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Abstract. Based on the description of an outbreak of foot-and-mouth disease (FMD), a
particle model is developed describing the most important properties of this epidemic. Also
control measures (mass and ring vaccination) are implemented. This model shows the ex-
pected behavior in simulations. Since it is impossible to treat this model analytically, we use
ideas of branching processes on two levels to derive a caricature of the particle model. In
simulations it is shown that this caricature exhibits similar behavior as the particle system.
It is possible to analyze the caricature and, in this way, to obtain expressions for the most
important quantities like the reproduction number or the expected final number of infected
individuals etc. In this way mass vaccination and ring vaccination can be compared and
control strategies can be optimized.

1. Introduction

While there is abundant literature addressing the mechanisms of mass vaccination
programs, little is known about properties of ring vaccination [12,26,10,22]. In
contrast to mass vaccination, ring vaccination does not neglect but is highly based
on the contact structure between single individuals. The idea is that individuals
who have close contact to an infected individual are at a high risk to become in-
fected, and thus should be protected. Essentially, only individual based stochastic
models are able to capture this situation [12]. Unfortunately, not many tools for the
analysis of such models are available. The most frequently used analytical meth-
ods are the mean field approximation [8,23] and the rapid stirring limit [9]. Both
approaches destroy the contact structure, and thus are not well suited to address
ring vaccination.

We shall develop a model incorporating most of the features of ring vaccina-
tion. We concentrate on foot-and-mouth disease (FMD) since ring vaccination is
frequently used for the control of this disease. We do not claim to consider a de-
tailed model, but a model that takes into account many of the known properties
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7206 Tübingen, Germany. e-mail: johannes.mueller@uni-tuebingen.de

M. Kirkilionis: IWR, University of Heidelberg, Heidelberg, Germany.

Key words: Ring vaccination – Foot-and-mouth disease – Particle system – SIR-Model –
Branching Process



144 J. Müller et al.

of FMD and ring vaccination. However, one can expect that the basic structure of
our approach can be adapted to more elaborate models. The model is based on a
particle system; it cannot be analyzed directly. We shall only consider subcritical
scenarios where we are able to develop a caricature of the primary model, based
on the theory of branching processes [18] and models for epidemics on two levels
[15,6,5]. The particle model and the branching process show good agreement in
numerical simulations. It is possible to analyze the latter with standard methods.
In the second section we list facts about the disease and consider an outbreak of
FMD that has happened 1987/88 near Hannover, Germany. Taking into account
these observations we develop a spatially structured particle model in Section 3. In
the fourth section we derive a linear stochastic caricature of the particle model, that
is valid only in a certain parameter range but can be treated analytically. Finally, in
Section 5, we compare ring and mass vaccination with respect to certain features.

2. Foot-and-mouth disease

FMD is eliminated in the United States and Europe, while it is still endemic in
Africa, South America and Asia. However, even in regions where the disease is
not endemic, there are frequent outbreaks [25]. These outbreaks cause consider-
able economic loss since the export markets are closed for a country, in which
the disease is present. Only after eliminating the disease, export is again possible.
Hence efficient control strategies are of high interest. Recently, the European Union
changed its policy: there is no mass vaccination any more but import controls, quar-
antine, and, in case of a local outbreak, emergency vaccinations and massive local
control measures like ring vaccination.

2.1. Some basic facts

FMD is a highly infectious disease for all clovenhooved animals like cattle, sheep
and pigs. At outbreaks, even within vaccinated herds, the reproduction number R0
(defined by the mean number of secondary cases infected by one primary case in
an uninfected but vaccinated herd) was estimated in some cases to be 11.1 and even
72.8 [29]. The latent period varies between two and 14 days; the animals are only
one or two days infectious before showing clinical symptoms like fever, blisters at
mouth, tongue and feet etc., which point at FMD quite clearly [29]. Mortality is
rather low (about one to three percent), and the recovered animals are immune for
the rest of their lives. Meanwhile, about thirty different strains are known (mainly
recently created under the evolutionary pressure of vaccines), but an animal recov-
ered from one strain has aquired a certain degree of immunity against the other
strains. There is almost no natural resistance against the virus. FMD can be trans-
mitted by direct contacts, contacts with infected tools or food, but also aerosol and
air borne transmission are important.

