, and cells surviving dilution divide when they reach biomass 2b.
Gage et al. obtain biomass spectra which resemble the experimentally observed
spectra, but by using the assumption that the biomass in each class is log-normally
distributed [17]. Hence variability is added a posteriori to the model.

The aim of the present work is to extend the model of Gage et al. to the case
where cell division (and consequently, cell birth) can happen for cells in several
biomass classes, the effective size at division being distributed following some
probability density. Hence cells need not necessarily exactly double their biomass
in order to divide. This is closely related to the continuous models (in time and in
structure) of [10] and [11], where the division rate is defined using a probability
density. Using this approach, the division process is included in the model, instead
of being artificially added onto the results.

This paper is organised as follows: in Section 1, we derive our model from the
one of [8], introducing division for cells of different sizes. The reader interested
only in the mathematical formulation of the system should turn directly to Sec-
tion 1.4 where it is written down. We then analyse the model in Section 2; using the
fact that it conserves the mass, we are able to closely follow the analysis of [13] and
to conclude existence of a globally stable non trivial equilibrium, which we cha-
racterise. Sample equilibrium distributions are then shown in Section 3, as well as
examples of the transient behaviour of the model. Biological data is then discussed
in Section 4, and compared to model predictions. In particular, an identification
procedure is applied to obtain values for some of the system parameters.

1. Model formulation

We suppose that the system under consideration is a well-stirred chemostat. In Gage
et al., the following biological assumptions are made.
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(H1) In a constant environment (i.e., if the concentration of limiting nutrient is
constant and high), the growth of a cell is exponential.

(H2) Cells are born with a biomass b, they grow, then divide when they reach a
biomass 2b.

(H3) When a cell divides, it divides into two daughter cells, whose individual
biomass is exactly one half of the biomass of the original cell.

In the present model, we replace hypothesis (H2) with a new one, to relax the
division size hypothesis.

(H2′) The division biomass 2b (accordingly, the birth biomass b) is not a con-
stant. There exists a distribution of division biomass, describing the individual
cellular division biomass.

Before we proceed with the proper formulation of the model, let us give here
some precisions concerning mathematical terms that will be used throughout the
following sections. First of all, since the model will be formulated in discrete time,
we define T , the iteration period (or time step). Let then E (0 ≤ E < 1) be the
dilution rate per iteration period. We also define the state variable St , substrate
concentration in the chemostat at time t .

The formulation of the model is carried out in several steps. First of all, an appro-
priate description of cellular size must be made. This is the object of
Section 1.1. Then, in Section 1.2, cell growth is taken care of. Finally, preced-
ing the definitive formulation of the system in Section 1.4, modelling of cellular
division is explained in Section 1.3.

1.1. Description of cellular size

We suppose that the minimal individual cellular biomass is bmin. Then the model
will describe cells whose individual biomass belongs to an interval [bmin, bmax],
where bmax is a parameter dependent constant that will be discussed later. We split
this interval into r biomass (size) classes. Hence a given cell will be a member of
a certain class, depending on its biomass.

We then define the state variables xt = (x1(t), . . . , xr (t))
T to be the total

cellular biomass in each of the r size classes, at time t . Consequently, denoting
1l = (1, . . . , 1)T and Ut = 1lT xt , one has the total cellular biomass in the system
at time t .

In [8,13], all size classes are alike. However, since we will need to be able to
account for cellular division, we need introduce some inhomogeneities. Therefore,
we suppose that the r biomass classes are divided as follows: there are rg (growth)
size classes, during which the dynamics is the same as in [8,13]: the cells in these
classes can either proceed to the next biomass class (if they grow of a sufficient
amount) or stay in the class (if their growth is not sufficient). There are no births
nor divisions in these classes. Following this stable stage, there are rd (division)
classes, during which cell division occurs. Correspondingly, we assume that there
are rb (with rb = rd ) size classes prior to the stable stage, in which the dividing
cells “fall” (see Figure 1.1). Hereafter, we will call the latter classes birth classes.
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Note that in order to be able to track cells in a satisfactory manner, we impose a
one to one correspondence between division and birth classes.

Therefore, r = rb + rg + rd is the total number of classes, and the structure of
the model can be decomposed as follows:

– i = 1, . . . , rd birth classes.
– i = rd + 1, . . . , rd + rg growth classes.
– i = rd + rg + 1, . . . , r division classes.

In what follows, such indices will be referred to as absolute indices. When dealing
with growth or division classes, we will also use relative indices, i.e., the index of
growth (respectively division) classes among growth (respectively division) class-
es. For example, the division class with relative index dr is the size class of absolute
index da = rb + rg + dr . The terms absolute and relative will be dropped if no
confusion is possible.

