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Abstract. In a companion paper two stochastic models, useful for the initial behaviour of
a parasitic infection, were introduced. Now we analyse the long term behaviour. First a law
of large numbers is proved which allows us to analyse the deterministic analogues of the
stochastic models. The behaviour of the deterministic models is analogous to the stochastic
models in that again three basic reproduction ratios are necessary to fully describe the in-
formation needed to separate growth from extinction. The existence of stationary solutions
is shown in the deterministic models, which can be used as a justification for simulation
of quasi-equilibria in the stochastic models. Host-mortality is included in all models. The
proofs involve martingale and coupling methods.

1. Introduction

In Luchsinger (2001) [Ls] two stochastic models were introduced to model the
spread of a parasitic disease. These models were more general versions of the non-
linear model proposed in Barbour and Kafetzaki (1993) [BK] and the linear model
of Barbour (1994) [Ba] respectively. The generalisation in [Ls] was to introduce
host-mortality. One important result of these papers was that the natural candidate
for the basic reproduction ratio R0 does not necessarily contain the information
needed to separate growth from extinction of infection. In fact, another ratio, R1,
was also important in the models without host-mortality; and if host-mortality
was included a third ratio R2 emerged. In Barbour, Heesterbeek and Luchsinger
(1996) [BHL] a linear deterministic model without host-mortality was investigated.
Similar phenomena are seen there, too.

In this paper, two associated deterministic models including host-mortality are
introduced. Existence and uniqueness of solutions to the differential equations is
shown in Theorem 2.1 (linear model) and Theorem 2.5 (non-linear model). The
stochastic and deterministic models are linked by laws of large numbers (Theorem
2.3 for the linear models and Theorem 2.5 for the non-linear models). It is then
not surprising that the deterministic models inherit the basic reproduction ratios
from the stochastic models (Theorem 3.1 for the linear model and Theorem 3.7 for
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the non-linear model) - these threshold-results are of almost purely mathematical
interest. In Theorem 3.3 (linear model) and Theorem 3.8 (non-linear model), sta-
tionary solutions are found for some parameter regions and ruled out for others.
Convergence to these stationary solutions could only be proved for the linear model
(Theorem 3.4).

The models in [Ls] have been developed for a disease (schistosomiasis), where
endemic areas exist. As the epidemic dies out with probability one in the non-linear
stochastic model (Theorem 2.2 in [Ls]), the use of that model for simulations could
be questioned. But by Theorem 3.8 in this paper, there is a (non-trivial) stationary
solution to the deterministic analogue of that stochastic model. By the law of large
numbers (Theorem 2.5) we therefore have a justification to simulate a quasi-equi-
librium in the non-linear stochastic model as long as the number of individuals
M is large.

2. The models, and the links between the stochastic
and deterministic models

The motivation for the following models can be found in [Ls], where two stochastic
models, stochastic non-linear (SN) x(M), and stochastic linear (SL) X have been
introduced. The definition of models SN and SL is repeated later in this section.
In this paper deterministic models are introduced. In comparison to the stochastic
models, they only mirror an “average” behaviour of the process. Let ξj (t), j ≥ 0,
denote the proportion of individuals at time t , t ≥ 0, who are infected with j par-
asites. We assume that ξj (0) ≥ 0 for all j ≥ 0 and that

∑
j≥0 ξj (0) = 1 (whereas

the equation
∑

j≥0 ξj (t) = 1 for all t ≥ 0 has to be proved). The parasites have
independent lifetimes, exponentially distributed with mean 1/µ. Each infected in-
dividual makes contacts with other individuals at rate λ; but only those contacts
that are with an uninfected individual lead to a new infection (concomitant im-
munity). Suppose that the infecting individual has j parasites. Then the result of
a contact is to establish a newly infected individual with a random number Sj of

parasites, where Sj := ∑j

i=1 Yi and the Yi are independent and identically distrib-
uted with mean θ and variance σ 2 < ∞. Define pjk := P[Sj = k], and note that∑

k≥0 pjk = 1 for each j and
∑

k≥1 kpjk = jθ .

We assume that individuals have independent lifetimes, exponentially distrib-
uted with mean 1/κ , no matter how high the parasite burden is. All parasites die if
their host dies. We allow κ = 0, meaning that people can live for an infinite length
of time in that case. The models studied in [BK], [Ba] and [BHL] have κ = 0. In the
non-linear models we replace an individual that dies by an uninfected individual.
The reader is referred to [Ls] for a critical discussion of the assumptions made so
far and the set-up of equations (2.1) and (2.2) ahead. Besides, the reader should
read this paper with [BK] and [BHL] at hand as many proofs are similar to the ones
in those papers and only necessary changes have been mentioned. The following
system of differential equations shows how ξ will evolve in time:



Approximating the long-term behaviour of a model for parasitic infection 557

dξj

dt
= (j + 1)µξj+1 − jµξj + λξ0

∑
l≥1

ξlplj − κξj ; j ≥ 1,

(2.1)

dξ0

dt
= µξ1 − λξ0


1 −

∑
l≥0

ξlpl0


 + κ(1 − ξ0).

We call this model DN; this stands for Deterministic Non-linear.
The linear model, useful in modelling the initial phase of an epidemic outbreak,

is defined as follows. Let �j(t), j ≥ 1, denote the number of individuals at time t ,
t ≥ 0, who are infected with j parasites. We assume that �j(0) ≥ 0 for all j ≥ 1.
The following system of differential equations shows how � will evolve in time:

d�j

dt
= (j + 1)µ�j+1 − jµ�j + λ

∑
l≥1

�lplj − κ�j ; j ≥ 1. (2.2)

We call this model DL; this stands for Deterministic Linear. The difference between
model DN and DL is the following: in model DL the contact rate is λ and there is
no limiting factor in the model. In model DN the contact rate is altered from λ to
λξ0, because only those infectious contacts that are with an uninfected individual
lead to a new infection. In DL we restrict our studies to solutions � for which the
following three conditions are satisfied:

sup
0≤s≤t

∑
j≥1

�j(s) < ∞ for all t ≥ 0,

∑
j≥1

j�j (0) < ∞, (2.3)

there exists a j ≥ 1, such that �j(0) > 0.

We call these constraints conditions C. They are introduced for technical reasons.
In what follows the initial values are at times more general than those specified
above: if so, we make it clear.

We restrict our studies to nonnegative solutions of DN and DL, even if we do
not mention this every time. For this whole paper we use the notation �(0) and ξ (0)

for a solution of DL and DN respectively if κ = 0.
We repeat the definition of the stochastic models from [Ls]. Consider a

model with a fixed number M of individuals, each of which may carry parasites.
Let x(M) be an infinite dimensional Markov process x(M)(ω, t) : � × [0,∞) →
{[0, 1] ∩ M−1Z}∞. In what follows, xj (t), j ≥ 0, denotes the proportion of indi-
viduals at time t , t ≥ 0, that are infected with j parasites, so that

∑
j≥0 xj (0) = 1

and xj (0) ≥ 0, j ≥ 0. We suppress the index M whenever possible. The rates with
which x changes are as follows:

x → x + M−1(ej−1 − ej ) at rate jMµxj ; j ≥ 1,

x → x + M−1(ek − e0) at rate λMx0

∑
l≥1

xlplk; k ≥ 1, (2.4)

x → x + M−1(e0 − er) at rate Mxrκ; r ≥ 1,
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where ei denotes the i-th co-ordinate vector in R∞. We call this model SN; this
stands for Stochastic Non-linear. We introduce a notation for the sigma-algebra
too: Fs := σ {x(u), 0 ≤ u ≤ s}.

The next model is defined as follows. Let X be an infinite dimensional Markov
process X(ω, t) : � × [0,∞) → {[0,∞) ∩ Z}∞, where Xj(t), j ≥ 1, denotes
the number of individuals at time t , t ≥ 0, that are infected with j parasites. We
assume that 0 <

∑
j≥1 Xj(0) = n < ∞ and Xj(0) ≥ 0, j ≥ 1. The rates at which

X changes are as follows:

X → X + (ej−1 − ej ) at rate jµXj ; j ≥ 2,

X → X − e1 at rate µX1; (j = 1),
(2.5)

X → X + ek at rate λ
∑
l≥1

Xlplk; k ≥ 1,

X → X − er at rate Xrκ; r ≥ 1.

We call this model SL; this stands for Stochastic Linear. We introduce a notation
for the sigma-algebra too: Gs := σ {X(u), 0 ≤ u ≤ s}.

We first want to find the link between the deterministic linear models with
κ = 0 and κ > 0 respectively. With the help of this link we will prove existence
and uniqueness of the solutions to model DL.
It can easily be verified that the solutions �(0) of DL with κ = 0 and the solution
� of DL with κ ≥ 0 are linked, in that the following equation is satisfied:

�j(t) = �
(0)
j (t)e−κt , (2.6)

for all j ≥ 1. This should be understood in the sense that if one has a solution to
either equation, one gets the solution to the other equation via formula (2.6).

