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Abstract. We examine the dynamics of an age-structured population model in which the life
expectancy of an offspring may be mutated with respect to that of the parent. While the total
population of the system always reaches a steady state, the fitness and age characteristics
exhibit counter-intuitive behavior as a function of the mutational bias. By analytical and
numerical study of the underlying rate equations, we show that if deleterious mutations
are favored, the average fitness of the population reaches a steady state, while the average
population age is a decreasing function of the average fitness. When advantageous mutations
are favored, the average population fitness grows linearly with time t , while the average age
is independent of the average fitness. For no mutational bias, the average fitness grows as
t2/3.

1. Introduction

The goal of this paper is to understand the role of mutations on the evolution of
fitness and age characteristics of individuals in a simple age-structured population
dynamics model [1]. While there are many classical models to describe single-
species population dynamics [2, 3], consideration of age-dependent characteristics
is a more recent development [2, 4–7]. Typically, age characteristics of a population
are determined by studying rate equations which include age-dependent birth and
death rates. Here we will study an extension of age-structured population dynamics
in which the characteristics of an offspring are mutated with respect to its parent.
In particular, an offspring may be more “fit” or less fit than its parent, and this may
be reflected in attributes such as its birth rate and/or its life expectancy.

In our model, we characterize the fitness of an individual by a single heritable
trait – the life expectancy n – which is defined as the average life span of an
individual in the absence of competition. This provides a useful fitness measure, as a
longer-lived individual has a higher chance of producing more offspring throughout
its life span. We allow for either deleterious or advantageous mutations, where the
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offspring fitness is less than or greater than that of the parent, respectively (Fig. 1).
This leads to three different behaviors which depend on the ratio between these two
mutation rates. When advantageous mutation is favored, the fitness distribution of
the population approaches a Gaussian, with the average fitness growing linearly
with time t and the width of the distribution increasing as t1/2. Conversely, when
deleterious mutation is more likely, a steady-state fitness distribution is approached,
with the rate of approach varying as t−2/3. When there is no mutational bias, the
fitness distribution again approaches a Gaussian, but with average fitness growing
as t2/3 and the width of the distribution again growing as t1/2.

In all three cases, the average population age reaches a steady state which,
surprisingly, is a decreasing function of the mutational bias. Thus within our model,
a population with higher average fitness does not lead to an increased individual
lifetime. Qualitatively, as individuals become more fit, competition plays a more
prominent role and is the primary mechanism that leads to premature mortality.

In the following two sections, we formally define the model and outline qualita-
tive features of the population dynamics. In Sects. 4–6, we analyze the three cases
of deleterious, advantageous, and neutral mutational biases in detail. We conclude
in Sect. 7. Various calculational details are provided in the Appendices.

2. The model

Our model is an extension of logistic dynamics in which a population with overall
density N(t) evolves both by birth at rate b and death at rate γN . Such a system is
described by the rate equation

Ṅ = bN − γN2, (1)

with steady-state solution N∞ = b/γ . Our age-structured mutation model incor-
porates the following additional features:

1. Each individual is endowed with given life expectancy n. This means that an
individual has a rate of dying which equals 1/n.

fitness

n-1

b

age
n

n+1

-b

b+

Fig. 1. Schematic illustration of the model. An individual with fitness, or intrinsic life
expectancy n, continuously ages (horizontal arrow). The heavy dots signify individual birth
events. At each birth event, an offspring (of age zero) is produced, whose intrinsic lifetime
is either n + 1, n, or n − 1, with relative rates b+, b, and b−, respectively. The individual
dies either by aging or by competition (×).
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2. Death by aging occurs at a rate inversely proportional to the life expectancy.
3. Individuals give birth asexually at a rate that remains constant during their

lifetimes.
4. In each birth event, the life expectancy of the newborn may be equal to that of

its parent, or the life expectancy may increase by τ or decreased by τ (we set
τ = 1 without loss of generality) [8]. The relative rates of these events are b,
b+, and b−, respectively.

Thus we investigate a one-locus multi-allele haploid asexual population with
overlapping generations. Even in this framework, each of the above features 1–3
represent idealizations. Most prominently, it would be desirable to incorporate a
realistic mortality rate which is an increasing function of age [4, 7, 9]. However,
we argue in Sect. 7 that our basic conclusions continue to be valid for systems with
realistic mortality rates.

