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Abstract. In acompanion paper two stochastic models, useful for the initial behaviour of
aparasitic infection, were introduced. Now we analyse the long term behaviour. First alaw
of large numbers is proved which allows us to analyse the deterministic analogues of the
stochastic models. The behaviour of the deterministic models is analogous to the stochastic
models in that again three basic reproduction ratios are necessary to fully describe the in-
formation needed to separate growth from extinction. The existence of stationary solutions
is shown in the deterministic models, which can be used as a justification for simulation
of quasi-equilibria in the stochastic models. Host-mortality is included in all models. The
proofsinvolve martingale and coupling methods.

1. Introduction

In Luchsinger (2001) [Ls] two stochastic models were introduced to model the
spread of a parasitic disease. These models were more general versions of the non-
linear model proposed in Barbour and Kafetzaki (1993) [BK] and the linear model
of Barbour (1994) [Ba] respectively. The generalisation in [Ls] was to introduce
host-mortality. One important result of these papers was that the natural candidate
for the basic reproduction ratio Ry does not necessarily contain the information
needed to separate growth from extinction of infection. In fact, another ratio, Ry,
was aso important in the models without host-mortality; and if host-mortality
was included a third ratio R, emerged. In Barbour, Heesterbeek and Luchsinger
(1996) [BHL] alinear deter ministic model without host-mortality wasinvestigated.
Similar phenomena are seen there, too.

In this paper, two associated deter ministic models including host-mortality are
introduced. Existence and uniqueness of solutions to the differential equationsis
shown in Theorem 2.1 (linear model) and Theorem 2.5 (non-linear model). The
stochastic and deterministic models are linked by laws of large numbers (Theorem
2.3 for the linear models and Theorem 2.5 for the non-linear models). It is then
not surprising that the deterministic models inherit the basic reproduction ratios
from the stochastic models (Theorem 3.1 for the linear model and Theorem 3.7 for
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the non-linear model) - these threshold-results are of amost purely mathematical
interest. In Theorem 3.3 (linear model) and Theorem 3.8 (non-linear model), sta-
tionary solutions are found for some parameter regions and ruled out for others.
Convergenceto these stationary sol utions could only be proved for thelinear model
(Theorem 3.4).

Themodelsin [Ls] have been developed for a disease (schistosomiasis), where
endemic areas exist. Asthe epidemic dies out with probability onein the non-linear
stochastic model (Theorem 2.2in[Ls]), the use of that model for simulations could
be questioned. But by Theorem 3.8 in this paper, there is a (non-trivial) stationary
solution to the deterministic analogue of that stochastic model. By the law of large
numbers (Theorem 2.5) we therefore have a justification to simulate a quasi-equi-
librium in the non-linear stochastic model as long as the number of individuals
M islarge.

2. Themodels, and the links between the stochastic
and deter ministic models

The motivation for the following model s can befound in [L ], where two stochastic
models, stochastic non-linear (SN) x| and stochastic linear (SL) X have been
introduced. The definition of models SN and SL is repeated later in this section.
In this paper deterministic models are introduced. |n comparison to the stochastic
models, they only mirror an “average” behaviour of the process. Let £;(z), j > O,
denote the proportion of individuals at time ¢, ¢+ > 0, who are infected with j par-
asites. We assume that £;(0) > Ofor all j > 0 and that ijogj(O) = 1 (whereas
the equation ijo £;j(t) = 1foral r > 0 hasto be proved). The parasites have
independent lifetimes, exponentially distributed with mean 1/u. Each infected in-
dividual makes contacts with other individuals at rate A; but only those contacts
that are with an uninfected individual lead to a new infection (concomitant im-
munity). Suppose that the infecting individual has j parasites. Then the result of
acontact is to establish a newly infected individual with a random number S; of
parasites, where S; := Z{Zl Y; and the Y; areindependent and identically distrib-
uted with mean 6 and variance 02 < oco. Define pjk = P[S; = k], and note that
> k=0 Pjk =1foreach jand ) ;.1 kpjr = j6.

We assume that individuals have independent lifetimes, exponentialy distrib-
uted with mean 1/«, no matter how high the parasite burden is. All parasites dieiif
their host dies. We dlow « = 0, meaning that people can live for an infinite length
of timeinthat case. Themodelsstudied in[BK], [Ba] and [BHL] havex = 0. Inthe
non-linear models we replace an individual that dies by an uninfected individual.
The reader is referred to [Ls] for acritical discussion of the assumptions made so
far and the set-up of equations (2.1) and (2.2) ahead. Besides, the reader should
read this paper with [BK] and [BHL] at hand as many proofsare similar to the ones
in those papers and only necessary changes have been mentioned. The following
system of differential equations shows how & will evolve in time:
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dé;

—h =G+ Dpkjya = jug; +rko ) Epy—kEj; j= 1
=t 2.1)
d
% = pk1— Ao [ 1- Zapm) + 1 (1 - &)
>0

We call thismodel DN; this stands for Deterministic Non-linear.

Thelinear model, useful in modelling theinitia phase of an epidemic outbreak,
isdefined asfollows. Let E;(¢), j > 1, denote the number of individuals at time¢,
t > 0, who are infected with j parasites. We assumethat £;(0) > Oforall j > 1.
The following system of differential equations shows how E will evolvein time:

=)

L =G+ DB —jnEj +AY Eip—xEp 21 (22

=1
Wecall thismodel DL ; thisstandsfor Deterministic L inear. The difference between
model DN and DL isthe following: in model DL the contact rate is A and thereis
no limiting factor in the model. In model DN the contact rate is altered from A to
A&o, because only those infectious contacts that are with an uninfected individual
lead to anew infection. In DL we restrict our studies to solutions & for which the
following three conditions are satisfied:

sup ZEj(s)<ooforalltzo,

Ogsgtjzl

> jEj(0) < oo, 23)
j=1
thereexistsa j > 1, suchthat Z;(0) > 0.

We call these constraints conditions C. They are introduced for technical reasons.
In what follows the initial values are at times more general than those specified
above: if so, we makeiit clear.

We restrict our studies to nonnegative solutions of DN and DL, even if we do
not mention this every time. For thiswhole paper we use the notation £© and £ (©
for asolution of DL and DN respectively if « = 0.

We repeat the definition of the stochastic models from [Ls]. Consider a
model with afixed number M of individuals, each of which may carry parasites.
Let x™) be an infinite dimensional Markov process x™) (w, 1) : Q x [0, c0) —
{[0, 1] N M~17}*°. In what follows, xj(t), j = 0, denotes the proportion of indi-
vidualsat timet, t > O, that are infected with j parasites, so that ijoxj(o) =1
andx;(0) = 0, j > 0. We suppresstheindex M whenever possible. The rateswith
which x changes are as follows:

x = x+M71(ej_1—ej) arate jMux;; j>1,

x = x+ M e — eo) atrate AMxo » _ xipi: k = 1, (2.49)
>1

X — x+ M_l(eo —e)araeMxk; r>1,



558 C. J. Luchsinger

where ¢; denotes the i-th co-ordinate vector in R*°. We call this model SN; this
stands for Stochastic Non-linear. We introduce a notation for the sigma-algebra
too: #; .= o{x(u),0 < u < s}.

The next model isdefined asfollows. Let X be an infinite dimensional Markov
process X (w, t) : 2 x [0, 00) — {[0, 00) N Z}*°, where X ;(¢), j > 1, denotes
the number of individuals at time ¢, + > 0, that are infected with j parasites. We
assumethat 0 < ijlxj(O) =n <ooand X;(0) > 0, j > 1. Theratesat which
X changes are asfollows:

X—> X+ (ej_1—ejaraejuX;; j=2,
X —> X—eraraeuXy; (j=12),

X —> X +e atrate)\ZX,p,k; k>1,

>1
X—> X—e¢ araeX,«; r>1.

(2.5)

We call this model SL; this stands for Stochastic Linear. We introduce a notation
for the sigma-algebratoo: 4; .= o{X (), 0 <u < s}.