An animal can develop a “carrier state”: it may carry the virus one to three
years without showing symptoms. This happens more frequently if an animal is
challenged in the first few days after vaccination by contacts with infected animals.
These carriers are in principle able to transmit the disease, but it seems that their
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infectivity is negligible [7]. Vaccines are very effective: vaccinated animals devel-
op sufficient immunity in about four days [7,29]. There are hardly any vaccination
failures. However, the immunity vanishes rather fast, after three months half of the
animals are susceptible again [29].

2.2. Description of an outbreak

An outbreak of FMD occured 1987/88 near Hannover (Germany) [19]. At that time
a mass vaccination program was performed. Altogether six herds were detected to
be infected.

1. The first two infected herds were discovered on October 8, 87, and all animals of
the diseased farms were subsequently slaughtered. In a radius of three kilome-
ters all animals were vaccinated. Moreover, this region was closed off for animal
transports. A screening program was started within 10 km of the outbreak.

2. On January 1, 1988 two other infected herds were found on farms 18 km away
from the place of the initial outbreak. The control measures were the same as in
the initial case.

3. On January 5, 1988 the next discovery of an infected herd took place, 8 km from
the initial case. From then on, the control measures were stricter: not only all
cattle and pigs at the diseased farm were slaughtered, but also animals within
10 km were vaccinated and the area was closed off.
The last case appeared January 10, 1988, in the same village as the case of
January 5. The control measures remained the same.

4. After no other cases were discovered, the region was declared disease free on
February 12, 1988.

The structure of this outbreak can be described as consisting of three different local
outbreaks (LO) which took place far away from each other, with a possible large
delay (there are two and a half month between the first and the second LO) and two
infected herds per LO. This interpretation suggests that there are two mechanisms
for infection. The first mechanism is effective only over short distances, but at a
high rate. It seems that here real contacts occur (due to direct contacts or airborne
spread) since the two infections per outbreak occured more or less at the same time.
Due to this first way of transmission, it is very likely that, once a herd is infected,
very soon other herds in the immediate neighborhood become also infected. The
second mechanism of transmission does not occur at such a high rate but acts at
longer distances and with a possible delay in transmission: even though the first LO
was eliminated at the beginning of October, two months later other LOs occured far
away. This way of transmission may be contact with infected tools or food, trans-
port of infected gear or animals together with airborne spread, or may be caused by
an unrecognized local epidemic in wildlife (such mechanisms are known to play
a role for e.g. rinderpest (cattle plaque) [24]). In our model we will not take into
account the indirect way of the long distance contacts which lead to the possible
delay in the creation of secondary outbreaks, but only distinguish between (direct)
short distance contacts at a high rate and (direct) long distance contacts at a low
rate.



146 J. Müller et al.

The control measures that are called “ring vaccination” consist of

1. A general screening program independent of the disease (this “screening” pro-
gram may consist only of the farmer, calling the veterinarian if suspicious
symptoms are discovered).

2. Slaughtering the animals at diseased farms.
3. Vaccination in a ring with a certain radius around diseased farms.
4. Closing off a region around the farm.
5. Setting up a screening program in a region around the diseased farm.

There are other scenarios, which are also called ring vaccination, like slaughtering
all animals within a certain radius r1 of the primary case and only vaccinating the
farms within a distance between two radii r2 and r3, with r1 ≤ r2 < r3. However,
these different scenarios have more or less similar features as the previous one.

3. The spatial model

3.1. Without control measures

We use a particle model [8] with a fixed, finite but large contact graph �. This graph
may be an N × N square lattice or a more complex finite graph. Each site of the
graph represents a farm. Since there is almost no natural resistance to the disease
and moreover the disease is very infectious, we can assume that once an infected
animal appears on a farm, very soon a high percentage of all animals are diseased.
In view of this fact it is sensible to consider the whole farm as susceptible, infected
or (after vaccination) immune. For sake of simplicity, we neglect the latency period.
We expect that the results do not change much, if this property of the disease is also
taken into account. A farm, where infected animals are discovered can be consid-
ered as immune after slaughtering the animals, since there are no more susceptible
or infectious animals (we neglect the infectivity of this farm by infected tools etc.).
Also, on this farm, there will be - after a certain time - again new, susceptible an-
imals. This transition corresponds to a loss of immunity. We will also neglect the
carrier state, since these animals seem to have a very low infectivity. Hence we
get a simple SIRS-Model for each farm: each site (farm) can assume one of three
states: susceptible ‘S’, infected ‘I ’ or recovered ‘R’.