To describe this dynamics mathematically, we study Cn(a, t), the density of
individuals with life expectancy n ≥ 1 and age a at time t . We also introduce
Pn(t) = ∫ ∞

0 Cn(a, t) da, which is the density of individuals with life expectancy
n and any age at time t . Finally, the total population density is the integral of the
population density over all ages and life expectancies,

N(t) =
∞∑
n=1

∫ ∞

0
Cn(a, t) da =

∞∑
n=1

Pn(t). (2)

According to our model, the rate equation for Cn(a, t) is(
∂

∂t
+ ∂

∂a

)
Cn(a, t) = −

(
γN(t)+ 1

n

)
Cn(a, t). (3)

The derivative with respect to a on the left-hand side accounts for the continuous
aging of the population [2, 4]. On the right-hand side, γNCn is the death rate due to
competition, which is assumed to be independent of an individual’s age and fitness.
As discussed above, the mortality rate is taken as age independent, and the form
Cn/n guarantees that the life expectancy in the absence of competition equals n.
Because birth creates individuals of age a = 0, the population of newborns provides
the following boundary condition for Cn(0, t),

Cn(0, t) = bPn(t)+ b+Pn−1(t)+ b−Pn+1(t). (4)

Finally, the condition P0 = 0 follows from the requirement that offspring with zero
life expectancy cannot be born.

3. Basic population characteristics

Let us first study the fitness characteristics of the population and disregard the age
structure. The rate equation for Pn(t) is found by integrating Eq. (3) over all ages
and then using the boundary condition Eq. (4) to give

dPn

dt
=

(
b − γN − 1

n

)
Pn + b+Pn−1 + b−Pn+1. (5)
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Fig. 2. Illustration of the random walk in fitness space that underlies the behavior of Pn.
The term (b−γN− 1

n
)Pn < 0 represents a state-dependent population loss (dashed arrows)

which decreases for larger n.

This describes a random-walk-like process with state-dependent hopping rates in
the one-dimensional fitness space n (see Fig. 2).

Notice the hidden non-linearity embodied by the term γNPn, since the total
population density N(t) = ∑

n Pn(t). From Eq. (5), we find that N(t) obeys

dN

dt
= (b + b+ + b− − γN)N −

∞∑
n=1

Pn

n
− b−P1. (6)

The last two terms on the right hand side make Eq. (6) different from simple
logistic equation. The three different dynamical regimes outlined in the introduction
are characterized by the relative magnitudes of the mutation rates b+ and b−. The
main features of these regimes are:

1. Subcritical case. Here b+ < b−, or deleterious mutations prevail. The fitness
of the population eventually reaches a steady state.

2. Critical case. Here b+ = b−, or no mutational bias. The average fitness of the
population grows as t2/3 and the width of the fitness distribution grows as t1/2.

3. Supercritical case. Here b+ > b−, or advantageous mutations are favorable.
The average fitness grows linearly in time and the width of the fitness distri-
bution still grows as t1/2.

In all three cases, the total population density N and the average age A, defined by

A = 1

N

∞∑
n=1

∫
da a Cn(a) (7)

saturate to finite values. The steady state values of N and A may be determined
by balance between the total birth rate B ≡ b + b+ + b− and the death rate γN
due to overcrowding. For example, in the critical and supercritical cases, there are
essentially no individuals with small fitness, so that the last two terms in Eq. (6)
may be neglected. Then the steady-state solution to this equation is simply

N = B

γ
. (8)

This statement also expresses the obvious fact that in the steady state the total birth
rate B must balance the total death rate γN . (For populations where individual
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fitness is high, the death rate due to aging is negligible.) Similarly, the average age
may be inferred from the condition it must equal the average time between death
events. Thus

A = 1

γN
= 1

B
. (9)

The behavior of the average age in the subcritical case is more subtle and we treat
this case in detail in the section following.

4. The subcritical case

When deleterious mutations are favored (b− > b+), the random-walk-like master
equation forPn contains both the mutational bias towards the absorbing boundary at
the origin, as well as an effective positive bias due to the 1/n term on the right-hand
side of Eq. (5). The balance between these two opposite biases leads to a stationary
state whose solution is found by setting Ṗn = 0 in Eq. (5). To obtain this steady
state solution, it is convenient to introduce the generating function

F(x) =
∞∑
n=1

Pn x
n−1. (10)

Multiplying Eq. (5) by xn−1 and summing over n gives

0 = (b − γN)F −
∞∑
n=1

Pn

n
xn−1 + b+xF + b−

(
F

x
− P1

)
. (11)

The term involving Pn/n is simplified by using

∞∑
n=1

Pn

n
xn−1 = 1

x

∫ x

0
F(y) dy. (12)

Multiplying Eq. (11) by x and differentiating with respect to x gives

F ′(x)
F (x)