The following theorem is just a translation of Theorem 2.3 in [BHL] and the
remark following it using relation (2.6). The reader is therefore referred to [BHL]
for further details. It shows that we have a unique nonnegative solution to system
DL with κ ≥ 0.

Theorem 2.1. The system DL, with �(0) such that 0 <
∑

j≥1 �j(0) < ∞, has a
unique nonnegative solution satisfying sup0≤s≤t

∑
j≥1 �j(s) < ∞ for all t ≥ 0.

The solution is given by

�j(t) = j−1


∑

l≥1

l�l(0)Pl [Y (t) = j ]


 e(λθ−µ−κ)t ,

where Y is the unique pure jump Markov process defined in chapter 2 in [BHL]
and Pl denotes probability conditional on Y (0) = l.

In the linear case the solution to the deterministic model is the expectation of
the stochastic model:
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Theorem 2.2. Let X be a Markov process with rates given in SL and with initial
state X(0) satisfying

∑
j≥1 X(0) =: n < ∞, and set �(0) := n−1X(0). Then y

defined by

yj (t) := n−1E{Xj(t)|X(0) = n�(0)}

satisfies the differential equations DL with y(0) = �(0), as well as conditions C.

Proof. Theorem 2.2 was proved in [BHL, Theorem 2.2] in the case κ = 0. The
proof of Theorem 2.2 is the same mutatis mutandis; introduction of host mortality
does not cause any problems. �

Remark. There is no exact counterpart of Theorem 2.2 in the non-linear case.
However, there is an asymptotic analogue. If we take the expectation of the Mar-
kov process x(M) in model SN and then let M tend to infinity, the limit is the
solution to the differential equations DN, because the sequence of Markov process-
es (x(M))M≥1 converge weakly towards the solutions of the differential equations
(as is seen in Theorem 2.5 (to come)), and each coordinate is bounded by 1.

The stochastic linear process X and the deterministic linear process � are linked
to each other in the following way: the (normalised) stochastic process SL converg-
es weakly towards the solution to the deterministic system DL. We need sequences
of processes behaving according to SL. We denote them with (X(n), n ≥ 1).

Theorem 2.3. Let (X(n), n ≥ 1) be a sequence of Markov branching processes as
specified in SL. We assume that the initial stateX(n)(0) is such that

∑
j≥1 X

(n)
j (0) <

∞ and n−1X(n)(0) → y(0), where 0 <
∑

j≥1 jy
(0)
j < ∞. Then n−1X(n) converg-

es weakly in D∞[0, T ] for each T > 0 to the (unique) non-random, nonnegative
process �, which evolves according to the differential equations DL with initial
state �(0) = y(0), and satisfies conditions C.

Remark. We can loosen the condition 0 <
∑

j≥1 jy
(0)
j < ∞ to 0 <

∑
j≥1 y

(0)
j <

∞. Then conditions C are not necessarily satisfied and all we can guarantee is that
sup0≤s≤t

∑
j≥1 �j(s) < ∞ for all t ≥ 0 and that there exists a j ≥ 1 such that

�j(0) > 0.

Proof. The proof for κ = 0 can be found in [BHL] as Theorem 2.1. The proof of
Theorem 2.3 follows the same lines. Therefore we only mention the few changes
necessary. For all j ≥ 1 and x ∈ R∞+ , define the functions

aj (x) := (j + 1)µxj+1 − jµxj + λ
∑
l≥1

xlplj − κxj ;

bj (x) := (j + 1)µxj+1 + jµxj + λ
∑
l≥1

xlplj + κxj ,

and the random processes
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Un
j (t) := xn

j (t) − xn
j (0) −

∫ t

0
aj (x

n(u))du;

V n
j (t) := Un

j (t)2 − 1

n

∫ t

0
bj (x

n(u))du,

where xn(t) := n−1X(n)(t).
The following Lemma 2.4 corresponds to Lemma 3.5 in [BHL] and the proof

of this lemma is given completely. For Lemmas 3.6, 3.7, 3.8 and 3.9 respective-
ly in [BHL] only the necessary changes of the proofs are summarized: Use our
definitions above for aj , bj , U

n
j and V n

j and replace (λ ∨ µ) by (λ ∨ µ ∨ κ) ev-

erywhere. Instead of h and hk respectively define h̃ and h̃k respectively such that
h̃(x)(t) := h(x)(t) − ∫ t

0 κxj (u)du and h̃k(x)(t) := hk(x)(t) − ∫ t

0 κxj (u)du. �

Lemma 2.4. Un
j (t) and V n

j (t) are Gn
t -martingales.

Proof. We apply Theorem A1 in the Appendix to prove that Un
j is a martingale in

the following way: chooseS = {Z+}∞ andf : {Z+}∞ → R+ such thatf (v) = vj .
Now choose Z to be xn. By Lemma 3.1 in [Ls] xn is regular. By definition we have

Un
j (t) := xn

j (t) − xn
j (0) −

∫ t

0
aj (x

n(u))du

= f (xn(t)) − f (xn(0))

−
∫ t

0
ρ(xn(u))

∫
[f (xn(u) + y) − f (xn(u))]π(xn, dy)du

where y, f (y) and ρπ take the following values for j ≥ 1:

Table 1. The values for y, f (y) and ρπ in the infinitesimal generator. ρπ is a purely atomic
measure and in Table 1 we only mention the positive values of that measure.

y f (x + y) − f (x) ρ(x)π(x, {y})

−ejn
−1 −n−1 jµxj

ejn
−1 n−1 (j + 1)µxj+1 + λ

∑
l≥1 xlplj

−ejn
−1 −n−1 κxj

Choose F(z) := (λ + 2(j + 1)µ + κ)
∑

l≥1 zl . Condition (B) is then satisfied
because

bj (x) ≤ (λ + 2(j + 1)µ + κ)
∑
l≥1

xl,

and for any T > 0

E


 sup

0≤t≤T

∑
l≥1

xn
l (t)


 ≤ eλT . (2.7)
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The latter is true, because
∑

j≥1 X
(n)
j (t) only increases at an infection, and in-

fections occur at a total rate of λ
∑

j≥1
∑

k≥1 X
(n)
j pjk ≤ λ

∑
j≥1 X

(n)
j ; thus, by

comparison with a pure birth process with per capita rate λ, (2.7) follows.
With these choices, we can directly apply Theorem A1: Nf = Un

j is a martin-
gale.

Now let us proceed to prove that V n
j is a martingale too. We apply Corollary

A3 in the following way: by definition and using the notation introduced in the
Appendix for Corollary A3 (Ng

t = Un
j here) we have

V n
j (t) := Un

j (t)2 − 1

n

∫ t

0
bj (X

(n)(u))du

= (N
g
t )2 −

∫ t

0
ρ(X(n)(u))m2(X

(n)(u))du.

Here, m2(X
(n)(u)) = 1/n

∑1
i=−1 i2π(X(n), iej ), and we can choose the same

F(z) = (λ + 2(j + 1)µ + κ)
∑

l≥1 zl as above. As (N
g
t )2 − [Ng,Ng]t is a mar-

tingale we may replace (N
g
t )2 by [Ng,Ng]t and deduce by Corollary A3 that V (n)

j

is a martingale itself. �

The stochastic non-linear process x(M) and the deterministic non-linear pro-
cess ξ are linked to each other in the following way: the stochastic process x(M)

converges weakly towards ξ . With regard to this result, we prove the existence
and uniqueness of the non-negative solution ξ to the system DN in the following
theorem.

Theorem 2.5. Fix T > 0. Let C1[0, T ] denote the space of continuous functions
f on [0, T ] which satisfy 0 ≤ f (t) ≤ 1 for all t , and let C∞

T := (C1[0, T ])∞.
Suppose that y ∈ [0, 1]∞ and that

∑
j≥0 yj = 1. Then there is a unique element

ξ ∈ C∞
T satisfying the equations DN such that ξ(0) = y and, for all t ∈ [0, T ],∑

j≥0 ξj (t) ≤ 1. Furthermore, if x(M)(0) = yM a.s., where yM → y in [0, 1]∞,

then x(M) converges weakly towards ξ ∈ C∞
T .

Remark. Since T is arbitrarily chosen, it follows that x(M) converges weakly
towards ξ in (C1[0,∞))∞, where C1[0,∞) has the projective limit topology. It
is also in order to allow the initial values x(M)(0) to be random, provided that the
sequence of random elements x(M)(0) of [0, 1]∞ converges weakly to y.

The proof of Theorem 2.5 consists of several parts. The proof where κ = 0 can
be found in [BK] as Theorem 3.2, but the following proof works too if κ = 0. We
first prove Lemma 2.6, because it is interesting in its own right, and already proves
one part of Theorem 2.5; we also need it to prove the rest of Theorem 2.5.

Lemma 2.6. Given the initial values ξ(0) of a possible solution of DN, there is at
most one solution of DN which satisfies

∑
l≥0 ξl(t) ≤ 1 for all t ≥ 0.
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Proof. System DN can be rewritten in integral form as equations (2.8):

ξj (t) = ξj (0) +
∫ t

0

{
(j + 1)ξj+1(u)µ − jξj (u)µ

+λξ0(u)
∑
l≥1

ξl(u)plj − κξj (u)

}
du, j ≥ 1; (2.8)

ξ0(t) = ξ0(0) +
∫ t

0

{
ξ1(u)µ − λξ0(u)

(
1 −

∑
l≥0

ξl(u)pl0

)
+ κ(1 − ξ0(u))

}
du.