In the view of the different ways of transmission, we define two rates βs and βl
for short and long distance infections. While short distance infections occur only
in an infection neighborhood Ni (Ni is the Moore neighborhood in the case of a
square lattice), long distance contacts may take place to any other site of the graph
with the same probability.

3.2. With control measures

The control of the disease has two independent components: mass vaccination
and ring vaccination. Ring vaccination itself has again five components: a general
screening of all farms, the slaughtering of the animals of diseased farms, vaccina-
tion and intensive screening of all farms nearby and the closure of a region around
the initial case.
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It is easy to introduce mass vaccination. This kind of vaccination corresponds
to a fixed rate ψm for the transition of a farm from susceptible to recovered.

More difficult is the implementation of ring vaccination. In order to model the
general screening program, we introduce a rate σ . An infectious site is discovered
at this rate. Once an infected site is discovered, all processes but ring vaccination
are stopped. This can be done, since ring vaccination runs on a much faster time
scale than the other processes. At the discovered farm, all animals are slaughtered
(i.e. the site undergoes a transition I → R). Furthermore, in a control neighbor-
hood Nc, which is in general larger than the infection neighborhood Ni , every site
is screened and the uninfected sites are vaccinated (and thus become recovered). If
an infected site is found, ring vaccination is performed around this second infected
farm as well. The procedure stops if no more infected sites are discovered. Now all
other processes are allowed to start again.

Since we stop time as long as the ring vaccination procedure runs, the imple-
mentation of ring vaccination is synchronous. All other events occur asynchronous
(see [8], Section 2). The synchronism of ring vaccination is justified by a time scale
argument: within one or two days after discovery of an infected farm, the con-
trol measures are carried out. Furthermore, the emergency vaccine protects quite
soon after vaccination. Hence it is appropriate to consider the time scale of ring
vaccination to be faster than that of all other processes.

3.3. Specification of the transition rates

We denote by x a site of the graph �, by φ(x) the state of the site x, by Ni(x) the
infective neighborhood and Nc(x) the control neighborhood of site x.

• Infection, S → I : there are short distance contacts at a rate βs within the
infective neighborhood Ni , and long distance contacts at rate βl all over the
graph, i.e. we obtain the total rate of infection βs #{y ∈ Ni(x) |φ(y) = I } +
βl #{y ∈ � |φ(y) = I }.

• Recovery, I → R: the recovery rate is denoted by α.
• Observation of infected farms: an infected site is discovered at rate σ . All ani-

mals at this farm are slaughtered at once, i.e. the site undergoes a transition to
R. Moreover, in the control neighborhood Nc of this site, all susceptible sites
are vaccinated, i.e. undergo a transition from S to R. Ring vaccination is also
performed around any infected site that was discovered in the original control
neighborhood Nc.

• Loss of immunity, R → S: loss of immunity occurs at rate γ .
• Vaccination S → R: a transition from S to R occurs as the consequence of

vaccination. This vaccination may be mass vaccination (at rate ψm) or ring
vaccination ( caused by discovery of an infected site).

Technically spoken, a system like this with synchronous processes (ring vaccina-
tion) is no more a particle system in the strict sense, but can be approximated by
a sequence of particle systems. However, we will refer to this simulation model as
particle system.