= γN − b + 1 − 2b+x
b+x2 − (γN − b)x + b− , (13)

where the prime denotes differentiation.
As in the case of the master equation for Pn, this differential equation for F

has a hidden indeterminacy, as the total population densityN = F(x = 1) appears
on the right-hand side. Thus an integration of Eq. (13), subject to the boundary
condition F(1) = N , actually gives a family of solutions which are parameterized
by the value of N . While the family of solutions can be obtained straightforwardly
by a direct integration of Eq. (13), only one member of this family is the correct
one. To determine this true solution, we must invoke additional arguments about
the physically realizable value of N for a given initial condition.
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An upper bound for N may be found from the steady-state version of Eq. (6),

(B − γN)N =
∞∑
n=1

Pn

n
+ b−P1. (14)

Since the right-hand side must be non-negative, this provides the bound γN < B.
On the other hand, we may obtain a lower bound for N by considering the master
equation for Pn in the steady state. For n→ ∞, we may neglect the Pn/n term in
Eq. (5) and then solve the resulting equation to give Pn = A+λn+ + A−λn−, where

λ± =
[
γN − b ±

√
(γN − b)2 − 4b+b−

]
/2b−. (15)

For Pn to remain positive, λ± should be real. This leads to the requirement γN >
b + 2

√
b+b−. We therefore conclude that N must lie in the range

b + 2
√
b+b− ≤ γN < B. (16)

While the foregoing suggests that N lies within a finite range, we find numer-
ically that the minimal solution, which satisfies the lower bound of Eq. (16), is
the one that is generally realized (Fig. 3). This selection phenomenon is reminis-
cent of the corresponding behavior in the Fisher-Kolmogorov equation and related
reaction-diffusion systems [2], where only the extremal solution is selected from a
continuous range of a priori solutions.

0.0 0.5 1.0 1.5 2.0
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Fig. 3. Minimal steady state value of the total density N versus mutational bias µ =√
b+/b−. Here γ = 1, b = 0, and b+ + b− = 1, so that the total birth rate B = b+ b+ + b−

is fixed. For µ > 1, N sticks at the value of unity.
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To understand the nature of this extremal solution in the present context, notice
that with the bounds onN given in Eq. (16), λ+ lies within the range [µ, 1), where

µ ≡
√
b+
b−

(17)

is the fundamental parameter which characterizes the mutational bias. Consequently
the steady-state fitness distribution decays exponentially with n, namely Pn ∼
λn+. When the total population density attains the minimal value Nmin = (b +
2
√
b+b−)/γ , λ+ also achieves its minimum possible value λmin+ = µ, so that the

fitness distribution has the most rapid decay in n for the minimal solution. Based on
the analogy with the Fisher-Kolmogorov equation [2], we infer that there are two
distinct steady-state behaviors for Pn as a function of the initial condition Pn(0).
For any Pn(0) with either a finite support in n or decaying at least as fast as µn,
the extremal solution Pn ∼ µn is approached as t → ∞. Conversely, for initial
conditions in which Pn(0) decays more slowly than µn, for example as αn, with
α in the range (µ, 1), the asymptotic solution also decays as αn. Correspondingly,
Eq. (5) in the steady state predicts a larger than minimal population density N =
(b + b−α + b+α−1)/γ .

We also find that the extremal and the non-extremal solutions exhibit different
relaxations to the steady state. For those initial conditions which evolve to the
extremal solution, the deviation of N and indeed each of the Pn from their steady
state values decay as t−2/3, while for all other initial conditions, the relaxation to
the steady state appears to follow a t−1 power law decay. This power-law approach
to the steady state is due to the last two terms in Eq. (6), and is in sharp contrast
with the regular logistic dynamics, Ṅ = bN − γN2, for which the approach
to the steady state is exponential. These results are illustrated in Fig. 4 which
shows the asymptotic time dependence of N(t) based on a numerical integration
of Eq. (5) with the fourth-order Runge-Kutta algorithm [10]. The demonstration
of the t−2/3 relaxation to the extremal solution relies on a correspondence to the
transient behavior in the critical case. This is presented in Appendix B.

A disconcerting feature of the numerical calculation for N(t) is the small dis-
agreement between the numerically observed values of the steady-state population
density and the expected theoretical prediction (Fig. 5). This discrepancy arises
from the finite computer precision which causes very small values of Pn to be set
to zero. To confirm this, we changed the computer precision from 10−100 to the
full machine precision of 10−308 (Fig. 5). As the precision is increased,N saturates
to progressively higher values and approaches the theoretical prediction. A similar
precisions-dependent phenomenon has been observed in the context of traveling
Fisher-Kolmogorov wave propagation [11, 12].