There can possibly be no growth classes, but the number of division (and hence
birth) classes has to be at least one. As will become clear later, if rb = rd = 1,
then the model restricts to the one of Gage et al, whatever the number rg of growth
classes.

To describe the way to split the biomass interval [bmin, bmax] between the r

sub-intervals, we now need to define the size classes in a more precise manner. To
do so, we use a constant, M , representing the size increment for a cell moving from
class i to class i + 1. Since hypothesis (H1) must be fulfilled, M has to account for
an exponential growth of the cells (if the substrate concentration is high). Suppose
that a cell has an exponential growth between biomass b and 2b. If we want to
“track” this biomass as it progresses along, say n classes, then using M = 21/n

does the trick. Indeed, defineMi−1b to be the biomass of the cell in class i. Then if a
cell progresses from one class to the next at each time step, we have an exponential
growth of the biomass from b to 2b.

We want to allow more flexibility in the size doubling hypothesis, i.e., cells
need not exactly be twice their birth biomass at division. In particular, we assume
that a cell can more than double its birth mass. Thus we need to choose M > 21/r

so that Mrbmin > 2bmin. We also impose a one to one correspondence between
division classes and birth classes. Then M is determined as follows.

Fig. 1.1. Structure of the model. Example with rd = 3 (= rb)
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Let dr be the (division class relative) index of a division class. For the one to
one correspondence to hold, the result of the division of a cell in class dr must be
two cells in birth class k, with k = dr . Thus we must have

MMrb+rg+dr−1bmin = 2Mdr−1bmin

The factor M in the left-hand side of this equation results from the modelling hy-
pothesis that division follows growth, which will be discussed in more detail in
Section 1.3. Now in particular, this equation has to be true for dr = k = 1, so we
must have

Mrb+rg+1 = 2

so finally

M = 21/(rb+rg+1)

and the mean biomass of cells in class i is given by

Mi−1bmin

1.2. Description of cellular growth

What we have so far is a static description of cellular size, linking the size of a cell
with its position among the size classes. But this was done using the assumption
that S = +∞ (i.e., in unlimiting growth conditions). Now in practice, the substrate
concentration in the chemostat is limiting. So we now need to determine how cells
effectively grow, i.e., since the model is discrete, to determine the proportion of
cells in one size class which will move to the next size class, given a certain sub-
strate concentration. It is our feeling that the obtention of the proportion of growing
cells should be a little more detailed than it is in [8,13], so we proceed here, using
a slightly different justification as well.

We first need to define a growth function, to model nutrient uptake and conse-
quent cell growth. This function, noted f , is taken to be an increasing, bounded
function of S, i.e., that it verifies f (0) = 0, f ′(S) > 0 and f ′′(S) < 0. Since this
will come of use later, we define m = limS→∞ f (S), the maximal growth rate per
iteration period.

Now since the biomass classes have a certain width, all the cells that belong
to one biomass class do not have the exact same biomass. Therefore, we have to
determine what fraction of the biomass in a class corresponds to cells that grow
enough to become members of the next size class, and what fraction does not.
In order to do so, we proceed as follows. Suppose that there is no washout (i.e.,
E = 0), and consider class i at time t . The number of cells in this class is given by
ni(t) = xi(t)/(M

i−1bmin). This number stays the same after growth, but a certain
number nsi (t) of cells will stay in the class, while a number npi (t) will progress to
the next class. This can be written

ni(t) = nsi (t) + n
p
i (t)
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Now we can also write that following growth, the biomass xi(t) has become

x̄i (t + 1) = nsi (t)M
i−1bmin + n

p
i (t)M

ibmin

Remark that x̄i (t + 1) �= xi(t + 1), since it neglects the biomass moving in class
i from class i − 1. This equation states that the new biomass in class i at time
t + 1 is the sum of the biomass of the cells which have stayed in class i and of the
cells which have progressed to class i + 1. Using this equation, we can then easily
compute the number nsi (t):

nsi (t) = x̄i (t + 1) − n
p
i (t)M

ibmin

Mi−1bmin

Now adding n
p
i to both sides of this equation and using ni(t) = xi(t)/(M

i−1bmin),
we find that

xi(t)

Mi−1bmin

= x̄i (t + 1) − n
p
i (t)M

ibmin

Mi−1bmin

+ n
p
i (t)

Therefore,

n
p
i (t) = x̄i (t + 1) − xi(t)

Mi−1(M − 1)bmin

In this equation, x̄i (t + 1) − xi(t) is the increase of biomass in class i due to cell
growth. This is given by xi(t)f (St ). Hence we have that the number of cells of
class i that will move to class i + 1 after growth is given by

n
p
i (t) = xi(t)f (St )

Mi−1(M − 1)bmin

Finally, the proportion of cells in class i moving to class i + 1 is the ratio of the
number of passing cells to the total number of cells in class i:

Pt = n
p
i (t)

ni(t)
= f (St )

M − 1

1.3. Description of cellular division

We now turn our attention to the truly novel part of this model: the description of
cellular division. Indeed, the model of Gage et al. supposes that, in our notations,
rb = rd = 1, so that division occurs for cells in the last size class, i.e., for cells
with a given biomass.