148 J. Müller et al.

3.4. Example of a simulation

For the simulation, we choose as parameter values βs = 1.453, βl = 0.0492,
α = 0.03, γ = 0.00743, ψm = 0.0 (no mass vaccination program), σ = 0.071.
The graph is chosen as a 50 times 50 square lattice with periodic boundary condi-
tions (topology of a torus), the infectious neighborhood as the Moore neighborhood
Ni(x) = {y | ‖x − y‖∞ ≤ 1}, and the control neighborhood as an extended Moore
neighborhood Nc(x) = {y | ‖x − y‖∞ ≤ 2} (‖.‖∞ denotes the maximum norm: If
x = (x1, x2)

T , ‖x‖∞ = max{|x1|, |x2|}). We show the trajectory of an outbreak
in Fig. 1.

We find the typical picture of LOs which create other LOs. Furthermore, an
observed LO is very likely to be eradicated by ring vaccination. This behavior is
typical for the particle model, and agrees with that of the described outbreak near
Hannover. Furthermore, it underlines the importance of contact tracing for ring
vaccination.

4. Caricature of the spatial model

In this section we reduce the spatial structure, which is a possibly very large grid,
to a system with a finite number of patches. Two kinds of contacts can be distin-
guished: short range and long range. One (primary) case creates with a high rate
other cases by means of short range contacts. This mechanism yields a cluster of
infected sites. Since the cluster is clumped together, it can be treated as one individ-
ual: E.g. this individual “dies”, if one of its infected farms is observed. In contrast,
a successful long range contact will start a new LO far away from the first cluster.
Hence it is very likely that ring vaccination of the first cluster does not affect the
second LO. One LO can be described independently of the others [4].

Since we assume that the disease can be controlled by ring vaccination, one
LO cannot grow too much and, in addition, creates less than one new LO on av-
erage. Therefore it is possible to model the intra LO dynamics as well as the inter
LO dynamics as a linear process (see also discussion in the next section and in
Section 4.1.3). Note, that the assumption of linearity leads only to an approxima-
tion of the spatial process. Since the infectious neighborhood is finite, already a
few infected sites produce a considerable nonlinear effect. Nonetheless, simula-
tions will show that at least in a certain parameter range the linear approximation
is well suited as a description of the full process.

This concept resembles that of a metapopulation [14], where each LO corre-
sponds to one patch. Essentially the population dynamics within one patch can be
described independent from that of all other patches. However, empty patches can
be invaded by residents of active patches (i.e. long distance contacts create new
LOs).

4.1. Intra-outbreak dynamics

Once an LO is created either by invasion from the outside or by another LO, its
dynamics are assumed to be independent of the remaining part of the system. Since
we assume that the disease can be controlled by ring vaccination, the LOs are not



Ring vaccination 149

R

S

I

Primary infected site Generation of a second outbreak

The local outbreaks grow

First local outbreak discovered Second local outbreak discovered

Fig. 1. Simulation of an outbreak.

likely to become large and we can more or less neglect nonlinear effects. More-
over, the LO is localized in one single cluster, and hence we also neglect its spatial
structure. Basically, the dynamics can be described by a linear birth and death pro-
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cess. In addition, we incorporate the event of discovery of the LO. Once the LO is
observed, control measures (ring vaccination) ensure that very soon after discovery
the disease dies out at the place of this LO.

It is possible to reformulate the particle model, such that the description of the
time evolution of an LO is close to the formulation of a birth and death process:
We define states Ii of i = 0, 1, 2, ... infected sites, where so far no site of the LO
has been discovered as infected. In addition, we define a state D that corresponds
to an observation of at least one infected site. In the following, we will use the no-
menclature of infectious processes (infection/recovery) as well as that of birth and
death processes (birth/death). The per capita mortality rate is µ and the screening
rate σ . Births do not occur with a constant per capita rate: Infectious sites attempt
to infect neighbored sites at some constant per capita rate β0

s , but it depends on the
spatial distribution of infected and recovered cells whether or not such an attempt is
successful or not. Thus, not only the state of an LO at time t but also the per capita
birth “rate” β̃s,i in state Ii is a random variable. In Fig. 2 we show the distribution
of β̃s,i for i = 1, 5, 10, 15.
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Fig. 2. Distribution of β̃s,i/β̃
0
s for i = 1, 5, 10, 15. Please note that the scale of the x-axis is

different. The parameters are βs = 50.0, α = 4.5, σ = 5.0, γ = 0.05, ψm = 0.0, N = 40.
Number of runs: 10000.
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For i = 1, the distribution β̃s,1 resembles the exponential distribution: If there
is no recovered site in state I1, all neighbors of the infected cell are susceptible,
i.e. in this case we have

P(β̃s,1 = β0
s | no recovered in state I1) = 1.