We multiply the j equation in (2.8) by e−js , for any fixed s > 0, and add over
j ≥ 0, obtaining

φ(s, t) = φ(s, 0) +
∫ t

0

{
µ(1 − es)

∂φ(s, u)

∂s

+ λφ(∞, u)[φ(− log ψ(s), u) − 1] + κ − κφ(s, u)

}
du;

where φ(s, t) := ∑
j≥0 e−jsξj (t) and ψ(s) := ∑

j≥0 e−jsp1j ; φ(∞, t) is just
another way of writing ξ0(t). Differentiating with respect to t leads to the partial
differential equation

∂φ(s, t)

∂t
= µ(1 − es)

∂φ(s, t)

∂s
+ λφ(∞, t)[φ(− log ψ(s), t) − 1] + κ − κφ(s, t).

(2.9)

Equation (2.9) can be integrated in s > 0, t ≥ 0, using the method of characteristics,
leading to

φ(s, t) = φ(Ss,t (v), v) +
∫ t

v

λφ(∞, u)[φ(− log ψ(Ss,t (u)), u) − 1]

+κ − κφ(Ss,t (u), u)du; (2.10)

for any v, and in particular for v = 0, where

Ss,t (u) = − log{1 − (1 − e−s)e−µ(t−u)}.

Now if ξ1 and ξ2 are two different solutions of (2.8), they give rise to functions φ1
and φ2 satisfying (2.10), and such that 0 ≤ φi ≤ 1, i = 1, 2. Suppose that, for any
v ≥ 0, φ1(s, v) = φ2(s, v) for all s (as is certainly the case for v = 0). Let

dv,w(φ1, φ2) := sup
v≤t≤w

sup
s>0

|φ1(s, t) − φ2(s, t)| ≤ 1.



Approximating the long-term behaviour of a model for parasitic infection 563

Then, from (2.10), for t ∈ [v,w],

|φ1(s, t) − φ2(s, t)|
= |

∫ t

v

{
λφ1(∞, u)[φ1(− log ψ(Ss,t (u)), u) − 1] + κ − κφ1(Ss,t (u), u)

−λφ2(∞, u)[φ2(− log ψ(Ss,t (u)), u) − 1] − κ + κφ2(Ss,t (u), u)
}
du|

≤ (κ + 2λ)(w − v)dv,w.

But then we have

dv,w ≤ (κ + 2λ)(w − v)dv,w.

But this in turn implies that dv,w = 0 if w < v + (κ + 2λ)−1. Iterating this pro-
cedure, starting with v = 0 and continuing in steps of (2(κ + 2λ))−1 shows that
φ1(s, t) = φ2(s, t), for all s > 0, t ≥ 0 which completes the proof of Lemma 2.6.

�
It is convenient to define the following functions and random variables to use

in what follows:

aj (x) := (j + 1)µxj+1 − jµxj + λx0

∑
l≥1

xlplj − κxj ; j ≥ 1,

a0(x) := µx1 − λx0

(
1 −

∑
l≥0

xlpl0

)
+ κ(1 − x0),

bj (x) := (j + 1)µxj+1 + jµxj + λx0

∑
l≥1

xlplj + κxj ; j ≥ 1,

b0(x) := µx1 + λx0

(
1 −

∑
l≥0

xlpl0

)
+ κ(1 − x0), (2.11)

a∗
j := sup

x
|aj (x)| ≤ (j + 1)µ + λ + κ < ∞; j ≥ 1,

b∗
j := sup

x
|bj (x)| ≤ 2(j + 1)µ + λ + κ < ∞; j ≥ 1,

Uj (x(t)) := xj (t) − xj (0) −
∫ t

0
aj (x(u))du; j ≥ 0,

V M
j (t) := UM

j (t)2 − 1

M

∫ t

0
bj (x

(M)(u))du; j ≥ 0,

UM
j := Uj(x

(M)), j ≥ 0, and U∗
j := Uj(x

∗), j ≥ 0, where x∗ is defined in Lemma
3.7 in [BHL]. We need the following lemma to prove Theorem 2.5.

Lemma 2.7. UM
j (t) and V M

j (t) are FM
t -martingales.

Proof. The proof of Lemma 2.7 uses the same ideas as the proof of Lemma 2.4.
Choose S = {[0, 1]∩M−1Z}∞ and f : {[0, 1]∩M−1Z}∞ → [0, 1]∩M−1Z such
that f (v) = vj . Then choose Z to be x(M). By Theorem 2.2 of [Ls] x(M) is regular.
As f is bounded we can choose F := λ + 2(j + 1)µ + κ which makes the proof
even simpler. �
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Proof of Theorem 2.5. Take y as in the statement of the theorem, and choose a
sequence yM of deterministic initial conditions for x(M) such that yM → y in
[0, 1]∞. Fix any j , and consider the uniform modulus of continuity

w(x
(M)
j ; δ) := sup

0≤s≤t≤T ;t−s<δ

∣∣∣x(M)
j (t) − x

(M)
j (s)

∣∣∣

of the random elements x
(M)
j of the space D[0, T ], given the Skorohod topology.

The proof of Theorem 2.5 follows almost the same lines as the proof of Theorem 2.1
in [BHL]. For Lemmas 3.6, 3.7 and 3.9 respectively in [BHL] only the necessary
changes of the proofs are summarized: Use our definitions above for aj , bj , U

M
j

and use the boundedness of a∗
j in [BHL, equation (3.8)] and of b∗

j in [BHL, equa-

tion (3.9)], making [BHL, equation (3.10)] unnecessary. Because x(M) converges
weakly towards x∗ we have

∑
j≥0 x∗

j (t) ≤ 1; for all t a.e.. The proof of Lemma 2.8
differs from the proof of Lemma 3.8 in [BHL], that is why we state it completely:

Lemma 2.8. UM
j converges weakly towards U∗

j in D[0, T ], M ∈ N , j ≥ 0.

Proof. We prove Lemma 2.8 by showing that Uj (see (2.11)) is continuous at x∗.
Let (zn, n ≥ 0) be a sequence of elements of (D[0, T ])∞, such that limn→∞ zn =
z ∈ C∞

T and 0 ≤ znj (t) ≤ 1 for all (n, j, t). Then, since convergence in D[0, T ] to
an element of C[0, T ] implies uniform convergence we have: limn→∞ sup0≤t≤T

|znl(t) − zl(t)| = 0; for all l ≥ 0. So all we have to concentrate on to show
continuity of Uj is the part zn0(t)

∑
l≥0 znl(t)plj of the integral. But here we can

proceed in the following way:

sup
0≤t≤T

∣∣∣∣zn0(t)
∑
l≥0

znl(t)plj − z0(t)
∑
l≥0

zl(t)plj

∣∣∣∣
(2.12)

≤
{

sup
0≤t≤T

|zn0(t) − z0(t)|
∑
l≥0

plj

}
+

{ ∑
l≥0

sup
0≤t≤T

|znl(t) − zl(t)|plj

}
.

But by equation (2.2) in [BK] we have
∑

l≥0 plj < ∞, and using the dominated
convergence theorem, we see that (2.12) converges to 0 as n → ∞. This ends the
proof of Lemma 2.8 and therefore of Theorem 2.5. �

The behaviour of the stochastic process in a finite time interval is much the
same as the behaviour of the solution of the corresponding differential equations,
if the number of individuals is large. The following result is stronger than Theorem
2.5 because even the sum of absolute differences in all coordinates converges to
zero. As a drawback, slight restrictions have to be imposed ot the initial value y of ξ

Theorem 2.9. Suppose that y ∈ [0, 1]∞ is such that
∑

j≥0 yj = 1 and sα :=∑
j≥1 jαyj < ∞ for some α > 0. Then, if ξ is the solution of DN with ξ(0) =

y,
∑

j≥0 ξj (t) = 1 for all t . If also x(M)(0) = yM → y in such a way that

limM→∞
∑

j≥0 jαyM
j = sα , then
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lim
M→∞

P


 sup

0≤t≤T

∑
j≥0

∣∣∣x(M)
j (t) − ξj (t)

∣∣∣ > ε


 = 0

for any T , ε > 0.

We first need to prove a lemma which is going to be used frequently in this and
the next section. We define the following functions, where still x(M) is the Markov
Process behaving according to SN:

mM
α (t) :=

∑
j≥1

jαx
(M)
j (t), and m∞

α (t) :=
∑
j≥1

jαξj (t),

cα(x) :=
∑
j≥1

jµxj {(j − 1)α − jα} + λx0

∑
k≥1

∑
j≥1

xjpjkk
α − κ

∑
j≥1

jαxj ,

WM
α (t) := mM

α (t) − mM
α (0) −

∫ t

0
cα(x

(M)(u))du.