We first want to find the link between the deterministic linear models with
x = 0and « > O respectively. With the help of this link we will prove existence
and uniqueness of the solutionsto model DL.
It can easily be verified that the solutions @ of DL with « = 0 and the solution
& of DL with« > O arelinked, in that the following equation is satisfied:

(1) =87 0)e™, (2.6)

for al j > 1. This should be understood in the sense that if one has a solution to
either equation, one gets the solution to the other equation viaformula (2.6).

The following theorem is just a trandlation of Theorem 2.3 in [BHL] and the
remark following it using relation (2.6). The reader is therefore referred to [BHL]
for further details. It shows that we have a unique nonnegative solution to system
DL withx > 0.

Theorem 2.1. The system DL, with E(0) such that 0 < ijl E;(0) < oo, hasa
unique nonnegative solution satisfying supy— <, ij1 Ej(s) <ooforallz=>0.
The solution is given by

E](t) = j_l (ZIEI(O)PZ [Y(t) — ]]) e(}»@—u—;{)[’
=1

where Y is the unique pure jump Markov process defined in chapter 2 in [BHL]
and P; denotes probability conditional on Y (0) = .

In the linear case the solution to the deterministic model is the expectation of
the stochastic model:
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Theorem 2.2. Let X be a Markov process with rates given in S_ and with initial
state X (0) satisfying " ,..; X(0) =: n < oo, and set £(0) := n~1X(0). Then y
defined by

yj(6) :=n"TE(X;(1)| X (0) = nE(0)}
satisfies the differential equations DL with y(0) = E(0), aswell as conditions C.

Proof. Theorem 2.2 was proved in [BHL, Theorem 2.2] inthe case x = 0. The
proof of Theorem 2.2 is the same mutatis mutandis; introduction of host mortality
does not cause any problems. O

Remark. Thereis no exact counterpart of Theorem 2.2 in the non-linear case.
However, there is an asymptotic analogue. If we take the expectation of the Mar-
kov process x™) in model SN and then let M tend to infinity, the limit is the
solution to the differential equations DN, because the sequence of Markov process-
es (xM)) ;-1 converge weakly towards the solutions of the differential equations
(asisseen in Theorem 2.5 (to come)), and each coordinate is bounded by 1.

The stochasticlinear process X and the deterministiclinear process E arelinked
to each other in thefollowing way: the (normalised) stochastic process SL converg-
esweakly towards the solution to the deterministic system DL. We need sequences
of processes behaving according to SL. We denote them with (X, n > 1).

Theorem 2.3. Let (X, n > 1) be a sequence of Markov branching processes as
specifiedin SL. Weassumethat theinitial state X ™ (0) issuch that Y1 X}”)(O) <

ocoandntX™(0) - y© where0 < ijljyj(-o) < 00. Thenn=1X™ converg-
esweakly in D*°[0, T] for each T > 0 to the (unique) non-random, nonnegative
process &, which evolves according to the differential equations DL with initial

state 2(0) = y©@, and satisfies conditions C.

Remark. Wecanloosenthecondition0 < 3~ ,_, jyj(-o) <ooto0 <} iy yj(.o) <
oo. Then conditions C are not necessarily satisfied and all we can guarantee isthat
SUPo<g<; ijl Ej(s) < oo foral ¢ > 0and that there existsa j > 1 such that
2,00 > 0.

Proof. The proof for « = 0 can be found in [BHL] as Theorem 2.1. The proof of
Theorem 2.3 follows the same lines. Therefore we only mention the few changes
necessary. For al j > 1 and x € RS, define the functions

aj(x) = (j + Duxjp1— jux; + 1Y xipyj —kxj:
>1

bj(x) = (j + Dpuxje+ juxj + 1Y xipij +Kx),
>1

and the random processes
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t

U}z(t) = x?(t) — x;’(O) — /0 a;j(x" (u))du;
1 [t

V]'-l(t) = UJ'-'(t)2 - ;/0 bi(x"(u))du,

where x" (¢) := n=1X ™ (z).

The following Lemma 2.4 corresponds to Lemma 3.5 in [BHL] and the proof
of this lemma is given completely. For Lemmas 3.6, 3.7, 3.8 and 3.9 respective-
ly in [BHL] only the necessary changes of the proofs are summarized: Use our
definitions above for a;, b;, Uj’.Z and Vf and replace (A vV u) by (A vV 1 Vv k) ev-

erywhere. Instead of / and . respectively define & and /4 respectively such that
h(x)(t) :=hx)(@) — fé kxj(u)du and by (x)(t) = hi(x)(t) — fé kxj(w)du. U

Lemma2.4. U]’F () and V;‘ (t) are ¥} -martingales.
Proof. We apply Theorem A1 in the Appendix to provethat U 7 isamartingalein

thefollowingway: choose S = {7, }*and f : {Z,}*° — R, suchthat f(v) = v;.
Now choose Z tobe x”. By Lemma3.1in[Ls] x" isregular. By definition we have

t
U;’(t) = x;»’(t) - x;-’(O) - /0 a;j(x"(u))du
= FG ) — £OMO))
t
- /0 P () / LF G )+ y) — O @) (e, dy)du

where y, f(y) and pr take the following valuesfor j > 1:

Tablel. Thevauesfory, f(y) and px intheinfinitesimal generator. prr isapurely atomic
measure and in Table 1 we only mention the positive values of that measure.

y fG+y)—fx)  prx, {yh
—ent  —pt Jux;

Ej}’lil n’l (j + l);Lle-i—)Llelxlplj
—e_/-n’l —I’l71 K.Xj

Choose F(z) = (A + 2(j + D + «) Y ;=1 z- Condition (B) is then satisfied
because

bi(x) < 0+2( + D +x) Y x,
>1

andforany 7 > 0

[E|: sup len(t)i| <7, (2.7)

0<t<T I>1
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The latter is true, because Zj>1X(")(t) only increases at an infection, and in-

fections occur at atotal rate of 2 )., Zk>1X Pjk =AY, >1X(”) thus, by
comparison with a pure birth process W|th per cap|ta rate A, (2. 7) foIIovvs

With these choices, we can directly apply Theorem Al: N/ = U]" isamartin-
gae.

Now let us proceed to prove that V;’ is amartingale too. We apply Corollary
A3 in the following way: by definition and using the notation introduced in the
Appendix for Corollary A3 (Nf = U}? here) we have

t
Vi) = U;?(t)z— }/ b (X™ (u))du
n Jo
t
— (NE? - / (X (w))ma(X ™ (w))du.
0

Here, ma(X™(u)) = 1/n Y+ ;i%m(X™, ie;), and we can choose the same
F(2) = (A +2(j + D + k) Y ;o1 21 asabove. As (Nf)? — [N, N8, isamar-

tingale we may replace (N*)? by [N¢, N¢]; and deduce by Corollary A3 that V(")
isamartingale itself. D

The stochastic non-linear process x™) and the deterministic non-linear pro-
cess & are linked to each other in the following way: the stochastic process x (M)
converges weakly towards &. With regard to this result, we prove the existence
and uniqueness of the non-negative solution & to the system DN in the following
theorem.

Theorem 2.5. Fix T > 0. Let C1[0, T] denote the space of continuous functions
fon[0, T] which satisfy 0 < f(¢) < 1for all #, and let C3° := (C1[0, T])*.
Suppose that y € [0, 1]°° and that Z ~0yj = 1. Then therelsaumque element
& e C3° satisfying the equations DN such that 5(0) = y and, for all + € [0, T1,
ijogj(t) < 1. Furthermore, if x™)(0) = y” a.s,, where y¥ — y in[0, 1]*°,
then x ™) converges weakly towards £ € C3°.

Remark. Since T is arbitrarily chosen, it follows that x™) converges weakly
towards & in (C1[0, 00))*>°, where C4[0, co) has the projective limit topology. It
isalso in order to alow the initial values x™)(0) to be random, provided that the
sequence of random elements x ™ (0) of [0, 1]*° converges weakly to y.

The proof of Theorem 2.5 consists of several parts. The proof wherex = 0 can
be found in [BK] as Theorem 3.2, but the following proof workstoo if « = 0. We
first prove Lemma 2.6, becauseit isinteresting in its own right, and already proves
one part of Theorem 2.5; we also need it to prove the rest of Theorem 2.5.