If there is one recovered cell in state I1, then this recovered cell must be in the
neighborhood of the infected cell and reduces the number of susceptible cells that
can be infected by one, i.e. for the More neighborhood

P(β̃s,1 = (7/8) β0
s | one recovered in state I1) = 1.

If there are two recovered cells, the effective birth rate β̃s,1 is not unique any more,
since there are different possible spatial structures (all in one row or all clumped),
which lead to different rates, but still

P(β̃s,1 ∈ {(7/8) β0
s , (6/8) β0

s } | two recovered in state I1) = 1.

The random variable β̃s,1 assumes only values kβ0
s /8, k = 0, . . . , 8 and looks

nearly exponential distributed. Note that the mass of β̃s,1 is concentrated on k = 8.
In a similar way, also the random variables β̃s,i for i large are discrete random

variables. However, for states with a high number of infected cells, the distribution
of β̃s,i looks approximately normal. More precisely, the distribution approximates
a superposition of several Gaussian distributions, accordingly to the distribution of
the number of recovered cells in state Ii .

So far we have only reformulated the spatial model – the spatial structure of
an LO is still reflected by the distribution of β̃s,i . The first step toward a simple
caricature that can be analyzed is to replace the random variables β̃s,i by constant
rates βs,i . Since the number of transitions from state Ii to Ii+1 depend on the
product of the probability to be in state Ii and the random variable β̃s,i , there is no
straight forward way to choose βs,i (in general, the mean values of β̃s,i would not
do it). However, even if we assume constant per capita rates βs,i , the birth and death
process will in general not be feasible for analytic tools. That’s why we assume in
a second step of approximation of the original system that the birth rates do not
depend on i,

βs,i = βs.

Of course, this assumption is a cruel simplification which will not work for all pa-
rameter values. However, in Section 4.1.3 we will compare numerical simulations
with the outcome of the described birth and death process (for a flow diagram of
the latter see Fig. 3), and find good agreement for certain interesting parameter
values.
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Fig. 3. Linear birth and death process stopped by the discovery of infection.

Let pi(t) be the probability for states Ii at time t and q(t) the probability for
state D at time t . The evolution of these probabilities are described by

d

dt
p0 = µp1 (1)

d

dt
pi = −i(µ + βs + σ)pi + (i − 1)βspi−1

+ (i + 1)µpi+1 for i ≥ 1 (2)

d

dt
q = σ

∞∑
i=0

ipi . (3)

If we assume that at time t = 0 exactly m individuals are infected (mostly we will
deal with m = 1), the initial conditions are

pi(0) = δi,m, q(0) = 0.

The generating function u(x, t) for this process is

u(x, t) =
∞∑
i=0

xipi(t). u(x, t)|t=0 = xm. (4)

Note that u(1, t) < 1 for σ , t > 0, since there are not only the states Ii in the
system but also the state D. We obtain for m = 1 the generating function (see
Appendix A.1)

ϕ(x, t) = x(z+ − z−e(t ) + (z+z−(e(t − 1))

(z+e(t − z−) + x(1 − e(t )
(5)

where ( and z± are defined in equation (18) in the appendix. For m > 1 we have
u(x, t) = ϕm(x, t). If we choose σ = 0, i.e. no screening at all, we recover the
usual linear birth and death process [11]. Since u(1, t) + q(t) = 1,

pi(t) = 1

i!
∂ixu(x, t)|x=0, q(t) = 1 − u(1, t).