Lemma 2.10. For α ∈ (0, 1] WM
α (t) is an Ft -martingale. If additionally y is such

that sα := ∑
j≥1 jαyj < ∞ and ξ is a solution of DN with ξ(0) = y, then

m∞
α (t) = m∞

α (0) +
∫ t

0
cα(ξ(u))du, (2.13)

for t ≥ 0.

Proof. To prove that WM
α is an Ft -martingale we can apply Theorem 2 in Ham-

za and Klebaner (1995) [HK], version for general state space. Choose f (z) :=∑
j≥1 jαzj and c := (2µ + λθ + κ), then |L|f (z) ≤ c(1 ∨ |f (z)|) is satisfied,

where L is the infinitesimal generator of the Markov process x(M).
So we only have to prove equation (2.13). But this can be shown using exactly

the same steps as the proof of Lemma 3.5 in [BK]. Note that the inequality

E
[
mM

α (t)
]

≤ mM
α (0)K(t), (2.14)

where the monotonically increasing function K(t) is finite for all t ∈ (0,∞), can
be shown more easily, as we know that WM

α is an Ft -martingale. �

Proof of Theorem 2.9. The proof for κ = 0 can be found in [BK] as Theorem 3.6
and the proof for κ > 0 follows the same steps; use Theorem 2.5 and equation
(2.14). �
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3. Analysing the deterministic models

We first analyse the deterministic linear model DL. Using (2.9) in [BHL] and (2.6)
we gain

�j(t) = 1

j

( ∑
l≥1

l�l(0)

)
e(λθ−µ−κ)tP0[Y (t) = j ], (3.1)

for all j ≥ 1, where P0 denotes probability conditional on the initial distribution

P0[Y (0) = j ] = j�j (0)/

( ∑
l≥1

l�l(0)

)
.

We first want to study the threshold behaviour of model DL. Introduce R0 :=
λθ/(µ + κ), R

(0)
0 := λθ/µ, R1 := λe log θ/(µθ

κ
µ ) and R2 := λ/κ . For an

interpretation of these ratios see [Ls]. By the expression “threshold behaviour”
we usually denote general statements of the following type: if R0 > 1 the epidemic
develops in deterministic systems and if R0 < 1 the epidemic dies out. As we have
already seen in the stochastic approach (see [Ls]), the situation is more complex in
our models. The next theorem makes a statement about the asymptotic behaviour of
the number of infected individuals in DL and in Remark 1) following the theorem
we derive the threshold result:

Theorem 3.1. Assume that
∑

j≥1 j�j (0) < ∞. Then the limit:

lim
t→∞ t−1 log

∑
j≥1

�j(t) =: c+(λ, µ, θ, κ) =: c+

exists and is given by:

c+ =




λθ − µ − κ if R
(0)
0 log θ ≤ 1

λθ

R
(0)
0 log θ

(1 + log(R(0)
0 log θ)) − µ − κ if 1 < R

(0)
0 log θ ≤ θ

λ − κ if R
(0)
0 log θ > θ.

Remarks. 1) Using Theorem 3.1, elementary although quite complicated calcula-
tions lead to the following threshold behaviour, which only involves determining
whether c+ < 0 or c+ > 0. In the region log θ ≤ (1 + (κ/µ))−1 we have: c+ < 0
if and only if R0 < 1. In the region (1+(κ/µ))−1 < log θ ≤ µ/κ we have: c+ < 0
if and only if R1 < 1. In the region log θ > µ/κ we have: c+ < 0 if and only if
R2 < 1.
2) If κ = 0, these results stay true with the following adjustments: the third region
for θ is shifted away to infinity. So we have only two regions for θ if κ = 0, namely:
θ < e and θ ≥ e, and the basic reproduction ratios simplify to R0 = λθ/µ and
R1 = λe log θ/µ. Then Theorem 3.1 and Remark 1) are Theorem 2.6 and Remark
2.7 in [BHL].
3) The stochastic analogue of the threshold behaviour of Remark 1) is Theorem 2.1
in [Ls].
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Proof. Use (2.6) to see that from the definition of c in [BHL], Theorem 2.6, we
have

c+ = c − κ. (3.2)

Then Theorem 3.1 follows from Theorem 2.6 in [BHL]. �

We can use equation (2.10) in [BHL] and (2.6) to compute the development of
the number of parasites in the entire system:

∑
j≥1

j�j (t) =
( ∑

l≥1

l�l(0)

)
e(λθ−µ−κ)t . (3.3)

Therefore R0 = λθ/(µ+κ) = 1 is the threshold for the development of the number
of parasites in DL. The stochastic analogue is equation (2.4) in [Ls].

We now prove Lemma 3.2 which enables us to simplify many of the following
proofs. The Markov process Y and the probability measure P0 are as defined in
chapter 2 of [BHL].

Lemma 3.2. Suppose that in DL we have R0 = 1. The initial values are such that
0 < K := ∑

l≥1 l�l(0) < ∞. Then the following result holds:
Case (1): log θ < 1/(1+κ/µ). Then there exists a unique infinite vector of positive
real numbers v (the stationary distribution of Y ) such that

∑
j≥1 vj = 1 and

lim
t→∞ �j(t) = vjKj−1 for all j ≥ 1.

Case (2): log θ ≥ 1/(1 + κ/µ). Then we have

lim
t→∞ �j(t) = 0 for all j ≥ 1.

Proof. As R0 = 1, (3.1) simplifies to

�j(t) = 1

j

( ∑
l≥1

l�l(0)

)
P0[Y (t) = j ],

for all j ≥ 1. Looking at case (1), we have log θ < 1/(1 + κ/µ). Hence,

R
(0)
0 log θ <

λθ

µ

1

1 + κ/µ
= λθ

µ + κ
= R0 = 1.

Thus, if p10 +p11 < 1, Y is positive recurrent by Theorem 2.5 in [BHL]. Therefore
by general theory of Markov processes we have a unique infinite vector of positive
real numbers v such that

∑
j≥1 vj = 1 and limt→∞ P0[Y (t) = j ] = vj for all

j ≥ 1. If p10 + p11 = 1, Y is eventually absorbed in state 1. Then Lemma 3.2 is
satisfied by choosing v1 = 1.

Looking at case (2), we have log θ ≥ 1/(1 + κ/µ). We can apply Theorem
2.5 in [BHL] again: here it is impossible that p10 + p11 = 1 because then log θ >

1/(1+κ/µ) > 0 and p11 = θ < 1 in that case. Y is either null recurrent or transient
because
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R
(0)
0 log θ ≥ λθ

µ

1

1 + κ/µ
= λθ

µ + κ
= 1.

But in both cases we have limt→∞ P0[Y (t) = j ] = 0 for all j ≥ 1. This ends the
proof of Lemma 3.2. �

Call �̄(t) a stationary solution of DL, if �̄j (t) ≥ 0 for all j ≥ 0, and putting
� = �̄ in the right hand side of (2.2) gives zero: the solution to DL with �(0) = �̄

is then �(t) = �̄ for all t . It is clear that in the non-linear models e0 and in the
linear models 0 are automatically stationary solutions. We call these stationary
solutions trivial in comparison to the nontrivial. We mention these trivial solutions
throughout, although they do not satisfy conditions C in the linear case, because
conditions C ask for at least one co-ordinate j ≥ 1 such that �j(0) > 0. In reality
we may assume that κ < µ, meaning that the death rate of parasites is larger than
the death rate of their hosts. Assuming this, we know about the stationary solutions
in both models DL and DN that, for each j ≥ 1, the following inequality must
hold:

�̄j+1 < �̄j .

This result follows immediately from the differential equations as for example in
model DL via

�̄j = (j + 1)µ

jµ + κ
�̄j+1 + λ

jµ + κ

∑
l≥1

�̄lplj > �̄j+1.

The results about stationary solutions in DL are summarised in the following
theorem:

Theorem 3.3. a) For every choice of parameters (λ, θ, µ, κ) there exists the trivial
stationary solution �̄ = 0.
b) There is no nontrivial stationary solution of DL with finite number of parasites
if log θ ≥ (1 + κ/µ)−1.
c) If log θ < (1 + κ/µ)−1 and R0 = 1, then up to scalar multiplication there exists
exactly one nontrivial stationary solution of DL with finite number of parasites.
d) Suppose that κ = 0, R(0)

0 = R0 = 1 and that θ < e, and let �̄(0) be a stationary
solution of DL with finite number of parasites. Then, for any α > 1 the following
statements hold:

If θ ≥ α1/(α−1), then
∑

j≥1 jα�̄
(0)
j = ∞;

If θ < α1/(α−1) and
∑

j≥1 jαp1j < ∞, then
∑

j≥1 jα�̄
(0)
j < ∞.