Lemma 2.6. Given the initial values & (0) of a possible solution of DN, there is at
most one solution of DN which satisfies ) ;.o & (t) < 1for all r > 0.
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Proof. System DN can be rewritten in integral form as equations (2.8):

t
£ =&+ fo {(j+1)§j+1(u)l/~—j$j(’4)ﬂ
+rgo(w) Y &w)prj — Kéj(u)}du, jzL (28)
>1

t
go(r) =£0(0) + /0 {Sl(u)u - ?»Eo(u)(l - ZEZ(M)MO) +r(l— So(u))}du-

1>0
We multiply the j equation in (2.8) by e=/*, for any fixed s > 0, and add over
j > 0, obtaining

AP (s, u)
as

t
¢(s.1) = ¢(s,0) +/0 {M(l —e’)

+ 3 (00, 1) (= 0g ¥ (s, 1) — 1] + & — K. u>} du;

where ¢ (s, 1) = ijoe_jxsj'(t) and ¥ (s) = ijoe_jxplj; ¢ (00, 1) is just
another way of writing &o(¢). Differentiating with respect to ¢ leads to the partial
differential equation

0p(s, 1)
ar

AP (s, 1)
as

n(l—e')

+ Ap (00, D[P (—logy(s), 1) — 1] + Kk —k(s, 1).
(2.9

Equation (2.9) canbeintegratedins > 0, ¢ > 0, using themethod of characteristics,
leading to

d(s, 1) = (S5, (v),v) + /t?»qﬁ(oo, w)[¢(—1ogy (Ss,: (), u) — 1]
4K — qu(Ss,,(u)j)u)du; (2.10)
for any v, and in particular for v = 0, where
Se. () = —log{l — (1 — e *)e MWy,
Now if & and &> are two different solutions of (2.8), they giverise to functions ¢1

and ¢, satisfying (2.10), and suchthat 0 < ¢; < 1, i = 1, 2. Supposethat, for any
v >0, ¢1(s, v) = ¢2(s, v) for dl s (asiscertainly the casefor v = 0). Let

dy,w(P1, $2) = SUp suplgi(s, 1) — ¢2(s,1)| < 1.

V=t=w >0
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Then, from (2.10), for ¢ € [v, w],
|p1(s, 1) — Pp2(s, 1)
= I/vt {rp1(00, w)[p1(—log ¥ (Ss. (), u) — 1] + k& — K p1(Ss.c (u), u)
—A2(00, u)[p2(—10g ¥ (Ss.r (), u) — 1] — K + K p2(Ss. (), u) } dul
< (kK +20)(w — v)dy w.
But then we have
dyw < (kK +20)(w — v)dy,y.

But thisin turn impliesthat d,, ,, = 0if w < v + (v + 21)~L. Iterating this pro-
cedure, starting with v = 0 and continuing in steps of (2(x + 21)) 1 shows that
P1(s, 1) = ¢a(s, t), fordl s > 0, ¢t > 0 which completes the proof of Lemma 2.6.

O

It is convenient to define the following functions and random variables to use
inwhat follows:

aj(x) =+ Duxjia — jux; +rxo »_xipy —kxji j =1,

>1
ap(x) = puxy— )»XO<1 - Z)ﬂpzo) + k(1= x0),
>0
bj(x) = +Dpuxji1+ jux; +MOZJC1pzj +xxj; j =1,
>1
bo(x) = pux1+ Axo <1 - Z)ﬂpzo) + k(1 — x0), (2.11)
>0

atl =suplaj()| < (G+Dpu+r+k <oo; j=>1,

X
bs i=suplbj(x)| <2(j + D+ r+k <o0; j>1,

X

t
Ujx(0) =x;) —x;(0) —fo aj(x(u))du; j >0,
M M N\2 1 ! M

v =uio ‘M/ b ™M @)du; j =0,
UM =U;(x™), j > 0,and Ut = Uj(x*), j = 0,wherex* isdefinedin Lemma
37|n [BHL] We need thefollowmglemmato prove Theorem 2.5.

Lemma 2.7. UJM () and VjM (t) are M -martingales.

Proof. The proof of Lemma 2.7 uses the same ideas as the proof of Lemma 2.4.
Choose S = {[0, )N M~1Z}>® and f : {[0, N M ~1Z}>® — [0, 1] N M~1Z such
that £ (v) = v;. Then choose Z to be x*). By Theorem 2.2 of [Ls] x™ isregular.
As f isbounded we can choose F := A + 2(j + L) + « which makes the proof
even simpler. O
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Proof of Theorem 2.5. Take y as in the statement of the theorem, and choose a
sequence yM of deterministic initial conditions for x) such that y¥ — y in
[0, 1]°°. Fix any j, and consider the uniform modulus of continuity

w(x](.M); 8) = sup x;M) (t) — x;M) (s)
0<s<t<T;t—s<$

of the random elements x ‘™’ of the space D[O, T], given the Skorohod topol ogy.

Theproof of Theorem 2.5followsal most the samelinesasthe proof of Theorem 2.1

in [BHL]. For Lemmas 3.6, 3.7 and 3.9 respectively in [BHL] only the necessary

changes of the proofs are summarized: Use our definitions above for a;, b;, U; M

and use the boundedness of a in [BHL, equation (3.8)] and of b* in[BHL, equ&

tion (3.9)], making [BHL, equatlon (3.10)] unnecessary. Because x™) converges
weakly towards x* Wehavez i~0X7 () < 1; forallr ae. Theproof of Lemma2.8
differs from the proof of Lemma3 8in[BHL], that iswhy we state it completely:

Lemma 2.8. UJM converges weakly towards U;." inD[O, T],M € N,j>0.

Proof. We prove Lemma 2.8 by showing that U; (see (2.11)) is continuous at x*.
Let (z,, n > 0) be asequence of elements of (D[0, T])*°, such that lim,,_, o0 z,, =
ze Cyand0 < z,;(t) < 1fordl (n, j, ). Then, since convergencein D[O, T'] to
an element of C[0, T'] implies uniform convergence we have: limy,_, o SUpg<;<7
lzai(t) — zi(2)] = O; for adl I > 0. So al we have to concentrate on to show
continuity of U; isthe part z,o(t) Y~z (t) p1j Of theintegral. But here we can
proceed in the following way:

SUp |2,0() Y zu () pij — 20(t) Y _ 2t pij
O=e<T 1>0 120 (2.12)
5{ sup Izno(t)—zo(t)Isz,} {Z sup Iznz(t)—zz(t)lpz,-}.
0<t<T >0 1>0 0<t<T

But by equation (2.2) in [BK] we have 2120 p1j < oo, and using the dominated
convergence theorem, we see that (2.12) convergesto 0 asn — oo. Thisendsthe
proof of Lemma 2.8 and therefore of Theorem 2.5. O

The behaviour of the stochastic process in a finite time interval is much the
same as the behaviour of the solution of the corresponding differential equations,
if the number of individualsislarge. Thefollowing result is stronger than Theorem
2.5 because even the sum of absolute differences in al coordinates converges to
zero. Asadrawback, slight restrictions have to beimposed ot theinitial value y of &

Theorem 2.9. Suppose that y € [0, 1]*° is such that Z >0y = landsy =
Z/>1] y;j < oo for somea > 0. Then, if £ isthe solutlon of DN with £(0) =

Y, X j=0&i(0) = Lfor al ¢ If also x*(0) = y¥ — y in such a way that
M= oo ijoj“y;” = sy, then
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M— o0
Ostf]"jzo

lim u{ sp 30 - 50| > ej| =0

forany T, e > 0.

We first need to prove a lemma which is going to be used frequently in this and
the next section. We define the following functions, where still x™) jsthe Markov
Process behaving according to SN:

m¥ 0y =" j M@, admP@) =) jE; ),

j=1 j=1
Ca(¥) =Y juxi{(G—D* = j Y+ rx0 Y ) xjpik® —x Y jx;,
izl k>1j>1 j>1

t
WMy = my(z)—m{y(O)—f ca M (w))du.
0

Lemma 2.10. For a € (0, 1] WM (¢) isan #,-martingale. If additionally y issuch
that s, = ijlj"‘yj < oo and & isa solution of DN with £(0) = y, then

t

meS() = m(0) + / ca(E))du, (213)
0
fort > 0.