For the relevant situation where the densityN takes the minimal value, we may
rewrite Eq. (13) as

F ′

F
= 2µ

1 − µx + 1

b−(1 − µx)2 (18)
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Fig. 4. N(t) versus t−2/3 in the subcritical case for b = 0, b+ = 1
3 , b− = 2

3 , and γ = 1
for the initial conditions: (i) Pn(t = 0) = 0.1 for 1 ≤ n ≤ 10 (◦), (ii) Pn(0) = αn,
with α = (1 + µ)/2 (�), and (iii) Pn(0) = 1/n2 for (∇). Asymptotically, the data for
N(t) approach the respective theoretical values of Nmin = 2

√
b+b−/γ = 0.9428, N(∞) =

(b−α + b+α−1)/γ ≈ 0.9596, and N(∞) = B/γ = 1. The rate of approach is t−2/3 in the
first case and faster than t−2/3 in the latter two cases. These calculations use the full machine
precision of 10−308.

Fig. 5. Behavior of N(t) versus t−2/3 for precision equal to 10−100, 10−150, 10−200, 10−250,
and 10−308 (bottom to top) for the case b+ = 1, b− = 0.25, b = 0, and γ = 1. In the limit
of infinite precision N(t)→ 1 as t → ∞.

Integrating from x = 1 to x and using F(1) = N gives

F(x) = N
(

1 − µ
1 − µx

)2

exp

{
1

b−µ

(
1

1 − µx − 1

1 − µ
)}
. (19)

One can now formally determine Pn by expanding F(x) in a Taylor series. For
example,
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P1 = N(1 − µ)2 exp

{
− 1

b−(1 − µ)
}
,

P2 = N(1 − µ)2
(

2µ+ 1

b−

)
exp

{
− 1

b−(1 − µ)
}
.

For many applications, however, there is no need to deal with these unwieldy
expressions. As we now discuss, the overall fitness or age characteristics of the
population can be obtained directly from the generating function without using the
explicit formulae for the Pn.

4.1. Fitness characteristics

Consider the average fitness of the population

〈n〉 = 1

N

∞∑
n=1

nPn, (20)

which can be expressed in terms of the generating function as

〈n〉 = 1

N

dF

dx

∣∣∣∣
x=1

+ 1. (21)

From Eq. (19) we thereby obtain the average fitness

〈n〉 = 2µ

1 − µ + 1

b−(1 − µ)2 + 1. (22)

As one might anticipate, the average fitness diverges as µ→ 1 from below, corre-
sponding to the population becoming mutationally neutral. To determine the dis-
persion of the fitness distribution we make use of the relation

〈n(n− 1)〉 = 1

N

∞∑
n=1

n(n− 1) Pn = 1

N

d2(xF )

dx2

∣∣∣∣
x=1
. (23)

Substituting Eqs. (19) and also Eq. (22) then gives

〈n2〉 = 1 + 6µ

(1 − µ)2 + 3(1 + µ)
b−(1 − µ)3 + 1

b2−(1 − µ)4 .

Thus the dispersion σ 2 = 〈n2〉 − 〈n〉2 in the fitness distribution is

σ 2 = 2µ

(1 − µ)2 + µ+ 1

b−(1 − µ)3 . (24)

As the mutational bias vanishes, µ → 1, the average fitness and the dispersion
diverge as 〈n〉 � b−1

− (1 − µ)−2 and σ � √
2/b−(1 − µ)−3/2. Thus these two

moments are related by σ ∼ 〈n〉3/4. As we shall see in Sect. 6, this basic relation
continues to hold in the critical case.
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4.2. Age characteristics

In the steady state, we solve Eq. (3) to give the concentration of individuals with
age a and fitness n

Cn(a) = Pn
(
γN + 1

n

)
exp

[
−

(
γN + 1

n

)
a

]
. (25)

The average age of the population is

A = 1

N

∞∑
n=1

∫ ∞

0
da a Cn(a)

= 1

N

∞∑
n=1

Pn

γN + n−1
, (26)

where the second line is obtained by using Eq. (25). This expression can be rewritten
directly in terms of the generating function by first noticing that∫ 1

0
xνF (x) dx =

∫ 1

0

∞∑
n=1

Pnx
n+ν−1 dx

=
∞∑
n=1

Pn

n+ ν . (27)

Thus we re-express Eq. (26) in a form which allows us to exploit Eq. (27). After
several elementary steps, we obtain

A = 1

γN
− 1

N

1

(γN)2

∞∑
n=1

Pn

n+ (γN)−1

= 1

γN
− 1

N

1

(γN)2

∫ 1

0
dx x

1
γN F (x). (28)