On the contrary, we want (H2′) to be accounted for. So we suppose that cells
that are in a division class and grow sufficiently, can either divide, with a certain
proportion, or proceed to the next division class. Furthermore, we suppose that this
proportion is a function of the substrate concentration, and that it is size dependent
(e.g., one could assume that bigger cells divide even in low substrate concentra-
tions, while smaller cells do not). The method used to model this is depicted in
Figure 1.2: one first determines the proportion of cells in a given division class
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Fig. 1.2. A schematic representation of division in division class d (indices shown are ab-
solute indices). The bottom class labelled d is birth class d, while the upper two classes are
division classes

(division class relative index d in the figure) that would proceed to the next size
class, using the function Pt obtained in Section 1.2. Among this pool of grown
cells, a certain proportion of cells will effectively divide, each yielding two cells in
(birth) size class d , while the rest will proceed to the next (division) size class.

Hence let us denote by Di(S) the proportion of cells in division class i that
divide. Then 1 − Di(S) is the proportion of cells of class i that grow instead of
dividing. The way these functions depend on the substrate concentration will not be
specified at this point, but one can think of Holling type II functional response, or
of sigmoidal functions. All that we require is that these functions be continuous and
bounded, that is for i = 1, . . . , rd − 1 and for all S ∈ R+, 0 ≤ Di(S) ≤ 1, where
both inequalities have to be strict for some S. This can be formulated the follow-
ing way: we suppose that there exists a nonempty subset Sint ⊂ R+, Sint �= {0},
defined by

Sint = {s̄ ∈ R+ : ∀i < rd,Di(s̄) ∈ (0, 1)} (1.1)

Note that we do not require that Sint be a connected set. Figure 1.3 shows the pos-
sible nature of the Siint set for a given division class i. The set Sint then consists of
the intersection of all such sets (for all division classes except the last). This subset
will be useful in Theorem 2.5.

In order to constrain the cell sizes, we suppose that in the last division class all
cells divide, i.e., that Drd (S) = 1 for all S.

From a biological point of view, these hypotheses mean that there exist substrate
concentrations such that: the only size class in which all cells divide is the last one;
there are no division classes in which no cells divide.

There is indirect biological evidence underlying the hypothesis that cell divi-
sion size is substrate dependent. In a recent study, Sciandra et al. have carried out
experiments on Cryptomonas sp. [12], in which they show that, depending on the
substrate concentration, the mean cell size (diameter) differs. A counter intuitive
result in this paper is that the mean cell size decreases as the input substrate concen-
tration increases. This confirms the results of Turkia and Lepistö [16], who carried



320 J. Arino et al.

measurements of the diatom Aulacoseira Thwaites in Finnish lakes, and found sim-
ilar correlations between the mean cell size and nutrient concentrations. Although
this phenomenon has yet to be explained, it does indeed prove that cell size varies
with substrate concentration. Supposing that the size at division is a function of the
substrate density is then a natural consequence of this observation.

The type of division functions that we hypothesise will be shown in more detail
in Section 3 (numerical simulations), and identification of the parameters of these
functions, in the steady state case, will be carried out in Section 4.

1.4. The model

When constructing the parts of the model dealing with cell size, cell growth and
cell division, we could suppose that there was no washout, since these processes
are independent of it. Now to state the model in its definitive form, we need take
the latter into account. As in [8], we suppose that dilution influences substrate and
cells alike, so the model is written as follows, for t ≥ 0:

xt+1 = (1 − E)A(St )xt (1.2a)

St+1 = (1 − E)[St − f (St )Ut ] + ES0 (1.2b)

with initial conditions x0 ∈ R
n+ and S0 ∈ R+. In (1.2), Ut = 1lT xt is the total

biomass at time t (1l = (1, . . . , 1)T ), and A(St ) is a r × r transition matrix given
by Table 1.1.

This matrix has 1 − Pt on its diagonal. Its sub-diagonal is MPt in the birth
and growth blocks, and MPt(1 − Di) in the division block. Finally, there is an
upper diagonal part consisting of MPtDi , describing the flow of biomass from the
division classes to the corresponding birth classes, i.e., the birth process.

Fig. 1.3. A possible Sint set (for a given division class i)
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In order to keep Pt in a reasonable interval (i.e., Pt ∈ [0, 1]), some restric-
tions have to be made. The minimal doubling time Dmin and the maximal growth
rate µmax (the continuous time equivalent of m) are two expressions of the same
quantity (since Dmin = ln 2/µmax), and are species constants. So they cannot be
tampered with.