Proof. To provethat W isan #,-martingale we can apply Theorem 2 in Ham-
za and Klebaner (1995) [HK], version for general state space. Choose f(z) =
Yiz1i%jandc = (2u+ A0 + k), then |L| f(z) < c(1V |f(2)]) is satisfied,
where L istheinfinitesimal generator of the Markov process x M.

So we only have to prove equation (2.13). But this can be shown using exactly
the same steps as the proof of Lemma 3.5 in [BK]. Note that the inequality

E[m )] < m¥ @KW, (2.14)

where the monotonically increasing function K (¢) isfinitefor al € (0, c0), can
be shown more easily, as we know that WM isan #,-martingale. O

Proof of Theorem 2.9. The proof for ¥« = 0 can be found in [BK] as Theorem 3.6
and the proof for « > 0 follows the same steps; use Theorem 2.5 and equation
(2.14). O
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3. Analysing the deterministic models

Wefirst analyse the deterministic linear model DL. Using (2.9) in [BHL] and (2.6)
wegan

a1

) = %(Zzaz@)e“@Mfﬂ»"mn . @Y

=1
for al j > 1, where PO denotes probability conditional on theinitial distribution

PoLY(0) = j] = jEj(O)/(ZlEI(0)>-

>1

We first want to study the threshold behaviour of model DL. Introduce Rg =
20/ + 1), RY = 20/u, Ry = hrelogf/(u67) and Ry = »/k. For an
interpretation of these ratios see [Lg]. By the expression “threshold behaviour”
we usually denote general statements of the following type: if Rg > 1the epidemic
developsin deterministic systemsand if Rg < 1 the epidemic dies out. Aswe have
already seen in the stochastic approach (see[L9]), the situation is more complex in
our models. The next theorem makes a statement about the asymptotic behaviour of
the number of infected individualsin DL and in Remark 1) following the theorem
we derive the threshold result:

Theorem 3.1. Assumethat } ;. jE;(0) < co. Thenthelimit:

lim /11 Bt = ctn = ct
Jim ¢ 0g) Ej(0) =ict(, 0,60 =c

j=1
exists and is given by:
A —pu—k if Réo)logegl
t =1 e L+ log(R log6)) — u —« if 1< R logo < 6
0
A —k it R logé > 6.

Remarks. 1) Using Theorem 3.1, elementary although quite complicated calcula-
tions lead to the following threshold behaviour, which only involves determining
whether ¢ < 0or ¢t > 0. Intheregionlogd < (1+ (k/w)) "t wehave: ¢t < 0
if andonly if Rg < 1. Intheregion (14 (k/u))~t < logd < u/k wehave: ¢t < 0
if and only if R1 < 1. Intheregionlogfd > u/x we have: ¢t < 0if and only if
Ry < 1.

2) If k = 0, these results stay true with the following adjustments: the third region
for 6 isshifted away to infinity. So we have only two regionsfor 6 if « = 0, namely:
0 < eandf > e, and the basic reproduction ratios simplify to Rg = A0/u and
R1 = Xelog6/u. Then Theorem 3.1 and Remark 1) are Theorem 2.6 and Remark
2.7in[BHL].

3) The stochastic anal ogue of the threshold behaviour of Remark 1) isTheorem 2.1
in[Lg].
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Proof. Use (2.6) to see that from the definition of ¢ in [BHL], Theorem 2.6, we
have
cF=c—«. 3.2

Then Theorem 3.1 follows from Theorem 2.6 in [BHL]. O

We can use equation (2.10) in [BHL] and (2.6) to compute the development of
the number of parasites in the entire system:

D JEjn = (ZlE[(O))E(w_“_K)’. (3.3)

jz1 =1

Therefore Rg = A0/(u+«) = listhethreshold for the development of the number
of parasitesin DL. The stochastic analogue is equation (2.4) in [Lg].

We now prove Lemma 3.2 which enables usto simplify many of the following
proofs. The Markov process Y and the probability measure PC are as defined in
chapter 2 of [BHL].

Lemma 3.2. Suppose that in DL we have Ry = 1. Theinitial values are such that
0< K :=Y,-118/(0) < oo. Then the following result holds:

Case(1): logé < 1/(14« /). Thenthere existsa uniqueinfinite vector of positive
real numbers v (the stationary distribution of Y)) such that =10 =1 and

lim &;(r) = v;K;j~t foral;>1
—>0o0
Case (2): logh > 1/(1+ k /). Then we have
lim 8;(1) =0 foral j>1
11— 00

Proof. AsRg =1, (3.1) smplifiesto

1
j(6) = 7(2131@)) POLY (1) = jl,

>1

=
=

foral j > 1. Looking at case (1), we havelogf < 1/(1+ «/u). Hence,

AQ 1 A0
R(0> logo < =Ro=1
W 1+I</M n+K

Thus, if p1o+ p11 < 1, Y ispositiverecurrent by Theorem 2.5in[BHL]. Therefore
by general theory of Markov processes we have aunique infinite vector of positive
real numbers v such that Z i>1v; = land lim, PO[Y (1) = j] = v; for all
j=1LIfpo+pu=1Y |seventually absorbed in state 1. Then Lemma 3.2 is
satisfied by choosing vy = 1.

Looking at case (2), we have logé > 1/(1 + «/un). We can apply Theorem
25in[BHL] again: hereitisimpossiblethat p1g + p11 = 1 becausethenlogé >
1/(14+«/pn) > 0and p11 = 6 < linthat case. Y iseither null recurrent or transient
because
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A0 1 AB
R logo > = =
wld+w/n  p+k

But in both caseswe have lim,_, oo P[Y (r) = j] = Ofor al j > 1. Thisendsthe
proof of Lemma 3.2. O

Call E(t) astationary solution of DL, if E;(¢) > Ofor al j > 0, and putting
E = E intheright hand side of (2.2) gives zero: the solutionto DL with 2(0) = &
isthen E2(r) = & for al ¢. It is clear that in the non-linear models eg and in the
linear models 0 are automatically stationary solutions. We call these stationary
solutionstrivial in comparison to the nontrivial. We mention these trivial solutions
throughout, although they do not satisfy conditions C in the linear case, because
conditions C ask for at least one co-ordinate j > 1 such that E;(0) > 0. Inreality
we may assume that k < w, meaning that the death rate of parasitesis larger than
the death rate of their hosts. Assuming this, we know about the stationary solutions
in both models DL and DN that, for each j > 1, the following inequality must
hold:

This result follows immediately from the differential equations as for example in
model DL via

_U+Du L+
T e T

63]

A _ _

- Z Eipij > 8j+1.

Ju+K =1

The results about stationary solutions in DL are summarised in the following
theorem:

Theorem 3.3. a) For every choice of parameters (1, 0, u, ) thereexiststhetrivial
stationary solution & = 0.
b) Thereis no nontrivial stationary solution of DL with finite number of parasites
iflogh > (14 «/w)~L.
) Iflogh < (14« /)"t and R = 1, then up to scalar multiplication there exists
exactly one nontrivial stationary solution of DL with finite number of parasites.
d) Supposethat « = 0, R(()O) = Ro=landthatf < e, andlet 2@ bea stationary
solution of DL with finite number of parasites. Then, for any « > 1 the following
statements hold:

If0 > o¥/@ D then Y, jEP = oo;

1fo < o@D and 2 j=1i%p1j < oo, then} . 4 j* é;o) < 00.
Proof. a)isclear.

b) Suppose we have a nontrivial stationary solution of DL with finite number
of parasites. Asthe number of parasitesisfinite and the solution is nontrivial, con-
ditions C are satisfied. In a stationary solution the number of parasitesis constant.
By (3.3) this requires that Rg = 1. So we can apply Lemma 3.2, Case (2) which
finishes the proof of part b).