Proof. a) is clear.
b) Suppose we have a nontrivial stationary solution of DL with finite number

of parasites. As the number of parasites is finite and the solution is nontrivial, con-
ditions C are satisfied. In a stationary solution the number of parasites is constant.
By (3.3) this requires that R0 = 1. So we can apply Lemma 3.2, Case (2) which
finishes the proof of part b).

c) A candidate for a nontrivial stationary solution with finite number of par-
asites can be found through Lemma 3.2 as follows: suppose we have log θ <
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1/(1 + κ/µ)−1, R0 = 1 and choose a fixed, finite number K (the (initial) number
of parasites). Then for all j ≥ 1 we define:

�̄j (t) := j−1Kvj (3.4)

for all t ≥ 0, where v denotes the unique stationary distribution of Y . We now
have to show that this is indeed a solution of DL. Consider a solution y of DL
with initial values as in (3.4). By Theorem 2.1 that solution y exists and is unique.
We now have to show that the solution y is equal to (3.4) for all t ≥ 0. Now y

has a representation of the form (3.1). As R0 = 1 we have λθ − µ − κ = 0 and
so we only have to ensure that if we start with P(0)[Y (0) = j ] = vj , then we
have P(0)[Y (t) = j ] = vj for all t ≥ 0. But this is so because v is the stationary
distribution of Y .

Now we show that (3.4) is (up to scalar multiplication) the unique stationary
solution of DL according to the way we defined such solutions. All co-ordinates of
(3.4) are nonnegative (even positive). We have to show that if we put our solution
(3.4) in the right side of DL we get zero. We therefore need

µvj+1 − µvj + λ
∑
i≥1

vi

i
pij − κvj

j
= 0,

for all j ≥ 1. By equation (2.6) in [BHL] we see that this is equivalent to vS = 0
as θ = (µ + κ)/λ. But this is true as v is the unique stationary distribution of the
Markov process associated with the Q-matrix S.

Uniqueness follows through contradiction. If z is an other stationary solution
of DL and z is not a scalar multiple of �̄, we argue as follows: z must have a
representation in the form of (3.1) too. We may assume without loss of generality
that the initial total number of parasites is the same in z and �̄, because in the linear
models, every scalar multiple of a stationary solution is a stationary solution too.
But then, looking at (3.1) there must be two stationary distributions of Y , which is
not possible.

d) For κ = 0 we compare the stationary solutions of DL and DN with each
other and make contradictions using Theorem 4.4 in [BK]. Choose an arbitrary
g0 ∈ (0, 1). If θ ≥ α1/(α−1), we assume we have a stationary solution �̄(0) of DL
such that

∑
j≥1 jα�̄

(0)
j < ∞. Without loss of generality we may choose that

∑
j≥1

�̄
(0)
j + g0 = 1, (3.5)

because in the linear models, every scalar multiple of a stationary solution is a
stationary solution too. Now we define λ′ := λ/g0. As R0 = 1, we have λ′θ > µ.
Therefore, by Theorem 4.2 of [BK] (included in Theorem 3.8, see later) we have a
(unique), nontrivial stationary solution of DN ξ̄ (0) with parameters (λ′, θ, µ) with
finite average number of parasites per individual. Now we compare the two systems
DN (with (λ′, θ, µ)) and DL (with (λ, θ, µ)) with each other for j ≥ 1. The two
systems are:
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dξ
(0)
j

dt
= (j + 1)µξ

(0)
j+1 − jµξ

(0)
j + λ′ξ (0)

0

∑
l≥1

ξ
(0)
l plj ; j ≥ 1, (DN)

and

d�
(0)
j

dt
= (j + 1)µ�

(0)
j+1 − jµ�

(0)
j + λ

∑
l≥1

�
(0)
l plj ; j ≥ 1. (DL)

The only difference between DN and DL is in the infection process: we have
λ′ξ (0)

0 in DN and only λ in DL. But, again by Theorem 4.2 of [BK] we know that

ξ̄
(0)
0 = µ/λ′θ = µg0/λθ = g0. Additionally we have by definition that λ = λ′g0.

So if we only want to look at stationary solutions (where ξ
(0)
0 is constant in time

and equal to g0), the two systems are in fact equal and both linear! We define:
gj := �̄

(0)
j for j ≥ 1. By (3.5) and the equivalence of DN and DL the vector

(gj )j≥0 is the unique stationary solution of DN with parameters (λ′, θ, µ). So we
have constructed a stationary solution g of DN where for θ ≥ α1/(α−1) we have∑

j≥1 jαgj < ∞. This is a contradiction to Theorem 4.4 of [BK].

On the other hand, if θ < α1/(α−1), we assume we have a solution �̄(0) of DL such
that

∑
j≥1 jα�̄

(0)
j = ∞. But then we can construct such a solution of DN too as

shown above in the first part of d) which is again a contradiction to Theorem 4.4 of
[BK]. �

By convergence towards a stationary solution ξ̄ we mean that all components
of the converging function y(t) must satisfy limt→∞ yi(t) = ξ̄i for all i ≥ 1 (con-
vergence in R∞). In the next theorem we prove convergence of a solution of DL
to a stationary solution under some obviously necessary assumptions.

Theorem 3.4. If log θ < (1 + κ/µ)−1 and if R0 = 1 then every solution y of DL
which satisfies conditions C converges towards that unique stationary solution �̄

of DL which satisfies
∑

j≥1 j�̄j = ∑
j≥1 jyj (0).

Proof. We can use Lemma 3.2 to see that each solution of DL that satisfies con-
ditions C converges to some infinite positive vector (vjKj−1)j≥1. As in the proof
of Theorem 3.3 c) we see that this is the unique stationary solution of DL. �

Call a solution � periodic if there exists a τ > 0 such that �(t + τ) = �(t)

for all t .

Theorem 3.5. In the linear system DL there are no periodic solutions which satisfy
conditions C except stationary solutions.

Proof. In a periodic solution the number of parasites must be periodically the same
too. But in view of (3.3) this means that R0 = 1 is necessary. Now we can apply
Lemma 3.2: but the behaviour suggested in both cases rules out periodic solutions
which are not stationary solutions. �
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We now analyse the non-linear deterministic model DN. Intuitively it is clear,
that if a parasite has less than one offspring under ideal conditions, that is if R0 < 1,
then the epidemic must die out. That is precisely the following result:

Theorem 3.6. If R0 < 1 and if ξ(0) = y is such that s1 := ∑
j≥1 jyj < ∞, then

limt→∞ ξ(t) = e0 and
∑

j≥1 jξj (t) ≤ s1e
−(µ+κ−λθ)t .

Proof. From Lemma 2.10, recalling that m∞
1 (t) := ∑

j≥1 jξj (t), it follows that

m∞
1 (t) = s1 +

∫ t

0
(θλξ0(u) − µ − κ)m∞

1 (u)du.

Hence

m∞
1 (t) = s1e

(
∫ t

0 [λξ0(u)θ−µ−κ]du), (3.6)

proving the theorem. �

Next we derive the threshold results for system DN:

Theorem 3.7. Let ξ(0) in DN be such that 0 <
∑

j≥0 jξj (0) < ∞. Then the
following statements hold:
Case 1) log θ ≤ (1 + κ/µ)−1: Then limt→∞ ξ(t) = e0 if R0 < 1, and if R0 > 1
then ξ(t) �→ e0 as t → ∞.
Case 2) (1 + κ/µ)−1 < log θ ≤ µ/κ: Then limt→∞ ξ(t) = e0 if R1 < 1, and if
R1 > 1 then ξ(t) �→ e0 as t → ∞.
Case 3) log θ > µ/κ: Then limt→∞ ξ(t) = e0 if R2 < 1, and if R2 > 1 then
ξ(t) �→ e0 as t → ∞.

Remarks. 1. The stochastic analogue of Theorem 3.7 in [Ls] is Theorem 2.3, but
the reader should notice Theorem 2.2 in [Ls] too.
2. Again, as in Remark 2) following Theorem 3.1, if κ = 0, these results stay true
with the interpretation that the third region for θ is shifted away to infinity.

Proof. We first prove the results where the disease dies out (the relevant Ri must
be smaller than 1). Then we prove that the infection does not die out if the relevant
Ri is larger than one.

We use the notation of section 2 for cα and m∞
α (t). The function f (x) = xα is

concave if α ∈ [0, 1]. So

cα(ξ) ≤ (λθαξ0 − µα − κ)
∑
j≥1

jαξj .

Using (2.13) we therefore have for 0 ≤ v ≤ t

m∞
α (t) ≤ m∞

α (v) −
∫ t

v

(µα + κ − λθαξ0)m
∞
α (u)du. (3.7)

The case where κ = 0 was proved in [BK] as Theorems 4.1 and 4.6. If R0 < 1 we
can use Theorem 3.6 which is valid for all θ and so we may assume that R0 ≥ 1. We
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want to find an α ∈ (0, 1] such that g(α) := κ +µα−λθα > 0. Then we can apply
the Gronwall-inequality to (3.7) because then limt→∞ m∞

α (t) = 0 which ends the
proof. Let us first analyse this function g: g(0) = κ − λ and g(1) = κ + µ − λθ

(≤0 because R0 ≥ 1). So if κ − λ > 0 (that is R2 < 1) we easily find an α ∈ (0, 1]
such that g(α) > 0 (α → 0 finally gives us such an α). So the third case where
R2 < 1 is already satisfied. We may therefore assume that κ ≤ λ. We therefore only
have to show the second case: 1/(1 + κ/µ) < log θ ≤ µ/κ , R1 < 1. Elementary
calculations show that g takes the maximum with respect to α at

α0 := 1

log θ
log

(
µ

λ log θ

)
.