Now, what happens in general cases? We are given a µmax (or equivalently
a Dmin), we choose a number of classes, and want to study the behaviour of the
system. Hence the determination of T is what comes last, and it is this quantity that
we must constrain.

The first constraint to be verified is that m(M − 1)−1 ≤ 1. Therefore we obtain
T ≤ 21/(rb+rg+1)−1

µmax
. But the constraint rdoubleT ≤ Dmin expressed in [13] also has

to be satisfied, with rdouble the number of classes that a cell has to span for its
biomass to double. In [13], rdouble = r , the total number of classes, while here
rdouble = rb + rg + 1. Therefore, written in terms of µmax and adapted to our
model, this condition reads T ≤ ln 2

(rb+rg+1)µmax
.

Hence, supposing µmax given and the number of classes chosen, we must re-
quire that

T ≤ min(
21/(rb+rg+1) − 1

µmax

,
ln 2

(rb + rg + 1)µmax

) (1.3)

Now another problem which could arise is that Utf (St ) > St for some t . This
would lead to negative values of St+1, which must of course be forbidden. In or-
der to avoid this problem, Ut has to be constrained. We proceed as in [13]. We
fix an η ∈ (0, 1), and require that f (S)U/S < η. Defining W > S0 an upper
bound on U + S that depends on the range of initial conditions that one wishes to
accommodate, we require that

f ′(0)W < η (1.4)

Since we have imposed that f ′′ < 0, we have that f ′(s) ≤ f ′(0) for all s ≥ 0, and
this last assumption thus sets a bound on the maximal growth rate.

Observe that these conditions should not be viewed as conditions on m, but
only on the iteration period T and the number of classes r .

2. Model behaviour

Let us begin by verifying that the conservation principle (or mass conservation
principle) holds. We have

1lT A(S) = [1 + (M − 1)Pt ]1l
T = (1 + f (St ))1l

T

therefore

Ut+1 = 1lT xt+1 = 1lT A(St )xt = (1 − E)(1 + f (St ))Ut

As a consequence,

Ut+1 + St+1 = (1 − E)(Ut + St ) + ES0 (2.1)
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which means that mass conservation is verified. In words all the mass that is present
in the chemostat at time t is still present at time t + 1, save for what enters (ES0)
and for the quantity E(Ut + St ) that is washed out.

Hence all the results in the single population case of [13] hold. The method that
is used is the following.

– Since mass conservation is verified, it is quite easy to show that the total “mass”
contained in the chemostat tends to a fixed quantity, namely S0.

– Therefore, the dynamics of the system can be studied on the invariant setU+S =
S0, inside of which the system reduces to a one dimensional system.

– On this set, the global behaviour of the system can be studied. Smith showed
that under certain conditions, there exists a globally stable equilibrium for this
simplified system.

– Following this, the global dynamics of the two dimensional system in substrate
and total biomass can be deduced. This system is shown to admit, under the same
conditions as the previous one dimensional system, a globally stable non trivial
equilibrium.

– Finally, using a result of Golubitsky et al. [9], the distribution of biomass in each
one of the size classes can be deduced.

The proofs of the results will not be shown here, since they are identical to the
ones of Smith. The interested reader should therefore refer to [13] for a complete
derivation of the results.

First, we can solve (2.1) easily, and obtain

Ut+1 + St+1 = S0 − (S0 − U0 − S0)(1 − E)t , t ≥ 1 (2.2)

Let us now define &, a positive bounded set, as

& = {(x, S) ∈ R
r+1
+ ; 1lT x + S ≤ W }

where W is defined as in equation (1.4). We then have the following result con-
cerning the total mass (both organic and inorganic) contained in the chemostat.

Proposition 2.1 ([13]). If (x0, S0) ∈ &, then (xt , St ) ∈ & for t ≥ 1, St −Utf (St ) >

0 for t ≥ 1 and

St + Ut → S0, t → ∞ (2.3)

Let us now consider the system restricted to the positively invariant set {(U, S) ∈
R

2+; U+S = S0}. On this set, we can use a technique standard to those systems that
conserve the mass: we replace S by S0 −U (with 0 ≤ U ≤ S0 since S is positive).
Thus, when restricted to this set, the system (1.2) becomes 1-dimensional:

Ut+1 = (1 − E)(1 + f (S0 − Ut))Ut (2.4)

and we have the following result.