¢) A candidate for a nontrivial stationary solution with finite number of par-
asites can be found through Lemma 3.2 as follows: suppose we have logfo <
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1/(1+«/u)~t, Rg = 1 and choose afixed, finite number K (the (initial) number
of parasites). Then for al j > 1 we define:

2;(1) := j 1Kv; (34)

for al r > 0, where v denotes the unique stationary distribution of Y. We now
have to show that this is indeed a solution of DL. Consider a solution y of DL
withinitial values asin (3.4). By Theorem 2.1 that solution y exists and is unique.
We now have to show that the solution y is equal to (3.4) for all + > 0. Now y
has a representation of the form (3.1). AsRgp = 1wehave A0 — u — k = 0 and
so we only have to ensure that if we start with P@[¥(0) = j] = v;, then we
have PO[Y (1) = j] = v, for al r > 0. But thisis so because v is the stationary
distribution of Y.

Now we show that (3.4) is (up to scalar multiplication) the unique stationary
solution of DL according to the way we defined such solutions. All co-ordinates of
(3.4) are nonnegative (even positive). We have to show that if we put our solution
(3.4) intheright side of DL we get zero. We therefore need

KVj+1 — JUj + A Z U—.’Pi,/ ~ o,
i>1 ! J

for al j > 1. By equation (2.6) in [BHL] we see that thisis equivalent to vS = 0
as6 = (u + «)/A1. But thisistrue as v is the unique stationary distribution of the
Markov process associated with the Q-matrix S.

Uniqueness follows through contradiction. If z is an other stationary solution
of DL and z is not a scalar multiple of E, we argue as follows: z must have a
representation in the form of (3.1) too. We may assume without loss of generality
that theinitial total number of parasitesisthesamein z and &, becausein the linear
models, every scalar multiple of a stationary solution is a stationary solution too.
But then, looking at (3.1) there must be two stationary distributions of Y, whichis
not possible.

d) For « = 0 we compare the stationary solutions of DL and DN with each
other and make contradictions using Theorem 4.4 in [BK]. Choose an arbitrary
go € (0,1).1f 6 > o@D we assume we have a stationary solution £© of DL
suchthat ) j=1J” EE.O) < oo. Without loss of generality we may choose that

D & +g0=1 35)
j=1

because in the linear models, every scalar multiple of a stationary solution is a
stationary solution too. Now we define ' ;= A/go. AS Rp = 1, we have 10 > u.
Therefore, by Theorem 4.2 of [BK] (included in Theorem 3.8, seelater) we have a
(unique), nontrivial stationary solution of DN & (@ with parameters (), 6, i) with
finite average number of parasitesper individual . Now we compare thetwo systems
DN (with (A/, 8, ©)) and DL (with (&, 8, w)) with each cther for j > 1. The two
systems are;
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(©)
d&:
. 0 . 0 0 (0) .
o=+ DuEy — jng” + 1 D & by = 1. (DN)
>1
and
dE} 0 0 0
i . —~(0) . =(0) =(0) .o
7, = U+ DrE, — JuE) +/\;a, pijs j =L (bL)
>

The only difference between DN and DL is in the infection process: we have
A’géo) in DN and only A in DL. But, again by Theorem 4.2 of [BK] we know that
EQ = /a0 = 1ugo/26 = go. Additionally we have by definition that = A’ go.
So if we only want to look at stationary solutions (where ééo) is constant in time
and equal to go), the two systems are in fact equal and both linear! We define:
gj = EE.O) for j > 1. By (3.5) and the eguivalence of DN and DL the vector
(gj) j=0 isthe unique stationary solution of DN with parameters (1’, 6, ). So we
have constructed a stationary solution g of DN where for § > o@D we have
ijl j%gj < oo. Thisisa contradiction to Theorem 4.4 of [BK].

Onthe other hand, if & < !/©@~Y, we assumewe have asolution £ of DL such
that 3.4 j* 29 = co. But then we can construct such a solution of DN too as
shown aboveinthefirst part of d) which isagain acontradiction to Theorem 4.4 of
[BK]. O

By convergence towards a stationary solution & we mean that all components
of the converging function y(r) must satisfy lim,_, » v; () = & for al i > 1 (con-
vergence in R*°). In the next theorem we prove convergence of a solution of DL
to a stationary solution under some obviously necessary assumptions.

Theorem 3.4. If logd < (1+ «/u)~ L and if Ry = 1 then every solution y of DL
which satisfies conditions C converges towards that unique stationary solution E
of DL which satisfies Y"1 jEj = Y21 jy,(0).

Proof. We can use Lemma 3.2 to see that each solution of DL that satisfies con-
ditions C converges to some infinite positive vector (v; K j -1 j>1. Asinthe proof
of Theorem 3.3 ¢) we see that thisis the unique stationary solution of DL. O

Call asolution E periodic if thereexistsat > Osuchthat E(t + ) = E(r)
forall .

Theorem 3.5. Inthelinear system DL there are no periodic solutionswhich satisfy
conditions C except stationary solutions.

Proof. Inaperiodic solutionthe number of parasites must be periodically the same
too. But in view of (3.3) this means that Ry = 1 is necessary. Now we can apply
Lemma 3.2: but the behaviour suggested in both cases rules out periodic solutions
which are not stationary solutions. O
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We now analyse the non-linear deterministic model DN. Intuitively it is clear,
that if aparasite haslessthan one offspring under ideal conditions, thatisif Rg < 1,
then the epidemic must die out. That is precisely the following result:

Theorem 3.6. If Ro < 1andif £(0) = y issuchthatsy :=}_,., jy; < oo, then
lim; o0 (1) = eg and ijljsj(t) < g1~ (Wt —2A0)

Proof. From Lemma 2.10, recalling that m{°(¢) := 2121 Jj&j(@), it follows that

1
M) = 51+ /0 (Org0(w) — 1 — oM W)du.
Hence

m$(t) = speolM0o—p—rldu) (3.6)
proving the theorem. O

Next we derive the threshold results for system DN:

Theorem 3.7. Let £(0) in DN be such that 0 < ijo Jj&j(0) < oo. Then the
following statements hold:

Case 1) logh < (14 «/u)~L: Thenlim;_, o0 £(t) = e if Rg < 1, andif Ry > 1
then &(t) 4 eg ast — oo.

Case2) (14 «/m)~t < logh < u/k: Thenlim,_ o &(f) = eg if Ry < 1, and if
Ry > 1then&(t) 4 egast — oo.

Case 3) logh > u/x: Thenlim, o £(t) = eg if R2 < 1, and if R> > 1 then
&E(t) » egast — oo.

Remarks. 1. The stochastic analogue of Theorem 3.7 in [Ls] is Theorem 2.3, but
the reader should notice Theorem 2.2 in[Lg] too.

2. Again, asin Remark 2) following Theorem 3.1, if k = 0, these results stay true
with the interpretation that the third region for 6 is shifted away to infinity.

Proof. Wefirst prove the results where the disease dies out (the relevant R; must
be smaller than 1). Then we prove that the infection does not die out if the relevant
R; islarger than one.

We use the notation of section 2 for ¢, and m2°(¢). The function f(x) = x* is
concaveif o € [0, 1]. So

ca(§) < (0“0 — pe — 1) Y jOE;.

j=1

Using (2.13) we therefore havefor0 < v < ¢

t
my(t) < mi(v) — / (na + k — 20%E)my° (u)du. 3.7

The case where x = 0 was proved in [BK] as Theorems 4.1 and 4.6. If Rp < 1we
can use Theorem 3.6 whichisvalid for all 6 and so wemay assumethat Ryp > 1. We
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wanttofindana € (0, 1] suchthat g(«) := x + puo —A0% > 0. Then we can apply
the Gronwall-inequality to (3.7) because then lim,_, o m3° (1) = 0 which ends the
proof. Let usfirst analyse thisfunction g: g(0) =« —xand g(1) =« + u — A0
(<Obecause Ry > 1). Soif k — A > O(thatis Ry, < 1) weeasily findana € (0, 1]
such that g(x) > 0 (e« — O finaly gives us such an «). So the third case where
R> < lisalready satisfied. We may thereforeassumethat k < A. Wetherefore only
have to show the second case: 1/(1+ «/u) < logé < u/k, Ry < 1. Elementary
calculations show that g takes the maximum with respect to o at

1 W
= I .
0 log6 °d <Aloge>

Under the assumptions above it can be shown through elementary though partly
tedious calculationsthat g € (0, 1] and g(ag) > 0. Thisendsthe proof of the first
directions (R; < 1).