Under the assumptions above it can be shown through elementary though partly
tedious calculations that α0 ∈ (0, 1] and g(α0) > 0. This ends the proof of the first
directions (Ri < 1).

Now we need to prove that in cases 1), 2) and 3) the infection does not die out if
the relevant Ri is larger than 1. The proof runs through for κ = 0 too. We prove all
three cases in one. If we write “Ri”, we mean R0 in the first case, R1 in the second
case and R2 in the third case.

The strategy of the proof is as follows: in the non-linear model DN the contact
rate λ is decreased to the effective contact rate λξ0(t). If the disease is near to
extinction, ξ0 must be almost 1. So the non-linear process ξ is almost a linear pro-
cess � behaving according to DL. But by Remark 1 of Theorem 3.1 we know that
the linear process � does not die out under the conditions mentioned above. So we
must show that there exists a linear process � such that �j ≤ ξj for j ≥ 1 at least
until there is no danger for the process ξ to die out.

Let us define N(t) := ∑
j≥1 ξj (t). The expression ξ(t) �→ e0 means that there

exists an ε > 0 such that if at some time t1 we have N(t1) < ε, then there exists
a t2 > t1 such that N(t2) ≥ ε. Without loss of generality we choose t1 = 0 and
ε such that (1 − ε)Ri > 1. We therefore have to show that there exists a T ∗ > 0
such that N(T ∗) ≥ ε. Let us define λ′ := λ(1 − ε) and let � be a solution of DL
with parameters (λ′, θ, µ). We choose the initial values such that �j(0) = ξj (0)
for all j ≥ 1. Then we define L(t) := ∑

j≥1 �j(t) and T := inf{t : L(t) ≥ ε}.
By Remark 1 of Theorem 3.1 we have T < ∞. Now if there exists a v ∈ [0, T ]

such that N(v) ≥ ε we can choose T ∗ := v and nothing remains to be proved.
Otherwise we have N(t) < ε for all t ∈ [0, T ]. If we can show that for all t ∈ [0, T ]
and j ≥ 1,

�j(t) ≤ ξj (t) (3.8)

we have finished the proof.
We haveN(t) = 1−ξ0(t) < ε for all t ∈ [0, T ]. So we haveλ′ = λ(1−ε) < λξ0

for all t ∈ [0, T ]. Although intuitively we might expect that we therefore can eas-
ily prove (3.8) by just comparing the two systems DN and DL with each other,
such approaches seem difficult to carry through. We therefore look at stochastic
processes (x(M) and X) where such a comparison is possible through the coupling
method. Then we use Theorems 2.3 and 2.5 to finish the proof.
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We now construct the two stochastic processes: the non-linear process x(M) and
the linear process X. We define the process x(M) as in section 2, developing accord-
ing to SN, where the initial values are to be suitably chosen later and 1/M � ε. For
this we define a trivariate Markov process (x(M)(t), X(t), x(r)(t)). “r” stands for
residual. In fact, each of the components in (x(M)(t), X(t), x(r)(t)) are themselves
infinite dimensional: the first component is an infinite vector (x

(M)
j (t))j≥0 where

the co-ordinates take values in ZM−1 ∩ [0, 1], the second component is an infinite
vector (Xk(t))k≥1 where the co-ordinates take values on the natural numbers and the
third component is an infinite vector (x(r)

j (t))j≥0 where the co-ordinates take values

in ZM−1 ∩ [0, 1]. We choose the initial values to be such that x(M)
0 (0) = x

(r)
0 (0),

x
(M)
j (0) = M−1Xj(0) for j ≥ 1 and x

(r)
k (0) = 0 for k ≥ 1.

We want the trivariate Markov process to satisfy the following requirements R.
Our aim is to construct x(M) and x(r) such that x(M)

j = M−1Xj + x
(r)
j almost

surely for j ≥ 1 at least in the beginning (as long as x
(M)
0 > 1 − ε). Then we have

x
(M)
j (t) ≥ M−1Xj(t) for j ≥ 1 too in the beginning. Additionally we want x(M)

to behave according to SN and X to behave according to SL.
We begin with x

(M)
0 > 1 − ε. Until x(M)

0 ≤ 1 − ε for the first time, we let these
processes develop according to the following rates:(

x(M),X, x(r)
)

→
(
x(M) + M−1(ej−1 − ej ),X + ej−1 − ej , x

(r)
)

at rate jµXj ; j ≥ 2, (death of a parasite in the linear process)(
x(M),X, x(r)

)
→

(
x(M) + M−1(e0 − e1),X − e1, x

(r) + M−1e0

)

at rate µX1, (death of a parasite in an individual with only one parasite in the linear
process)(

x(M),X, x(r)
)

→
(
x(M) + M−1(e0 − eu),X − eu, x

(r) + M−1e0

)

at rate κXu; u ≥ 1, (death of an individual in the linear process)(
x(M),X, x(r)

)
→

(
x(M) + M−1(ej−1 − ej ),X, x(r) + M−1(ej−1 − ej )

)

at rate jµMx
(r)
j ; j ≥ 1, (death of a parasite in the residual process)

(
x(M),X, x(r)

)
→

(
x(M) + M−1(e0 − eu),X, x(r) + M−1(e0 − eu)

)

at rate κMx
(r)
u ; u ≥ 1, (death of an individual in the residual process)(

x(M),X, x(r)
)

→
(
x(M) + M−1(ek − e0),X + ek, x

(r) − M−1e0

)

at rate λ′ ∑
u≥1 Xupuk; k ≥ 1, (infection in the linear process)

(
x(M),X, x(r)

)
→

(
x(M) + M−1(ek − e0),X, x(r) + M−1(ek − e0)

)
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at rate λx
(M)
0 M

∑
l≥1 x

(r)
l plk + (λx

(M)
0 −λ′)

∑
l≥1 Xlplk , (infection in the residual

process due to infective force of the residual process itself (first part of the rate)
and due to residual rate (difference between the linear and non-linear contact rate,
second part of the rate)). Note that x

(M)
0 (t) = x

(r)
0 (t) until x

(M)
0 ≤ 1 − ε for the

first time. As soon as x
(M)
0 (t) ≤ 1 − ε for the first time, we let the linear process

X develop according to SL and independently of x(M). The reader should notice
that we have to distinguish carefully between the processes x(M) and x(r) on the
one side and X on the other side. The non-linear process and the residual process
denote proportions of individuals while X denotes the explicit number. This has
to be considered while dealing with rates. The reader can check that with our con-
struction of the trivariate Markov process we meet all requirements R. We show
(3.8) through contradiction: suppose there is a u ∈ [0, T ] and a J ∈ N \ {0} such
that

�J (u) > ξJ (u). (3.9)

As N = 1 − ξ0, N must be a continuous function. Therefore there exists q :=
sup{N(t) : t ∈ [0, T ]} < ε.

Now let us define AM := {ω : sup0≤s≤T |x(M)
0 (s)(ω)− ξ0(s)| ≤ ε − q}. As by

definition q = sup{(1 − ξ0(t)) : t ∈ [0, T ]}, we have AM ⊆ {ω : x
(M)
0 (t)(ω) >

(1 − ε) for all t ∈ [0, T ]}. We now choose the initial values yM of x(M) such that
yM → ξ(0) and

∑
j≥1 jyM

j → ∑
j≥1 jξj (0). By Theorem 2.9, P[AM ] converges

to 1. We now define

BM(u) := x
(M)
J (u)IAM

, CM(u) := 1

M
XJ (u)IAM

.

As AM ⊆ {ω : x
(M)
0 (t)(ω) > (1−ε), for all t ∈ [0, T ]} we have by construction of

the coupling BM(u) ≥ CM(u). But as M tends to ∞, IAM
converges weakly to 1,

x
(M)
J (u) converges weakly to ξJ (u) by Theorem 2.5 and (1/M)XJ (u) converges

weakly to �J (u) by Theorem 2.3. But this is contradictory to (3.9) which finishes
the proof. �

Let us now look at stationary solutions of DN. Call ξ̄ (t) a stationary solution
of DN, if for all j ≥ 0 we have ξ̄j (t) ≥ 0 and

∑
j≥0 ξ̄j (t) = 1, and putting

ξ = ξ̄ in the right hand side of DN gives zero: the solution to DN with ξ(0) = ξ̄

is then ξ(t) = ξ̄ for all t . The next theorem summarises all results about stationary
solutions in model DN:

Theorem 3.8. a) In every non-linear system DN we always have the trivial station-
ary solution ξ̄ = e0 no matter which values the parameters take.
b) There is no nontrivial stationary solution of DN with finite average number of
parasites per individual if log θ ≥ (1 + κ/µ)−1.
c) Suppose that log θ < (1 + κ/µ)−1 and R0 > 1. Then there exists a unique
stationary solution ξ̄ of DN with finite average number of parasites per individual.
For this stationary solution we furthermore have ξ̄0 = R−1

0 .
d) Assuming the conditions of c) and as long as R0 remains greater than 1, the
ratios ξ̄j /(1 − ξ̄0) for j ≥ 1 do not change if the vector (λ, µ, κ) is altered in such
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a way that the ratio κ/µ remains constant. More, if p10 +p11 < 1 then these ratios
can not all stay the same if the ratio κ/µ is altered.