Proposition 2.2 ([13]). If (1−E)(1+f (S0)) ≤ 1, then limt→∞ Ut = 0, for all so-
lutions of (2.4) withU0 ∈ [0, S0]. If (1−E)(1+f (S0)) > 1, then limt→∞ Ut = Ũ ,
for all solutions of (2.4) with U0 ∈ [0, S0].
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Let F(U) = (1 −E)(1 + f (S0 −U))U . In order to determine the value of Ũ ,
one then has to compute the positive fixed point of F . Therefore, we define λ as
the unique solution, when it exists, of F(U) = U , i.e.,

f (λ) = (1 − E)−1 − 1 (2.5)

Hence λ = f−1((1 − E)−1 − 1). Recall that we noted m = f (∞) the maximal
growth rate of the organisms, then λ < ∞ if (1 − E)−1 − 1 < m, and λ = ∞
otherwise. This is the classical chemostat behaviour: if the dilution rate E is larger
than the maximal growth rate of the organisms, then the population cannot com-
pensate the loss due to the outflow, and it becomes extinct. Finally, if λ < S0, Ũ is
given by

Ũ = S0 − λ (2.6)

Now the dynamics of the 2 dimensional system

Ut+1 = (1 − E)(1 + f (St ))Ut (2.7a)

St+1 = (1 − E)(St − f (St )Ut ) + ES0 (2.7b)

can be studied. Let ) = {(U, S) ∈ R
2+; U + S < W }.

Theorem 2.3 ([13]). If (1−E)(1+f (S0)) < 1, then for all solutions of (2.7) such
that (U0, S0) ∈ ),

(Ut , St ) → (0, S0), t → ∞
If (1 − E)(1 + f (S0)) > 1, then there exists a non zero steady state, and for all
solutions of (2.7) such that (U0, S0) ∈ ),

(Ut , St ) → (S0 − λ, λ), t → ∞

Now that we know the global behaviour of the 2 dimensional system, we can
use the following result of Golubitsky et al. to derive the equilibrium distribution
of the xi’s.

Theorem 2.4 ([9]). Suppose that Tk is a sequence of nonnegative primitive matri-
ces, and that Tk → T as k → ∞, where T is also nonnegative and primitive. If e
is the Perron-Frobenius eigenvector of T satisfying 1lT e = 1 and ξk+1 = Tkξk is a
sequence starting with ξ0 ≥ 0 and ξ0 �= 0, then

ξk

1lT ξk
→ e, k → ∞

Therefore, we have the following result.

Theorem 2.5. Let e be the Perron-Frobenius eigenvector of (1−E)A(λ) satisfying
1lT e = 1. If (1 − E)(1 + f (S0)) > 1, x0 �= 0 and λ ∈ Sint , then the system (1.2a)
(1.2b) admits one globally asymptotically stable non trivial equilibrium (x̃, S̃),
where x̃

Ũ
= e (2.8)
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Proof. From Theorem 2.3 we know that (Ut , St ) → (S0 − λ, λ) as t tends to ∞.
Therefore, there exists τ > 0 and a neighbourhood N1(λ) of λ such that, ∀t ≥ τ ,
St ∈ N1(λ).

Now, under the hypotheses of the theorem, λ ∈ Sint . Since the functions Di(S)

are continuous, there exists a neighbourhood N2(λ) ofλ such that for allS ∈ N2(λ),
S ∈ Sint . We can then choose τ sufficiently large so that N1(λ) ⊂ N2(λ). Such
a value of τ having been determined, we have for all t ≥ τ and all i < rd ,
0 < Di(St ) < 1.

Then, for all t ≥ τ , the matrices A(St ) and A(λ) are primitive. Indeed, it is
easy to check that any class can be reached from any other class in a finite number
of steps, yielding the irreducibility of these matrices. Since the trace of A(St ) and
A(λ) are positive, we furthermore have primitivity [3, p. 34]. Finally, as the ma-
trices A(St ) and A(λ) are obviously nonnegative for all t ≥ 0, the conditions of
Theorem 2.4 are fulfilled for all t ≥ τ , i.e., for ξ0 = xτ , and the proof is done. ��

Remark 2.6. Here the reasons that have led to the introduction of the set Sint clearly
stand out. Convergence of S to λ is a consequence of the nature of the two dimen-
sional system (a discrete time Monod model). Indeed, even with Di’s taking values
of 0 or 1 for some i’s, we always have 1lT A(St ) = (MPt+1−Pt , . . . ,MPt+1−Pt),
so this convergence is independent of the values of theDi’s, because of mass conser-
vation. But concerning the convergence of the distribution, we must have primitivity
of the matricesA(λ) andA(St ) (for St close to λ), and hence we must have λ ∈ Sint .

The Perron-Frobenius eigenvalue is (1 − E)(1 − P + MP) (= (1 − E)(1 +
f (S̃))), its associated eigenvector has the following form.

e = 1

r




D1(S̃)
...

1 −∏rb−1
k=1 (1 − Dk(S̃))

1
1
...