This expression should be compared with the result for the critical and super-
critical cases, namely A = (γN)−1 = B−1 (see Eq. (9)). In the subcritical case,
γN < B and the above two expressions Amin = B−1 and Amax = (γN)−1 pro-
vide lower and upper bounds for the average age. This is proved in Appendix A.
Fig. 6 shows the surprising feature of Eq. (28) that the average age decreases as the
averge fitness of a population gets higher! We also see that the average age of the
least fit population (µ→ 0) is twice that of the populations with increasing fitness
in the critical and supercritical cases. We now demonstrate this fact. To provide a
fair comparison we take the total birth rate rate to be equal to unity in both cases
and also choose b = 0 for simplicity. For fit populations (critical and supercritical
cases), the average age is simplyA = B−1 = 1. For the least fit populationµ→ 0,
and correspondingly N → 0. In this limit, we may write Eq. (26) as,

A = 1

N

∞∑
n=1

Pn

γN + n−1
≈ 1

N

∞∑
n=1

nPn = 〈n〉. (29)
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Fig. 6. Average age A of the steady state population versus mutational bias µ = √
b+/b−.

The total birth rate B = b+b+ +b− is held fixed throughout, with b = 0, b+ +b− = 1, and
γ given by the extremal steady-state solution γN = b + 2

√
b+b−. For µ > 1, the average

age sticks at the value of unity, while for µ→ 0, A→ 2.

On the other hand, from Eq. (22) we have

〈n〉 ≈ 1 + 1

b−
≈ 2. (30)

The relation A = 〈n〉 is natural for the least fit population, as the total density
is small and competition among individuals plays an insignificant role. Thus the
average age may be found by merely averaging the intrinsic life expectancy of the
population. Intriguingly, in this limit the average individual in the least fit population
lives twice as long as individuals in relatively fit populations.

It is also worth noting that in the limit of a minimally fit population (µ → 0)
we can expand the generating function in Eq. (19) systematically. We thereby find
that the density Pn exhibits a super-exponential decay, Pn = Ne−1/(n− 1)!.

5. The supercritical case

When advantageous mutations are favored, the master equation for Pn, Eq. (5), can
be viewed as a random walk with a bias towards increasing n. Because there is no
mechanism to counterbalance this bias, the average fitness grows without bound and
no steady state exists. As in the case of a uniformly biased random walk on a semi-
infinite domain, the distribution of fitness becomes relatively localized in fitness
space, with the peak drifting towards increasing n with a velocity V = b+ − b−.
Since the fitness profile is non-zero only for large n in the long time limit, it is
appropriate to adopt continuum approach. We therefore treat n as continuous, and
derive the continuum limits of Eqs. (5) and (6). For the time evolution of the fitness
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distribution P(n, t), we obtain the equation of motion(
∂

∂t
+ V ∂

∂n

)
P =

(
B − γN − 1

n

)
P +D∂

2P

∂n2
. (31)

This is just a convection-diffusion equation, supplemented by a birth/death term.
Here the difference between advantageous and deleterious mutations provides the
drift velocity V = b+ −b−, and the average mutation rateD = (b+ +b−)/2 plays
the role of diffusion constant. For the total population density we obtain

dN

dt
= (B − γN)N −

∫ ∞

0
dn
P (n, t)

n
. (32)

To determine the asymptotic behavior of these equations, we use the fact that the
fitness distribution becomes strongly localized about a value of n which increases
as V t . Thus we replace the integral in Eq. (32) by its value at the peak of the
distribution, N/V t . With this crude approximation, Eq. (32) becomes

dN

dt
=

(
B − γN − 1

V t

)
N. (33)

Thus we conclude that the density approaches its steady state value as

γN → B − 1

V t
. (34)

This provides both a proof Eq. (8), as well as the rate of convergence to the steady
state.

We now substitute this asymptotic behavior for the total population density into
Eq. (31) to obtain (

∂

∂t
+ V ∂

∂n

)
P =

(
1

V t
− 1

n

)
P +D∂

2P

∂n2
. (35)

Notice that the birth/death term on the right hand side is negative (positive) for
subpopulations which are less (more) fit than average fitness V t . This birth/death
term must also be zero, on average, since the total population density saturates to
a constant value. Moreover, this term must be small near the peak of the fitness
distributions where n ∼ V t . Thus as a simple approximation, we merely neglect
this birth/death term and check the validity of this assumption a posteriori. This
transforms Eq. (35) into the classical convection-diffusion equation whose solution
is

P(n, t) = N√
4πDt

exp

[
− (n− V t)2

4Dt

]
. (36)

This basic results implies that the fitness distribution indeed is a localized peak, with
average fitness growing linearly in time, 〈n〉 = V t , and width growing diffusively,
σ = √

2Dt . We now check the validity of dropping the birth/death term in Eq. (35).
Near the peak, |n−V t | ∼ √

Dt , so that the birth/death term is of order t−3/2 ×P .
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On the other hand, the other terms in Eq. (35) are of order t−1 ×P , thus justifying
the neglect of birth/death term.