Proof. The proof of this theorem if κ = 0 can be found in [BK] as Theorems 4.2
and 4.6.

a) is obvious.
b) In this part we assume that log θ ≥ 1/(1 + κ/µ). We prove part b) by con-

tradiction: we show that if we have a nontrivial stationary solution ξ̄ of DN with
finite average number of parasites per individual, then we must have a nontrivial
stationary solution �̄ of DL which is contradictory to Theorem 3.3 b). So let us
suppose that ξ̄ is a nontrivial stationary solution of DN with finite average number
of parasites per individual. Therefore, if we put ξ̄ in the right side of DN we get
zero. As we are only interested in a stationary solution, we have a constant ξ̄0 in DN
in the infection process. But then, if we choose λ′ := λξ̄0 in DL, the equations are
the same in DN and DL for j ≥ 1. So if we have a stationary solution ξ̄ of DN with
finite average number of parasites per individual, then with the choice �̄j := ξ̄j for
j ≥ 1 we have a stationary solution for DL with finite average number of parasites
per individual. This is contradictory to Theorem 3.3 b).

c) Let us first construct a candidate g for the unique nontrivial stationary solu-
tion of DN with finite average number of parasites per individual in the following
way: we choose g0 := R−1

0 (<1). Then we define λ′ := λg0. We now have

λ′θ
µ + κ

= λg0θ

µ + κ
= 1

as g0 = R−1
0 . We know by Theorem 3.3 c) that if log θ < 1/(1+κ/µ), there exists

a nontrivial stationary solution �̄ of DL which is unique up to scalar multiplication.
We choose that unique nontrivial stationary solution �̄∗ of DL which is scaled such
that

g0 +
∑
j≥1

�̄∗
j = 1.

Our candidate is the g such that g0 = R−1
0 as chosen above and then we choose

gj := �̄∗
j for j ≥ 1. We now have to check that this candidate satisfies our de-

mands: from Theorem 3.3 c) g inherits nontriviality and that the number of parasites
is finite. Additionally we have chosen g0 = R−1

0 which solves one part of c). We
therefore only have to prove that g is a stationary solution of DN and that it is
unique under the constraints above. Let us look at the two systems DN and DL
(repeated in the proof of part b)). gj , j ≥ 1 is a stationary solution of DL. As
λ′ is by construction equal to λg0 and g0 is constant, the two systems are even
equivalent for j ≥ 1. So g does satisfy all equations of DN for j ≥ 1 too. We have
to check the j = 0-equation too. But as the right side of DN sums up to 0 this
equation must be satisfied too. Therefore we have a stationary solution. We now
have to show that it is unique amongst the nontrivial stationary solutions with finite
average number of parasites per individual. We prove this through contradiction.
Suppose we have two different nontrivial stationary solutions p and q of system
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DN with finite average number of parasites per individual. We now construct two
different nontrivial stationary solutions p′ and q ′ of a system DL with parameters
(λ̃, θ, µ, κ) where p′ is not a scalar multiple of q ′. But this is contradictory to
Theorem 3.3 c). In fact we can simply choose p′

j := pj for j ≥ 1 and q ′
j := qj for

j ≥ 1. We choose λ̃ := λp0. Then p′ is a stationary solution of system DL with
parameters (λ̃, θ, µ, κ) because of the equivalence of systems DN and DL if we
choose the ξ0 in the infection process of DN to be constant (as it is in a stationary
solution). The same construction can be carried out with q ′. We choose λ̄ := λq0.
q ′ is a stationary solution of system DL with parameters (λ̄, θ, µ, κ) because of the
equivalence of systems DN and DL if we choose the ξ0 in the infection process of
DN to be constant (as it is in a stationary solution). In system DL we can only have
a nontrivial stationary solution if R0 = 1 because of equation (3.3). But this must
be true for both combinations of parameters:

R0 = λ̃θ

µ + κ
= λ̄θ

µ + κ
= 1,

and therefore we must have λ̃ = λ̄ and p0 = q0. So in fact we have two different
stationary solutions p′ and q ′ of the same system DL with parameters (λ̃, θ, µ, κ).
They both sum up to (1 − p0) which shows that neither is a scalar multiple of the
other. So we have two nontrivial stationary solutions of DL with finite numbers of
parasites where neither is a scalar multiple of the other, a contradiction to Theorem
3.3 c).

d) Letube the unique stationary solution of DN with parameters (λ, θ, µ, κ) and
letv be the unique stationary solution of DN with altered parameters (αλ, θ, βµ, γ κ)

where α, β and γ are each positive. We define R0 := λθ/(µ + κ) and R∗ :=
αλθ/(βµ + γ κ). We want to show that uj/(1 − u0) = vj /(1 − v0) for all j ≥ 1
under the assumptions of Theorem 3.8 d) (if β = γ ). We show this by proving that
the proportions amongst the uj , j ≥ 1, are the same as the proportions amongst
the vj , j ≥ 1. In a stationary solution the derivatives are all 0. So u must satisfy

0 = (j + 1)µuj+1 − jµuj + µ + κ

θ

∑
l≥1

ulplj − κuj , (3.10)

for all j ≥ 1, (we used u0 = R−1
0 = (µ+ κ)/(λθ) from part c)) and v must satisfy

0 = (j + 1)βµvj+1 − jβµvj + βµ + γ κ

θ

∑
l≥1

vlplj − γ κvj , (3.11)

for all j ≥ 1 (we used v0 = R−1∗ = (βµ + γ κ)/(αλθ) from part c) again). To
assume that the ratio κ/µ remains constant means that β = γ . So in fact, equation
(3.11) is equation (3.10) multiplied by β �= 0. But as we are looking at stationary
solutions, and so the u0 and v0 respectively are constant, these equation are in fact
both linear and so multiplying with a constant does not change their solutions.
Therefore u satisfies equation (3.11) too. But stationary solutions of a system of
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type DL are unique up to scalar multiplication by Theorem 3.3 c). So both solu-
tions must be equal up to scalar multiplication, hence the proportions amongst their
co-ordinates must be the same too. So the first part of Theorem 3.8 d) is proved:
the ratios ξ̄j /(1 − ξ̄0) for j ≥ 1 do not change if the vector (λ, µ, κ) is altered in
such a way that the ratio κ/µ remains constant and R0 remains larger than 1.

We are now going to rule out the possibility of other changes. So suppose that
the equations uj = vj (1 − u0)/(1 − v0) hold for all j ≥ 1, that means that the
ratios uj/(1 − u0) do not change if the parameters are altered. We must now show
that this implies β = γ . But the assumption uj = vj (1 − u0)/(1 − v0) for all
j ≥ 1 means that u is a scalar multiple of v. So u must satisfy equations (3.11) too.
We can write equations (3.10) and (3.11) in a more convenient form:

uj = (j + 1)µuj+1 + µ+κ
θ

∑
l≥1 ulplj

jµ + κ
, (3.12)

for all j ≥ 1. In the same way v (and as we have just seen u too therefore) must
satisfy the following equation:

vj = (j + 1)βµvj+1 + βµ+γ κ
θ

∑
l≥1 vlplj

jβµ + γ κ
, (3.13)

for all j ≥ 1. Let us write Aj for
∑

l≥1 ulplj . As u satisfies (3.12) and (3.13) we
have

(j + 1)µuj+1 + µ+κ
θ

Aj

jµ + κ
= (j + 1)βµuj+1 + βµ+γ κ

θ
Aj

jβµ + γ κ

for all j ≥ 1. Simple calculations lead to

β[κθ(j + 1)µuj+1 + Aj(µκ − jµκ)] = γ [κθ(j + 1)µuj+1 + Aj(µκ − jµκ)]

for all j ≥ 1. But κθ(j + 1)µuj+1 + Aj(µκ − jµκ) is not 0 for all j ≥ 1 as can
be seen in the equation for j = 1 because u2 > 0 in a stationary solution of DL if
p10 + p11 < 1. So β = γ must hold which finishes the proof. �

The results about convergence towards a nontrivial stationary solution of DN
are summarised in the following

Theorem 3.9. Let log θ ≥ (1+κ/µ)−1 and ξ̄ be a nontrivial stationary solution of
DN. For a solution ξ of DN with initial conditions ξ(0) = y where

∑
j≥1 jyj < ∞

we have the following behaviour:
Case 1) (1 + κ/µ)−1 ≤ log θ ≤ µ/κ: If R1 > 1, then limt→∞ ξ(t) = ξ̄ is only
possible if ξ̄0 ≥ 1/R1.
Case 2) µ/κ < log θ : If R2 > 1, then limt→∞ ξ(t) = ξ̄ is only possible if
ξ̄0 ≥ 1/R2.
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Proof. The proof for κ = 0 can be found as Theorem 4.6 in [BK]. We use in-
equality (3.7) of the proof of Theorem 3.7. Let us assume that R1 > 1 (or R2 > 1
respectively in the third region for θ ) and limt→∞ ξ(t) = ξ̄ . If there exists an
α ∈ [0, 1] such that g(α) := (µα + κ − λθαξ̄0) > 0, we can deduce by (3.7) and
the Gronwall-inequality that m∞

α (t) converges towards 0 for t → ∞. Then ξ must
converge towards the trivial solution e0 too which is a contradiction to our assump-
tions. In both cases we prove the existence of such an α by using ξ̄0 < 1/R1 < 1
(or ξ̄0 < 1/R2 < 1 respectively in the third region for θ ). With these contradictions
we then have finished the proofs.