1
1

1 − D1(S̃)
...∏rd−1

k=1 (1 − Dk(S̃))




(2.9)

where the blocks correspond to rb, rg and rd rows. It is easily verified that (1 −E)

A(S̃)e = (1 − E)(1 − P + MP)e.
Let us denote by xbi the ith birth class (i = 1, . . . , rb), by xgi the ith growth class

(i = 1, . . . , rg), and by xdi the ith division class (i = 1, . . . , rd ). Using (2.8) and
(2.9), the stable distribution can be computed. This is expressed in the following
result.
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Proposition 2.7. Suppose that the conditions leading to the existence of a non triv-
ial equilibrium are satisfied. Then the equilibrium biomass distribution is given by
the following formulas:

– for i = 1, . . . , rb − 1 (birth classes except the last one):

x̃bi =
(

1 −
i∏

k=1

(1 − Dk(S̃))

)
Ũ (2.10)

– for i = 1, . . . , rg (growth classes), for the last birth class and the first division
class:

x̃brb = x̃
g
i = x̃d1 = Ũ (2.11)

– for i = 2, . . . , rd (division classes except the first):

x̃
g
i =

(
i−1∏
k=1

(1 − Dk(S̃))

)
Ũ (2.12)

3. Numerical results

Before going any further, we will here give some precisions about the functions
used in the following numerical experiments. First of all, the growth function f is
taken to be a Michaelis-Menten function. This function is the most widely used in
the chemostat literature. It is defined by

f (S) = m
S

kS + S
(3.1)

where m is the maximal growth rate per iteration period, and kS is called the half-
saturation constant.

Second and most important, let us give some more details about division pro-
portions functions. For the simulations showed hereafter, we have used functions
such as the ones shown in Figure 3.1. In order to cut down on the number of pa-
rameters in this system, we assume that the division proportions functions (with
respect to size) follow a Gaussian distribution N (µ(S), σ (S)). Since the division
proportions are substrate dependent, and in order to take into account the biological
evidence discussed in Section 1.3, we have supposed that the mean and variance of
these distributions are substrate dependent. For example in Figure 3.1 (where size
is expressed in cell diameter), we have used a mean and standard deviation varying
from µ = 13 and σ = 0.5 when substrate concentration is zero, to µ = 9 and
σ = 2.5 when S = S0 = 260, using affine variation of µ and σ between these two
values of S.

One can see that using this type of division proportions, we will have bigger
cells when the substrate concentration is low, and smaller cells as the substrate
concentration rises.
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Figure 3.2 shows a comparison of the stable distributions of numbers (comput-
ed using the approximation n(i) = xi/(M

i−1bmin)) as given by the homogeneous
model of Gage et al. and by our model. In this example, we have assumed that
the mean division (and consequently birth) biomass is located in the middle of the
division classes.

Figure 3.3 shows the transient behaviour of the model. We can see that the
biomass in each size class has damped oscillations prior to the equilibrium. The
biological parameters used in this computation are the ones corresponding to the
data set (and to the algae species) that will be shown in the next section.

Figure 3.4 shows the substrate concentration and total biomass, as well as the
normalised number of cells, corresponding to the same simulation. The number of
cells oscillates, and this behaviour lasts until the biomass distribution has reached
its equilibrium

The transient behaviour of the system can be studied as in [8], by defining the
wavelength of complex eigenvalue λi as

ωi = 2πT/ tan−1
(�(λi)

�(λi)

)

with T the time step, �(·) and �(·) the imaginary and real parts respectively, of
λi . In Figure 3.5, two numerical experiments are shown. On the left hand side,
the wavelength of the complex eigenvalue of greatest magnitude is plotted, for an
increasing number of division classes, while the total number of classes is con-
stant. We can see that as the proportion of classes that are division classes rises,
the wavelength of the first complex eigenvalue decreases.The right hand side of the
figure shows that with a given proportion of the classes being division classes, the
wavelength of the complex eigenvalue first decreases, then stabilises.

Fig. 3.1. An example of division proportions functions. Cell size is here expressed in dia-
meter
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Fig. 3.2. Comparison of the equilibrium distributions (converted to numbers), as given by
the two models. This example uses rb = rd = 300 and rg = 400. The vertical lines show
the passage from one type of class to another

Fig. 3.3. Transient behaviour of the model following an initial condition of Dirac type in
class 20 (of a total of 40). The parameters are T = 0.001, rb = rd = 10 and rg = 20. The
figure shows a sampling (every 100 iterations) out of a total 18000 iterations (corresponding
to 18 days)

Hence it seems that the proportion of classes in which cells divide (and accord-
ingly are born) is more determinant for the transient behaviour of the system than
the total number of classes. Interpretation of this fact is rather straightforward: the
more division classes (and accordingly birth classes), the faster the “dispersion” of
cells.
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Fig. 3.4. Behaviour of the total biomass and of the substrate (left), and of the total number
of cells (right), under the same conditions as in Figure 3.3