We now turn to the age characteristics. Asymptotically, the density of individu-
als with given age and fitness changes slowly with time because the overall density
reaches a steady state. Consequently, the time variable t is slow while the age vari-
able a is fast. Physically this contrast reflects the fact that during the lifetime of an
individual the change in the overall age characteristics of the population is small.
Thus in the first approximation, we retain only the age derivative in Eq. (3). We also
ignore the term Cn/n, which is small near the peak of the asymptotic fitness distri-
bution. Solving the resulting master equation and using the boundary condition of
Eq. (4) we obtain

Cn(a, t) � Pn(t)γN e−γNa

= γN2

√
4πDt

exp

[
−γNa − (n− V t)2

4Dt

]
. (37)

Integrating over the fitness variable, we find that the age distribution C(a, t) =∫
dnCn(a, t) has the stationary Poisson form

C(a) = γN2 e−γNa. (38)

From this, the average age is A = (γN)−1 = B−1 in agreement with Eq. (9).
As discussed in Sect. 4.2, the surprising conclusion is that the average age in the
supercritical case is always smaller than that in the subcritical case.

6. The critical case

We now consider the critical case where the rates of advantageous and deleterious
mutations are equal. If it were possible to drop the 1/n term, then the relation
γN − b = b+ + b− together with b+ = b− would recast Eq. (5) into the master
equation for an unbiased random walk on the semi-infinite range n ≥ 0. Due to the
1/n term, the system has a bias towards increasing n which vanishes as n → ∞
(see Fig. 2). Thus we anticipate that the average fitness will grow faster than t1/2

and slower than t . Hence we can again employ the continuum approach to account
for the evolution of the Pn. In this limit, the corresponding master equation for
P(n, t) becomes

∂P

∂t
=

(
B − γN − 1

n

)
P +D∂

2P

∂n2
. (39)

Numerically, we find 〈n〉 ∼ t2/3, while the dispersion still grows as t1/2, that is, as
σ ∼ √

t . Thus these two quantities are related byσ ∼ 〈n〉3/4, as derived analytically
for the subcritical case.

To provide a more quantitative derivation of the above scaling laws for 〈n〉 and
σ , as well as to determine the fitness distribution itself, we examine the equation
for P(n, t). First note that the total population density still obeys Eq. (32), as in the
supercritical case. Under the assumption that the fitness distribution is relatively
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narrow compared to its mean position, a result which we have verified numerically,
we again estimate the integral on the right-hand side of Eq. (32) to be of the order
of N/〈n〉. This leads to

γN → B − 1

〈n〉 . (40)

Substituting this into Eq. (39) yields

∂P

∂t
=

(
1

〈n〉 − 1

n

)
P +D∂

2P

∂n2
. (41)

Given that the peak of the distribution is located near n ≈ 〈n〉, it proves useful
to change the original variables (n, t) to the comoving co-ordinates (y = n −
〈n〉, t) to determine how the peak of the distribution spreads. We therefore write
the derivatives in the comoving coordinates

∂

∂t
= ∂

∂t

∣∣∣∣
comoving

− d〈n〉
dt

∂

∂y
,

∂

∂n
= ∂

∂y
,

and expand the birth/death term in powers of the deviation y = n− 〈n〉

1

〈n〉 − 1

n
= y

〈n〉2
− y2

〈n〉3
+ . . .

Now Eq. (41) becomes

∂P

∂t
− d〈n〉
dt

∂P

∂y
= y

〈n〉2
P − y2

〈n〉3
P +D∂

2P

∂y2
. (42)

Let us first assume that the average fitness grows faster than diffusively, 〈n〉 �√
t . With this assumption, the dominant terms in Eq. (42) are

d〈n〉
dt

∂P

∂y
= − y

〈n〉2
P. (43)

These terms balance when 〈n〉(ty)−1 ∼ y〈n〉−2. Using this scaling and balancing
the remaining sub-dominant terms in Eq. (42) gives y ∼ √

t . The combination of
these results yields 〈n〉 ∼ t2/3. This justifies our initial assumption that 〈n〉 � √

t .
Now we write 〈n〉 = (ut)2/3, with u of order unity, to simplify Eq. (43) to

∂P

∂y
= − 3y

2u2t
P . (44)

In terms of n = y + 〈n〉 the solution is

P(n, t) = N
√

3

4πu2t
exp

{
−3

[
n− (ut)2/3]2

4u2t

}
. (45)
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Thus the fitness distribution is again Gaussian, as in the supercritical case, but with
the average fitness growing as 〈n〉 = (ut)2/3. Finally, we determine u = √

3D by
substituting 〈n〉 = (ut)2/3 in Eq. (42) and balancing the sub-dominant terms.