Now we heed to provethat in cases 1), 2) and 3) the infection does not die out if
therelevant R; islarger than 1. The proof runsthrough for k = 0too. We prove all
three casesin one. If wewrite“ R;”, we mean R in thefirst case, Ry in the second
case and Ry inthe third case.

The strategy of the proof is asfollows: in the non-linear model DN the contact
rate A is decreased to the effective contact rate A&g(¢). If the disease is near to
extinction, & must be almost 1. So the non-linear process & isalmost alinear pro-
cess E behaving according to DL. But by Remark 1 of Theorem 3.1 we know that
the linear process E does not die out under the conditions mentioned above. So we
must show that there exists alinear process E suchthat &; < &; for j > 1 at least
until there is no danger for the process ¢ to die out.

Letusdefine N(¢) := ijl £;(t). Theexpression £(r) / eg meansthat there
existsan € > 0 such that if at sometime 1, we have N(11) < e, then there exists
ary > t1 such that N(t2) > e. Without loss of generality we choose r; = 0 and
e suchthat (1 — ¢)R; > 1. We therefore have to show that there existssa7* > 0
such that N(T*) > €. Let usdefine A’ := A(1 — ¢) and let E be a solution of DL
with parameters (1, 6, ). We choose the initial values such that 2;(0) = &;(0)
foral j > 1. Thenwedefine L(¢) := ijl Ei®)and T :=inf{r : L(t) > €}.

By Remark 1 of Theorem 3.1wehave T < oco. Now if thereexistsav € [0, T]
such that N(v) > e we can choose T* := v and nothing remains to be proved.
Otherwisewehave N (t) < eforall ¢ € [0, T]. If wecanshow thatforall ¢ € [0, T]
and j > 1,

Ej(r) <& (3.8)

we have finished the proof.

Wehave N (r) = 1-&9(¢t) < eforadlr € [0, T]. Sowehave)l’ = A(1—¢) < A&
for al ¢ € [0, T]. Although intuitively we might expect that we therefore can eas-
ily prove (3.8) by just comparing the two systems DN and DL with each other,
such approaches seem difficult to carry through. We therefore ook at stochastic
processes (x ™) and X) where such a comparison is possible through the coupling
method. Then we use Theorems 2.3 and 2.5 to finish the proof.
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We now construct the two stochastic processes: the non-linear processx ™) and
thelinear process X . We define the process x ™ asin section 2, devel oping accord-
ingto SN, wheretheinitial valuesareto be suitably chosen later and 1/M « €. For
this we define a trivariate Markov process (x ™) (r), X (1), x"(¢)). “r” stands for
residual. In fact, each of the componentsin (x ™) (z), X (t), x" (¢)) are themselves
infinite dimensional: the first component is an infinite vector (xj.M ) (1)) j>0 where
the co-ordinates take valuesin ZM ~1 N [0, 1], the second component is an infinite
vector (X (1))x>1 wherethe co-ordinatestake valueson the natural numbersand the
third component isan infinite vector (x;’) (1)) j=0 Wherethe co-ordinatestake values
in ZM~—1 N0, 1]. We choose the initial values to be such that x(()M) 0) = x(({) (0),
x(0) = M~1X,;(0) for j > 1and x;” (0) = Ofor k > 1.

We want the trivariate Markov processto satisfy the following requirements #.

Our aimisto construct x ™ and x) such that x " = M~1X; + xj.r) amost
surely for j > 1 at least in the beginning (aslong anéM) > 1— ¢). Then we have
xJ(.M) (1) > M~1X(¢) for j > 1tooin the beginning. Additionally we want x )
to behave according to SN and X to behave according to SL.

We begin with x(()M) > 1—e. Until xéM) < 1— € for thefirst time, welet these
processes devel op according to the following rates:

(XW), X, x(’)) - (x(M) + M Hej1—e)), X +ejo1—ej, x(r)>
atrate juX;; j > 2, (death of aparasitein the linear process)
(x(M), X, x(r)> — (x(M) + M Yep—e1), X —er, x) + M_le())

at rate 1 X1, (death of aparasitein an individual with only one parasitein the linear
process)

(x(M), X, x(’)> — (x(M) + M Yeo—ey), X —ey, xT + M_leo)

atratex X,; u > 1, (death of an individual in the linear process)
(x(M), X, x(r)> — (x(M) + M_l(ej_1 —ej), X, x4+ M_l(ej_l - e.,-))

at rate j;LMx](.’); Jj > 1, (death of a parasite in the residual process)

(x(M), X, x(’)) — (x(M) + M Yo —en), X, xT + M L(eq — eu))
at rate k Mx\"; u > 1, (death of an individual in the residual process)

(x(M), X, x(’)) — (x(M) + M Yep —eg), X + e, x) — M_1e0>
arater' Y ,-1 Xupuk; k > 1, (infection in the linear process)

(x(M), X, x(r)> — (x(M) + M~ Yep —e0), X, x4+ M~ L(ep — eo)>
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atrate g™ M Y1 x” pic+ Ox§™ = 1) Y121 Xipu, (infectionin theresidual

process due to infective force of the residual process itself (first part of the rate)
and dueto residual rate (difference between the linear and non-linear contact rate,

second part of the rate)). Note that x((JM ) () = x(()r)(t) until x(()M ) < 1— ¢ forthe

first time. As soon anéM) (1) < 1 — ¢ for thefirst time, we let the linear process
X develop according to SL and independently of x*). The reader should notice
that we have to distinguish carefully between the processes x™) and x on the
one side and X on the other side. The non-linear process and the residual process
denote proportions of individuals while X denotes the explicit number. This has
to be considered while dealing with rates. The reader can check that with our con-
struction of the trivariate Markov process we meet all requirements #. We show
(3.8) through contradiction: supposethereisau € [0, T] andaJ € N\ {0} such
that

Ey(u) > &5 (u). (3.9

AsN = 1 — &, N must be a continuous function. Therefore there exists ¢ =
SUp{N(r) :t € [0, T]} < e.

Now let usdefine Ay = {w : SUPg—, 7 x5 (s) (@) — Eo(s)| < € —q}. Asby
definition ¢ = sup{(1 — &()) : t € [0, T]}, wehave Ay C {w : x(()M)(t)(a)) >
(1—e) foral ¢ € [0, T]}. We now choose the initia values y™ of x™ such that
WM —>¢E0and)" ;. jyj.‘” — ) ;>1J%;(0). By Theorem 2.9, P[A ] converges
to 1. We now define

(M) _ 1
By (u) :=x;" " (w)la,, Cyu) = MXJ(M)IAA,p

AsAy Clw: x((JM)(t)(a)) > (1—e¢),foralt € [0, T]} wehave by construction of
the coupling By (1) > Cpy(u). But as M tendsto oo, 1,4,, converges weakly to 1,
ng) (u) converges weakly to &;(u) by Theorem 2.5 and (1/M)X j (1) converges
weakly to E; («) by Theorem 2.3. But thisis contradictory to (3.9) which finishes
the proof. O

Let us now look at stationary solutions of DN. Call &(r) a stationary solution
of DN, if for al j > Owehave §;(1) > Oand }_;.(&;(r) = 1, and putting
£ = £ intheright hand side of DN gives zero: the solution to DN with £(0) = &
isthen &(r) = & for all ¢. The next theorem summarises all results about stationary
solutionsin model DN:

Theorem 3.8. a) Inevery non-linear system DN we always havethetrivial station-
ary solution & = eg no matter which values the parameters take.

b) There is no nontrivial stationary solution of DN with finite average number of
parasites per individual if logf > (1+ «/u)~ L.