Fig. 3.5. Wavelength of the first complex eigenvalue: (left) for a fixed total number of classes
(r = 200), as the number rd of division classes progresses from 1 to 100; (right) for a fixed
proportion (1/4) of division classes, as the total number r of classes progresses from 10 to
300
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Fig. 3.6. Comparison of distributions obtained for 200 size classes, when the proportion of
these classes that are division classes changes: one division class, 1/4 = 50 division classes,
1/3 = 66 division classes and 1/2 = 100 division classes

The proportion of division classes also influences the equilibrium distribution,
as can be seen in Figure 3.6. In this figure, we show, for a fixed total number of
classes, the shape of the distribution (converted to numbers) as the proportion of di-
vision classes among the total number of classes rises. The plain curve corresponds
to the prediction of the model of Gage et al. Then, as the proportion of division
classes grows, the distribution becomes more and more narrow.

4. Comparison to experimental data

As was mentioned in the introduction, we have access to very long time series of
structured data from a chemostat, such as the dataset shown in Figure 4.1. This data
corresponds to the algae species Cryptomonas, grown in limiting conditions on
nitrate. The maximal growth rate of this species is µmax = 0.7 day−1, correspond-
ing to a minimal doubling time of approximately one day, and the half saturation
constant is 1 µMol. The dilution rate in this experiment was 0.4 day−1, and the
input concentration was 260 µMol.

Let us now briefly mention how this data is obtained. The chemostat is fully
automated, both on the operating side and on the measurement side [5]. The dilu-
tion rate and the input nutrient concentration are computer controlled; this allows
fluctuating inputs, as well as long time, nearly unattended functioning.

But the main feature of this device is that it allows nearly continuous monitor-
ing of several variables: substrate concentration (by colorimetric methods, using a
Technicon Auto-analyser), cell size and number distributions (by means of a parti-
cle counter (HIAC/ROYCO with laser sensor HRLD 400)), and even chlorophyll
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Fig. 4.1. Sample data set of Cryptomonas sp. This series represents three weeks of chemo-
stat culture. There are 100 equally sized size classes, containing cells with diameters ranging
from 1.5µm to 15µm

concentration (using a spectrophotometer). All of these measures are computer
controlled. Typical experiments last between one and four months, resulting in
sets of one thousand to four thousand measures (each measure consisting of a size
spectrum).

We now turn to the comparison of this data to the model, and to the identification
of some of the model parameters.

As was mentioned before, parameters kS and m of the Michaelis-Menten func-
tion (3.1) are known, since they are species constants. The dilution rate E is given
for each experiment. These values are recalled in the following table:

Parameter Unit Value used
S0 µM or µgat.l−1 260

D = E/T day−1 0.4
µmax = m/T day−1 0.7

a µMol 1

Since the equilibrium is stable, and that (2.10) (2.11) and (2.12) are given, we can
at first restrict the identification problem to that of the identification of the steady
state parameters.

Several parameters have a determinant influence on the steady state distribu-
tion. Here, we will be concerned with the determination of only a small number of
them. Indeed, the most important part is the determination of the division propor-
tion function at the steady state. However, without any prior hypotheses concerning
this distribution, we would have to determine the value of a possibly large number
of states (rd ). This is unrealistic when carrying out an identification process.

Hence, we will use the same assumption that was used in the previous section:
we suppose that the division proportions (with respect to size) follow a Gaussian
distribution. Since we are working at the steady state, S is very close to λ, and thus
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Fig. 4.2. Comparison between a smoothed data set and the original data set

we only have to identify the mean µ(λ) and the variance σ 2(λ) of this distribution.
The steady state biomass distribution is also characterised by the numbers rd (or
equivalently rb) and rg of division and growth classes, as well as the minimal birth
biomass bmin.

In practice, the data is expressed in number of cells per diameter class. Hence we
convert the predictions of the model into such units, and so identify the parameters
µdiam, σdiam and dmin, diameter equivalents of the previous biomass quantities.

Suppose that di,m is the value given by the model and di,d the value of the data,
for cells of size i. The set of possible sizes I is the reunion of the set [dmin,d; dmax,d ]
of observed diameters in the data, and of the set [dmin,m; dmax,m] of the diameters
given by the model. The parameter identification problem can then be stated as
follows.

(IP) Let 1 be the set of admissible parameter values. Find θ ∈ 1 such that the
functional

J (θ) =
∑
i∈I

‖di,m − di,d‖

is minimal.