The age distribution in the critical case can be obtained in similar manner as in
the supercritical case. The approximations that were invoked to determine the age
distribution in the supercritical case still apply. Consequently, the asymptotic form
for Cn(a) is still given by Eq. (37), and this gives the same expression for C(a)
after integrating over n, as in Eq. (38). Hence the average age is again B−1, as in
Eq. (9).

7. Summary and discussion

We have introduced an age-structured logistic-like population dynamics model,
which is augmented by fitness mutation of offspring with respect to their parents.
Here fitness is quantified by the life expectancy n of an individual. We found
unusual age and fitness evolution in which the overall mutational bias leads to three
distinct regimes of behavior. Specifically, when deleterious mutations are more
likely, the fitness distribution of the population approaches a steady state which
is an exponentially decaying function of fitness. When advantageous mutations
are favored or when there is no mutational bias, a Gaussian fitness distribution
arises, in which the average fitness grows as 〈n〉 = V t and as 〈n〉 = (3D)1/3t2/3,
respectively.

Paradoxically, the average age of the population is maximal for a completely
unfit population (least mutational bias). Conversely, individuals are less long-lived
for either positive or no mutational bias, even though the average fitness increases
indefinitely with time. That is, a continuous “rat-race” towards increased fitness
leads to a decrease in the average life span. As individuals become fit, increased
competition results in their demise well before their intrinsic lifetimes are reached.
Thus within our model, an increase in the average fitness is not a feature which
promotes longevity.

Our basic conclusions should continue to hold for the more realistic situation
where the mortality rate increases with age [4, 7, 9]. The crucial point is that old
age is unattainable within our model, even if individuals are infinitely fit. When the
mutational bias is non-negative, old age is unattainable due to keen competition
among fit individuals, while if deleterious mutations are favored, age is limited
by death due to natural mortality. In either case, there are stringent limits on the
life expectancy of any individual. To include an age-dependent mortality into our
model, we may write the mortality term fn(a)Cn(a, t) instead of n−1Cn(a, t) in
Eq. (3), where fn(a) is the mortality rate for individuals of age a. Similarly, the
term n−1Pn in Eq. (5) should be replaced by

∫
dafn(a)Cn(a, t). However, these

generalized terms play no role for large n, since fn(a) is a decreasing function of
n and old age is unattainable.

Acknowledgements. We gratefully acknowledge partial support from NSF grant
DMR9632059 and ARO grant DAAH04-96-1-0114.
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A. Bounds for the average age

The upper bound, A < (γN)−1, follows immediately from Eq. (28), so we just
prove A > Amin. We have

Amin = B−1 = 1

b + b−(1 + µ2)

A = 1

b + 2b−µ
− 1

(b + 2b−µ)2

×
∫ 1

0
dx x

1
b+2b−µ

(
1 − µ

1 − µx
)2

exp

{
1

b−µ

(
1

1 − µx − 1

1 − µ
)}
.

Using these expressions and performing elementary transformations we reduce the
inequality A > Amin to∫ 1

0

dx

b−(1 − µx)2 x
1

b+2b−µ e−v <
b + 2b−µ

b + b−(1 + µ2)
, (46)

where

v = − 1

b−µ

(
1

1 − µx − 1

1 − µ
)

(47)

varies in the range [0, V ], with V = 1
b−(1−µ) . Rewriting Eq. (46) in terms of v

gives

∫ V

0
dv e−v

[
1 − V −1v

1 − V −1µv

] 1
b+2b−µ

<
b + 2b−µ

b + b−(1 + µ2)
. (48)

Note that the inequality [
1 − p
1 − q

]ν
< e(q−p)ν (49)

holds for 0 < q < p < 1 and ν > 0. This is readily proven by taking the logarithm
on both sides and using the expansion ln(1 − u) = − ∑

k≥1 u
k/k. Now we apply

Eq. (49) to the integrand in (48) and then replace the upper limit V in the integral
by ∞ to give

∫ V

0
dv e−v

[
1 − V −1v

1 − V −1µv

] 1
b+2b−µ

<

∫ V

0
dv exp

{
−v − v b−(1 − µ)2

b + 2b−µ

}

<

∫ ∞

0
dv exp

{
−v b + b−(1 + µ2)

b + 2b−µ

}

= b + 2b−µ
b + b−(1 + µ2)

.