Let us first assume that 1/(1 + κ/µ) ≤ log θ ≤ µ/κ and ξ̄0 < 1/R1 < 1. We
choose

α1 := min

(
1,

1

log θ
log

(
µ

λξ̄0 log θ

))
.

Let us first treat the case where α1 = (1/ log θ) log(µ/(λξ̄0 log θ)). Then α1 must
be smaller or equal to 1 and because 1/(1 + κ/µ) ≤ log θ ≤ µ/κ we have α1 ≥ 0.
We now must check that g(α1) > 0. We have

g(α1) = µ

log θ
log

(
µ

λξ̄0 log θ

)
+ κ − µ

log θ
.

This is larger than 0 if

log

(
µ

λξ̄0 log θ

)
+ log(θ

κ
µ ) > 1,

which is satisfied if

µθκ/µ

λξ̄0 log θ
> e.

As R−1
1 > ξ̄0 this inequality is satisfied. Now we treat the case where α1 = 1 and

therefore we may additionally use that (1/ log θ) log(µ/(λξ̄0 log θ)) > 1. This is
equivalent toµ/(λθ log θ) > ξ̄0. Therefore ξ̄0 < min(µ/(λθ log θ), R−1

1 ). Because
log θ ≥ 1/(1 + κ/µ), we have µ/(λθ log θ) < R−1

1 . Hence

ξ̄0 <
µ

λθ log θ
. (3.14)

Let us now show that g(1) = µ + κ − λθξ̄0 > 0. By (3.14) this is satisfied if
µ + κ ≥ µ/ log θ . But this is satisfied because log θ ≥ 1/(1 + κ/µ) which ends
the proof of the first case.

Now we assume that log θ >µ/κ and ξ̄0 < 1/R2 < 1. Define c := 1/R2−ξ̄0 > 0.
Then we have

g(α) = µα + κ − λθαξ̄0 = µα + κ − λθα(κ/λ − c) = µα + κ − θακ + λθαc,

where we used the definitions of c and R2 = λ/µ. This shows that there exists an
α ∈ [0, 1] such that g(α) > 0 (let α tend to 0). This ends the proof of case 2). �
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Remark. Suppose that in model DL µ/κ ≥ log θ > (1 + κ/µ)−1, R0 > 1 and
R1 < 1. By Remark 1) to Theorem 3.1 the epidemic dies out; but by equation (3.3)
the number of parasites tends to infinity. We have the same behaviour in models
DN (Theorem 3.7 and equation (3.6)) and SL (Remark 3) to Theorem 2.1 in [Ls]).

Open questions. 1. Having proved laws of large numbers (Theorems 2.3 and 2.5),
can we prove a central limit theorem? There are various possibilities: single co-
ordinates, a finite combination of co-ordinates or even the entire process (a mea-
sure-valued process). For one single co-ordinate j such a result could be that there
is a diffusion limit for

√
M

(
x
(M)
j (t) − ξj (t)

)
0≤t≤T

as M → ∞ if the initial values are suitable.
2. In view of Theorem 3.8 c), do we have convergence in DN towards that

stationary solution ξ̄?
3. Are there stationary solutions with infinite average number of parasites per in-

dividual and under which conditions does a solution ξ converge to such a stationary
solution? Is such a solution unique?

Appendix

In the Appendix we look at variations of results from [HK] which we used frequent-
ly in this paper. We consider a time-homogeneous Markov chain {Zt } on a general
state-space S. The process is defined by its times of jumps, {τn} (τ0 = 0, τn+1 =
inf{t > τn;IZt := Zt − Zt− �= 0} and τn = ∞ if there are less than n jumps),
and the sizes of its jumps, {Jn}(J0 = 0). By the Markov property, conditionally on
{Z(τn) = z}, for τn+1 < ∞ a.s. we have

a) τn+1 − τn is exponentially distributed with mean, say ρ(z)−1, and
b) Z(τn+1) − Z(τn) has a law that depends on z only, say π(z, .).

Let {Jt } be the natural filtration of the process Zt . We have

Z(τn+1) = Z(τn) + Jn+1,

Zt = Z0 + ∑
n≥1 JnI [τn ≤ t].

(A1)

Let f be an arbitrary function and define

Lf (z) := ρ(z)

∫
[f (y + z) − f (z)]π(z, dy)

and

N
f
t := f (Zt ) − f (Z0) −

∫ t

0
Lf (Zs)ds

L is the infinitesimal generator of the Markov process Z, see for example Ethier
and Kurtz (1986) [EK], p. 376. In Theorem A1 and its corollaries, we investigate
conditions under which N

f
t is a martingale. Additionally, a sufficient condition,

condition (B), is given for the integrability of the process f (Zt ).
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Theorem A1. Assume that the process Z is regular and takes values on a general
state-space S. Let f : S → R+ be a possibly unbounded function such that there
exists a function F : S → R+ such that

|L|f (z) := ρ(z)

∫
|f (z + y) − f (z)|π(z, dy) ≤ F(z), (B)

where

E

[
sup

0≤u≤s

F (Zu)

]
< ∞

for all s ≥ 0. If f (Z0) is integrable, then so is f (Zt ), moreover Nf is a martingale
and

E[f (Zs)] = E[f (Z0)] +
∫ t

0
E[Lf (Zs)]ds.

Proof. The proof of Theorem A1 follows the same lines as the proof of Theo-
rem 2 in [HK] with the following exceptions (notation and numbers of equations
according to [HK]):
1. Equation (5) in step 1 becomes

E[|Y |T ] ≤ E[|Y0|] + E

[∫ T

0
F(Zs)ds

]
< ∞,

proving immediately that the variation process |Y |t = ∫
I [s ≤ t]|x|µf (ds, dx) is

locally integrable.
2. The first equations in step 2 become

E[|f (Z
Sn
t )|] ≤ E[|Y0|] + E

[∫ t

0
I [s ≤ Sn]F(Zs)ds

]
< ∞

independently of n which leads directly to (7).
3. In equation (8) we use again the upper bound F(Zs) for |L|f (Zs) which finishes
the proof of Theorem A1. �

Again, let S be a general state-space such that the elements z of S are (infinite)
vectors and fj : S → R+ be a projection on the co-ordinate j : fj (z) = zj . Define
mk(z) := ∫

(fj (x))
kπ(z, dx) and |m|k(z) := ∫ |fj (x)|kπ(z, dx). Applying the

above theorem to the particular case of polynomials we get

Corollary A2. Assume that (fj (Z0))
k is integrable and that there exists a function

F such that for all i = 1, . . . , k

ρ(z)|m|i (z) ≤ F(z).

and E[sup0≤u≤s F (Zu)] < ∞. Then (fj (Zt ))
k is integrable and

(
fj (Zt )

)k − (
fj (Z0)

)k −
k−1∑
i=0

(
k

i

) ∫ t

0
ρ(Zs)

(
fj (Zs)

)i
mk−i (Zs)ds

is a martingale.
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Particular attention is, of course, given to the function g1(z) := zj for j ≥ 0
(so k = 1 in Corollary A2) and to the process

N
g
t := g1(Zt ) − g1(Z0) −

∫ t

0
ρ(Zs)m1(Zs)ds.

It is, for example, clear that if we find an F such that ρ(z)|m|1(z) ≤ F(z) and
E[sup0≤u≤s F (Zu)] < ∞ holds and g1(Z0) is integrable, then the process g1(Zt )

is regular and integrable and N
g
t is a martingale. When a second-order condition

is added, we obtain an expression for the predictable compensator of the quadratic
variation process [Ng,Ng]t .

Corollary A3. Assume that the conditions of Corollary A2 with k = 2 hold. Then
the process

[Ng,Ng]t −
∫ t

0
ρ(Zs)m2(Zs)ds

is a martingale.

Proof. Applying Corollary A2 to the function g2(z) := z2
j (k = 2 in Corollary

A2), we get that the process

g2(Zt ) − g2(Z0) −
∫ t

0
ρ(Zs)m2(Zs)ds − 2

∫ t

0
ρ(Zs)g1(Zs)m1(Zs)ds

is a martingale. Writing [N,N ]t in terms of the process g1(Zt ) (and its jumps),
shows that the process

g2(Zt ) − g2(Z0) − 2
∫ t

0
ρ(Zs)g1(Zs)m1(Zs)ds − [Ng,Ng]t

is a martingale. Then the statement follows by differencing the previous two
equations. �
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