There are constraints for the parameters. The minimal birth diameter dmin and
the mean division diameterµdiam must both belong to the set of observed diameters
[dmin,d , dmax,d ]. The minimisation procedure then is applied to smoothed data, us-
ing MatLab’s constrained nonlinear minimisation function fmincon. The reason
for which smoothed data is used rather than the original, unsmoothed data, is that
optimisation procedures require one to use a rather smooth “objectives” function.
Smoothing of the data was carried out using B-spline functions (see [1]). One can
see in Figure 4.2 that this smoothing preserves the main characteristics of the data
distributions.
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Fig. 4.3. Comparison of smoothed data and of the result of a parameter identification pro-
cedure (results being converted into number of cells per diameter class)

Fig. 4.4. Distribution of the division proportions obtained using parameters of the division
function noted in the text

Figure 4.3 shows the result of an identification procedure on a data set, using the
Euclidean norm. The obtained parameters are a total number of classes r = 120,
with rd = 59 classes (hence only one growth class). dmin was in this case found
equal to 3, which was the lower bound that we had set on the birth diameter in
the identification procedure. Parameters of the division proportion function were
found to be µdiam = 4.2616 and σdiam = 14, yielding the division function shown
in Figure 4.4.

5. Discussion

We have shown that the introduction of size and substrate dependent cell division
in the model of Gage et al. does not fundamentally modify its dynamical behaviour.
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Since our model sums to a Monod type model, we are able following the analysis of
[13], to prove the existence of a globally stable non trivial equilibrium. This is done
by first studying the dimension one system consisting of the total mass (inorganic
– substrate – and organic – total biomass –) in the chemostat, which is shown to
have a globally stable equilibrium. From this knowledge, the global behaviour of
the two dimensional system consisting of the total biomass and of the substrate
is deduced, and the existence of a non trivial, globally stable equilibrium is also
proved. Then using a weak ergodic theorem of Golubitsky et al., we are able to
derive the distribution of biomass in the size classes.

Then, we have presented several numerical simulations. These simulations show
that the ratio of division classes to the total number of classes is determinant of the
shape of the equilibrium distribution. The proportion of division classes also has
an impact on the transient behaviour of the model: as it increases, the frequency of
the oscillations in individual size classes reduces, as well as their duration. From a
modelling point of view, the comparison of Figures 3.3 and 3.4 pleads for the use
of structured models of the chemostat. Indeed, consider the total biomass curve in
Figure 3.4. It is monotonically increasing, while in Figure 3.3 we observe damped
oscillations: the summation hides the more complicated behaviour of the individual
biomass classes.

Then in Section 4, we have briefly presented an automated chemostat, and
have run a parameter identification procedure on data produced by this device.
This procedure was, at present, limited to the identification of parameters of the
system when the steady state distribution is reached. The results obtained are not
very satisfactory, at least in a visual sense (as can be seen in Figure 4.3). But they
raise an interesting question. Remember that we mentioned in Section 1.1 that the
maximal biomass of a cell in the system is bmax . It is an easy constatation that it
allows multiplication of a cell’s biomass by a factor of at most 4. Indeed, a cell born
in birth class 1 and dividing in division class rd has a biomass going from bmin

to bmax = Mrb+rg+rd bmin at the instant of its division. Since M = 21/(rb+rg+1),
this means that bmax < 4bmin (bmax being maximal when rg = 0). Now convert
this maximal fourfold increase to diameter (considering that biovolume is a good
approximation of cellular biomass). This gives a maximal multiplication of the cell
diameter of 41/3 � 1.59, while our data roughly suggests a diameter interval of 4
to 10 micrometers, which represents a multiplication by a factor of 2.5. While the
size increase our model allows is better than that of the model of Gage et al. (which
accounts for a mere 21/3 � 1.26 multiplication of the cell diameter), it is still far
from the experimentally observed range of cell diameters.

The obvious conclusion that one draws from this is that biological hypothesis
(H3) – division of a mother cell into daughter cells of the same size – should be
relaxed. Indeed, if cell division results in daughter cells of different sizes (by asym-
metric cellular division), then the range of biomass (or equivalently of diameters)
accounted for in the model will be much wider. While this behaviour has been
often modelled in other contexts, such as cancerous cell populations [2], we know
of only one work by Heijmans in [10] in the phytoplankton context. Introduction
of asymmetric cell division in our model should therefore allow us to gain more in-
sight on the population dynamics of microorganisms in a chemostat. This, however,
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requires a complete and thorough rethinking of the model, and will be the object of
further work. In our opinion, it is however a strength of the present model to show
that inhomogeneous cell division size is not sufficient to account for experimentally
observed cell size distributions.

To conclude this discussion, let us note that [13] introduced competition be-
tween two species in the chemostat. Part of this was raised to the n species case by
Smith and Zhao [15]. We have not considered here the competitive case. But we do
expect that if we were to do so, the results of the two previously mentioned papers
should hold, thus leading to a competitive exclusion situation.

Acknowledgements. We thank the editor and two anonymous referees for their valuable
remarks.
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