¢) Suppose that logf < (1 + «/u)~t and Rg > 1. Then there exists a unique
stationary solution £ of DN with finite average number of parasites per individual.
For this stationary solution we furthermore have & = Ry L

d) Assuming the conditions of ¢) and as long as Rp remains greater than 1, the
ratios; /(1 — &) for j > 1 do not changeif the vector (1, 11, «) isaltered in such
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away that theratio x /u remains constant. More, if p1o+ p11 < 1thentheseratios
can not all stay the same if theratio «/u is altered.

Proof. The proof of thistheorem if « = 0 can be found in [BK] as Theorems 4.2
and 4.6.

a) isobvious.

b) In this part we assumethat logé > 1/(1 + «/u). We prove part b) by con-
tradiction: we show that if we have a nontrivial stationary solution & of DN with
finite average number of parasites per individual, then we must have a nontrivial
stationary solution E of DL which is contradictory to Theorem 3.3 b). So let us
suppose that £ isanontrivial stationary solution of DN with finite average number
of parasites per individual. Therefore, if we put £ in the right side of DN we get
zero. Aswe are only interested in astationary solution, we have aconstant £y in DN
in the infection process. But then, if we choose 1’ := A&y in DL, the equations are
thesamein DN and DL for j > 1. Soif we have astationary solution & of DN with
finite average number of parasites per individual, then with the choice E; := §; for
Jj = 1wehave astationary solution for DL with finite average number of parasites
per individua. Thisis contradictory to Theorem 3.3 b).

c) Let usfirst construct a candidate g for the unique nontrivial stationary solu-
tion of DN with finite average number of parasites per individual in the following
way: we choose go := Ral (<1). Then we define ' := Ago. We now have

20 Agob

wtk  pAt«

asgo = Ry . Weknow by Theorem 3.3 ¢) that if log6# < 1/(1+« /), there exists
anontrivial stationary solution & of DL which isunique up to scalar multiplication.
We choose that unique nontrivial stationary solution £* of DL whichisscaled such
that

g% —
j>1

Our candidate is the g such that go = R 1 as chosen above and then we choose
gj = E* for j > 1. We now have to check that this candidate satisfies our de-
mands: from Theorem 3.3 ¢) g inheritsnontriviality and that the number of parasites
isfinite. Additionally we have chosen go = R L which solves one part of c). We
therefore only have to prove that g is a stationary solution of DN and that it is
unique under the constraints above. Let us look at the two systems DN and DL
(repeated in the proof of part b)). g;, j > 1is astationary solution of DL. As
A’ is by construction equal to Agp and go is constant, the two systems are even
equivalent for j > 1. So g does satisfy all equations of DN for j > 1 too. We have
to check the j = 0-equation too. But as the right side of DN sums up to 0 this
equation must be satisfied too. Therefore we have a stationary solution. We now
have to show that it is unique amongst the nontrivial stationary solutionswith finite
average number of parasites per individual. We prove this through contradiction.
Suppose we have two different nontrivia stationary solutions p and g of system
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DN with finite average number of parasites per individual. We now construct two
different nontrivial stationary solutions p’ and ¢’ of a system DL with parameters
(A, 0, u, k) where p’ is not a scalar multiple of ¢’. But this is contradictory to
Theorem 3.3 ¢). In fact we can simply choose p;- = p;forj>1land q} =g for

j > 1. Wechoose & := Apo. Then p’ is a stationary solution of system DL with
parameters (X, 6, i, k) because of the equivalence of systems DN and DL if we
choose the &g in the infection process of DN to be constant (asit isin a stationary
solution). The same construction can be carried out with ¢’. We choose A := Aqq.
q’ isastationary solution of system DL with parameters (1, 6, 11, «) because of the
equivaence of systems DN and DL if we choose the &g in the infection process of
DN to be constant (asit isin astationary solution). In system DL we can only have
anontrivia stationary solution if Ry = 1 because of equation (3.3). But this must
be true for both combinations of parameters:

X0 10
R0: = :l,
nt+x ptk

and therefore we must have A = 1 and pg = go. So in fact we have two different
stationary solutions p’ and ¢’ of the same system DL with parameters (&, 6, 1, k).
They both sum up to (1 — pg) which shows that neither is a scalar multiple of the
other. So we have two nontrivial stationary solutions of DL with finite numbers of
parasites where neither isa scalar multiple of the other, a contradiction to Theorem
3.30).

d) Letu betheuniquestationary solutionof DN with parameters(i, 6, u, «) and
let v betheuni questationary solution of DN with altered parameters(a A, 6, i, y k)
where «, B and y are each positive. We define Ry := A0/(u + k) and R, =
arb/(Bu + yk). Wewant to show that u; /(1 — ug) = v;/(1 —vo) foral j > 1
under the assumptions of Theorem 3.8 d) (if 8 = y). We show thisby proving that
the proportions amongst the u;, j > 1, are the same as the proportions amongst
thev;, j > 1. Inadtationary solution the derivatives are all 0. So u must setisfy

. . n+ K
0= +Dpujyr—jpu;+ Tzulplj —Kuj, (3.10)
>1

foral j > 1, (weuseduo = Ry = (1 +«)/(18) from part ¢)) and v must satisfy

. . Bu + vk
0= +DBuvjyr— jBuvj + — E Viplj — YKV, (3.11)
=1

foral j > 1 (weused vo = R;! = (Bu + y«)/(arf) from part ) again). To
assumethat the ratio « /. remains constant meansthat 8 = y. Soin fact, equation
(3.11) is equation (3.10) multiplied by 8 # 0. But as we are looking at stationary
solutions, and so the 1g and vg respectively are constant, these equation are in fact
both linear and so multiplying with a constant does not change their solutions.
Therefore u satisfies equation (3.11) too. But stationary solutions of a system of
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type DL are unique up to scalar multiplication by Theorem 3.3 ¢). So both solu-
tions must be equal up to scalar multiplication, hence the proportionsamongst their
co-ordinates must be the same too. So the first part of Theorem 3.8 d) is proved:
theratios ; /(1 — &) for j > 1 do not change if the vector (A, 1, «) is atered in
such away that the ratio « /. remains constant and R remains larger than 1.

We are now going to rule out the possibility of other changes. So suppose that
the equations u; = v;(1 — ug)/(1 — vo) hold for al j > 1, that means that the
ratiosu ; /(1 — ug) do not change if the parameters are altered. We must now show
that this implies 8 = y. But the assumption u; = v;(1 — ug)/(1 — vo) for all
j > 1 meansthat u isascalar multiple of v. Sou must satisfy equations (3.11) too.
We can write equations (3.10) and (3.11) in amore convenient form:

G+ Dpujpr + B3 uipyj
Ji+ K

: (3.12)

for al j > 1. In the same way v (and as we have just seen u too therefore) must
satisfy the following equation:

G+ DBuvj1+ ﬂ“;yk > 151 VDl
JBu+ v« ’

foral j > 1. Letuswrite Aj for ), u;pij. Asu satisfies (3.12) and (3.13) we
have -

Vj (313)

G+ Duujer+ 555A; G+ DBpuj1+ PG54,
Jutx JBu+ vk

for al j > 1. Simple calculations lead to

BlcO(j +Dpujrr+ Ajlpux — jun)] = y[k0( + Dpujia + Aj(uc — juc)]

foral j > L. But«6(j + Dpujr1+ Aj(ux — jux)isnot Oforal j > 1ascan
be seen in the equation for j = 1 because u, > 0 in a stationary solution of DL if
p10 + p11 < 1. So B = y must hold which finishes the proof. O

The results about convergence towards a nontrivial stationary solution of DN
are summarised in the following

Theorem 3.9. Letlogd > (14«/u) ! and € beanontrivial stationary solution of
DN. For asolution & of DN withinitial conditions&(0) = y Wherezj21 Jyj < oo
we have the following behaviour:

Casel) (1+«/w)"t <logh < pu/k: If Ry > 1, thenlim,;_. o0 £(r) = £ isonly
possibleif & > 1/R;.