This completes the proof.
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The lower boundAmin turns out to be very accurate in the case when mutations
are slightly deleterious. To see this let us write b+ = 1, b− = (1 + ε)2, where
ε � 1. Replacing x by the transformed variable v = ε−1 − (1 + ε − x)−1 recasts
the integral Eq. (28) as

ε2
∫ 1

ε(1+ε)

0
dv e−v

(
1 − ε2v

1 − εv
) 1
b+2+2ε

. (50)

We now expand the integrand,

(
1 − ε2v

1 − εv
) 1
b+2+2ε

= 1 − ε2v

b + 2 + 2ε
− ε3v2

b + 2 + 2ε
+ O(ε4),

replace the upper limit in the integral Eq. (50) by ∞, and compute the resulting
simple integrals explicitly to obtain a series expansion in ε for the average age.
Together with analogous expansions for Amax and A we have

Amax = 1

b + 2 + 2ε

Amin = Amax

(
1 − Amax ε

2 + A2
max ε

4
)

+ O(ε6) (51)

A = Amax

(
1 − Amax ε

2 + A2
max ε

4 + 2A2
max ε

5
)

+ O(ε6)

Thus the difference between the exact value and Amin is of order ε5.

B. Transient behavior of the total density

Numerically, we found that in the subcritical case the total population density
approaches the steady state value N∞ = (b + 2

√
b+b−)/γ from below with a

deviation that vanishes as t−2/3. We now explain this behavior by constructing a
mapping between this transient behavior in the subcritical case and the transient
behavior in the critical case. We start with the basic rate equation, Eq. (5). We may
remove the term γNPn through the transformation

Qn(t) = Pn(t) exp

{
γ

∫ t

0
dt ′N(t ′)

}
, (52)

which simplifies Eq. (5) to

dQn

dt
=

(
b − 1

n

)
Qn + b+Qn−1 + b−Qn+1. (53)

Next, the steady state behavior Pn ∼ µn suggests replacing the Qn by Rn(t) =
µ−nQn(t). This also removes the asymmetry in the birth terms and gives

dRn

dt
=

(
b − 1

n

)
Rn + b∗(Rn−1 + Rn+1), (54)

where we use the shorthand notation b∗ = √
b+b−.
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One cannot use the continuum approximation to determine the steady-state
solutions for Pn or Qn. However, the continuum approximation is appropriate for
the Rn. Then Eq. (54) reduces to

∂R

∂t
=

(
b + 2b∗ − 1

n

)
R + b∗ ∂

2R

∂n2
, (55)

which is very similar to Eq. (41). Hence we expect that the distribution of Rn
is peaked around 〈n〉 � (3b∗)1/3t2/3. It proves convenient to make this scaling
manifest. To this end we change variables once more,

Sn(t) = Rn(t) exp

{
−(b + 2b∗)t +

(
9t

b∗

)1/3
}
, (56)

to get

∂S

∂t
=

(
1

〈n〉 − 1

n

)
S + b∗ ∂

2S

∂n2
. (57)

Repeating the procedure of Sec. 5 we determine the asymptotic solution to Eq. (57)
as

Sn(t) ∼ 1√
4πb∗t

exp

{
− (n− 〈n〉)2

4b∗t

}
. (58)

To find the asymptotics of the total population density let us compute
∑
Qn(t).

First, (52) can be expressed as

∞∑
n=1

Qn(t) = N(t) exp

{
γ

∫ t

0
dt ′N(t ′)

}
. (59)

On the other hand,

∞∑
n=1

Qn(t) =
∞∑
n=1

µnRn(t)

= exp

{
(b + 2b∗)t −

(
9t

b∗

)1/3
} ∞∑
n=1

µnSn(t). (60)

In the last sum, the factor µn suggests that only terms with small n contribute
significantly. Although the asymptotic expression (58) is formally justified only
in the scaling region, where |n − 〈n〉| ∼ √

b∗t , the continuum approach typically
provides a qualitatively correct description even outside this region. Therefore we
take Eq. (58) to estimate Sn for small n. We find

∞∑
n=1

µnSn(t) ∼ exp

{
−C

(
9t

b∗

)1/3
}
, (61)
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where we use 〈n〉 ∼ t2/3, as in the critical case, andC is a constant. By substituting
Eq. (61) into Eq. (60) we obtain

∞∑
n=1

Qn(t) ∼ exp

{
(b + 2b∗)t − (1 + C)

(
9t

b∗

)1/3
}
. (62)

Combining Eqs. (59) and (62) we arrive at the asymptotic expansion

γ

∫ t

0
dt ′N(t ′) = (b + 2b∗)t − (1 + C)

(
9t

b∗

)1/3

+ . . . , (63)

which implies

γN(t) = b + 2b∗ − const × t−2/3 + . . . (64)
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