Case 2) u/k < log@: If Ry > 1, then lim;_.o £(t) = & is only possible if
&0 > 1/R2.
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Proof. The proof for k = 0 can be found as Theorem 4.6 in [BK]. We use in-
equality (3.7) of the proof of Theorem 3.7. Let usassumethat Ry > 1 (or R2 > 1
respectively in the third region for ) and lim,_ ., £(r) = £. If there exists an
a € [0, 1] such that g(a) := (ua + k — A0%&g) > 0, we can deduce by (3.7) and
the Gronwall-inequality that mS° (r) convergestowards O for t — oo. Then & must
converge towardsthetrivial solution eg too which isacontradiction to our assump-
tions. In both cases we prove the existence of such an « by using & < 1/Ry < 1
(or&p < 1/Ry < 1respectively inthethird region for 6). With these contradictions
we then have finished the proofs.

Let usfirst assumethat 1/(1+ «/u) < logf < u/k and& < 1/R1 < 1. We

choose
o] = min<1, 1 Iog( = e ))
log6 Aéologd

Let usfirst treat the case where oy = (1/log6) log(i/(A&gl0g#)). Then oy must
be smaller or equal to 1 and because 1/(1+« /) < logf < u/xk wehavewy > 0.
We now must check that g(«1) > 0. We have

2 U "
= lo = -
g(e) log6 g(xgologe) T log6

Thisislarger than O if

" ©
lo _ + log(@ 1,
g(Asologe) 9@ =
which is satisfied if
MQK/M
= > e
Aéglogo

As R > & thisinequality is satisfied. Now we treat the case where oy = 1 and
therefore we may additionally use that (1/log ) log(u/(A&0l0g8)) > 1. Thisis
equivalentto /(10 log#) > &y. Thereforeég < min(u/ (A0 logé), Ry 1), Because

log6 > 1/(1+ «/w), we have u/ (16 1og6) < R‘l. Hence

z 2z
& < 01098’ (3.19)
Let us now show that g(1) = u + k — A& > 0. By (3.14) this is satisfied if
w+ Kk > u/logfh. But thisis satisfied because logé > 1/(1 + «/u) which ends
the proof of thefirst case.
Now weassumethatlog6 > uu/k and&y < 1/R» < 1. Definec := 1/Ry—&g > 0.
Then we have

g(@) = pa +k — A% = pa + k — A% (k /A — ¢) = pa + k — 0% + 16%c,

where we used the definitions of ¢ and R2 = A/u. This shows that there exists an
a € [0, 1] such that g(«) > O (let « tend to 0). This ends the proof of case2). O
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Remark. Suppose that in model DL u/k > logd > (14 «/u)~ L, Ro > 1and
R1 < 1. By Remark 1) to Theorem 3.1 the epidemic dies out; but by equation (3.3)
the number of parasites tends to infinity. We have the same behaviour in models
DN (Theorem 3.7 and equation (3.6)) and SL (Remark 3) to Theorem 2.1in[Lg]).

Open questions. 1. Having proved laws of large numbers (Theorems 2.3 and 2.5),
can we prove a central limit theorem? There are various possibilities. single co-
ordinates, a finite combination of co-ordinates or even the entire process (a mea-
sure-valued process). For one single co-ordinate j such aresult could be that there
isadiffusion limit for
M (0 - &0)

as M — oo if theinitial values are suitable.

2. In view of Theorem 3.8 c), do we have convergence in DN towards that
stationary solution &?

3. Arethere stationary solutionswithinfinite average number of parasitesper in-
dividual and under which conditionsdoesasolution & convergeto such a stationary
solution? I's such a solution unique?

Appendix

Inthe Appendix welook at variations of resultsfrom [HK] which we used frequent-
ly in this paper. We consider atime-homogeneous Markov chain {Z,} on ageneral
state-space S. The process is defined by its times of jumps, {z,,} (0 = 0, 7,41 =
inf{t > 7,; AZ, :== Z, — Z,_ # 0} and 1, = oo if there are less than n jumps),
and the sizes of itsjumps, {J,,}(Jo = 0). By the Markov property, conditionally on
{Z(ty) = z}, for 1,11 < oo as. we have

a) .41 — T, isexponentially distributed with mean, say p(z)~1, and

b) Z(ty+1) — Z(z,) hasalaw that dependson z only, say 7 (z, .).
Let { #,} bethe natural filtration of the process Z,. We have

Z(Tn+1) = Z(Tn) + Jn+l»
(A1)
Zi=Zo+ Yoy Jullta <1l.

Let f bean arbitrary function and define

Lf@) = p() / LF G +2) — F@Ir(. dy)

and
t

NS = F(Z) — f(Zo) — /O Lf(Z)ds

L isthe infinitesimal generator of the Markov process Z, see for example Ethier
and Kurtz (1986) [EK], p. 376. In Theorem A1 and its corollaries, we investigate
conditions under which Ntf is a martingale. Additionally, a sufficient condition,
condition (B), isgiven for the integrability of the process f(Z;).
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Theorem Al. Assumethat the process Z isregular and takes values on a general
state-space S. Let f : S — R, bea possibly unbounded function such that there
existsafunction F : S — R, such that

IL1f(z) = p(Z)/ |f@+y) = f@In(z,dy) < F(2), (B)

[E|: sup F(Zu):| < 00
O<u<s

forall s > 0.If f(Zo) isintegrable, thensois f(Z;), moreover N/ isamartingale
and

ELf (Z)] = ELf (Zo)] + fo E[Lf(Z,)]ds.

Proof. The proof of Theorem A1l follows the same lines as the proof of Theo-
rem 2 in [HK] with the following exceptions (notation and numbers of equations
according to [HK]):

1. Equation (5) in step 1 becomes

T
E[1YI7] = E[|Yol] + E [[ F(Zs)dsi| < 00,
0

proving immediately that the variation process |Y|, = [ I[s < t]|x|u/ (ds, dx) is
locally integrable.
2. Thefirst equations in step 2 become

t

E[I £ (Z;")1] < E[|Yol] + E [/o I[s < Sn]F(Zs)dS} <0

independently of n which leads directly to (7).
3. Inequation (8) we use again the upper bound F (Z;) for | L| f (Z,) whichfinishes
the proof of Theorem A1l. O

Again, let S be agenera state-space such that the elements z of S are (infinite)
vectorsand f; : S — R, beaprojection on the co-ordinate j: f;(z) = z;. Define

mi(2) = [(fj(x)*n(z, dx) and [m|x(z) = [|fj(x)[*7(z, dx). Applying the
above theorem to the particular case of polynomials we get

Corollary A2. Assumethat (fj(Zo))k isintegrable and that there existsa function
F suchthatforalli =1,..., k

p(2)|ml; (z) < F(2).
and E[Supy, <, F(Z,)] < oo. Then (f;(Z;))* isintegrable and

k-1 p

k i
(fi(Z0)* = (fj(Z0))* - ) | 0z (£(29) mi—i(Z)ds
1/ Jo

i=0
isa martingale.
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Particular attention is, of course, given to the function g1(z) := z; for j > 0
(sok = 1in Corollary A2) and to the process
13

NE = g1(Z)) — g1(Zo) — /O p(Z)mi(Z,)ds.

It is, for example, clear that if we find an F such that p(z)|m|1(z) < F(z) and
E[supg<, s F(Z,)] < oo holds and g1(Zp) isintegrable, then the process g1(Z;)
is regular and integrable and N is a martingale. When a second-order condition
is added, we obtain an expression for the predictable compensator of the quadratic
variation process[N¢$, N¢];.

Coroallary A3. Assume that the conditions of Corollary A2 with £ = 2 hold. Then
the process
t

[N%, N¥], — /0 p(Zy)ma(Zy)ds
isa martingale.

Proof. Applying Corollary A2 to the function g2(z) = z? (k = 2 in Corollary
A2), we get that the process

t t

82(Z;) — g2(Zo) —/O p(Zs)ma(Zs)ds — 2[0 p(Zs)g1(Zs)m1(Zs)ds
is a martingale. Writing [N, N]; in terms of the process g1(Z;) (and its jumps),
shows that the process

t

§2(Z:) — g2(Zo) — 2/0 p(Z5)g1(Zs)m1(Zs)ds — [N#, N¥];

is a martingale. Then the statement follows by differencing the previous two
equations. O
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