Therewith we have a complete description of the stochastic process.
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4.1.1. Time to extinction or observation

The distribution of the time to extinction without observation of the LO, denoted
by Fe(t), is given by

Fe(t) = µp1(t),

and the distribution of the time to discovery (before extinction), Fd(t), by

Fd(t) = σ

∞∑
i=0

ipi(t) = σ 〈i〉(t),

where 〈i〉(t) denotes the mean value of the number of infected sites at time t . We de-
rive expressions for p1 and 〈i〉 from the generating function, p1(t) = ∂xu(x, t)|x=0
and 〈i〉(t) = ∂xu(x, t)|x=1, i.e.

p1(t) = m

(
(z+ − z−)2e(t

[z+e(t − z−]2

)(
z+z−(e(t − 1)

z+e(t − z−

)m−1

〈i〉(t) = m

(
(z+ − z−)2e(t

[(z+ − 1)e(t − (z− − 1)]2

)
(
z−(z+ − 1)e(t − z+(z− − 1)

(z+ − 1)e(t − (z− − 1)

)m−1

and thus

Fe(t) = mµ
(z+ − z−)m+1e(t (e(t − 1)m−1

[z+e(t − z−]m+1
(6)

Fd(t) = mσ
(z+ − z−)2e(t [z−(z+ − 1)e(t − z+(z− − 1)]m−1

[(z+ − 1)e(t − (z− − 1)]m+1
. (7)

The distributions of the time to extinction without observation Fe is always mono-
tone decreasing. For the distribution of the time to discovery Fd there are two
qualitatively different possible shapes: Either it is monotonously decreasing or has
exactly one maximum at a positive time point before it decrease exponentially in
time (for the latter case, see e.g. Fig. 6). If Fd just decreases, this does mean that
most LOs die out unobserved, i.e. even without ring vaccination the disease is not
able to spread. The other case is a sign that the disease is about to take off: A new
infected LO is small and thus not likely to be observed. Later on the size of the
LOs become large such that also the probability per time interval for an observation
becomes large. At this point of time the peak appears in the distribution Fd . The
tail in the distribution declines with e−(t . This exponential decrease reflects the
fact that in our model all processes are Poisson with constant rates, where particles
may survive arbitrary long by chance.

The difference between situations where the disease would – without ring vac-
cination – take off respectively die out anyway will be discussed further in the next
section.
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4.1.2. Distribution of infected sites at discovery of an outbreak

The dynamics of an LO is that of a usual birth and death process until one infected
site is observed or all infected sites died out without control measures. If it is ob-
served, the cost for the treatment of this LO will depend on the number of infected
sites. In this section we investigate this distribution.

Let qi be the probability to find i infected sites in the LO at the time of the first
observation for i > 0. Let furthermore q0 be the probability that the LO dies out
without being observed. Hence

qi =
∫ ∞

0
i σ P (Ii at time t) dt = σ

1

(i − 1)!
∂i−1
x

∫ ∞

0
∂xu(x, t) dt

∣∣∣∣
x=0

= σ
1

(i − 1)!
∂i−1
x

∫ ∞

0

(z+ − z−)2e(t

[(z+ − x)e(t − (z− − x)]2
dt

∣∣∣∣
x=0

= σ
1

(i − 1)!
∂i−1
x

(z+ − z−)2

(

∫ ∞

1

1

[(z+ − x)τ − (z− − x)]2
dτ

∣∣∣∣
x=0

= σ

βs

1

(i − 1)!
∂i−1
x

1

z+ − x

∣∣∣∣
x=0

= σ

βs

1

zi+
q0 = lim

t→∞ u(0, t) = z−.

The process of an LO consists more or less of two parts: one part describes the
linear birth and death process (the dynamics without observation), the other part
describes the observation events. The disease itself may be sub- or supercritical
(βs/µ < 1 respectively βs/µ > 1). The total process is always subcritical in the
sense that an LO always dies, either due to an observation or since the epidemic
dies out anyway. We can find this fact in the quantity z−. If βs/µ < 1, i.e. if the
branching process for the disease without observation is subcritical, then z− → 1
as σ → 0, i.e. the disease dies out, even if there is no observation (see Fig. 4). In
the other case, z− stays below one: if σ = 0, a certain fraction of the realizations
of the process will grow for all times.

In this spirit we can define a major outbreak as an LO that is observed, and thus
the probability for a major outbreak is

Probability for a major outbreak =
∞∑
i=1

qi = 1 − z−.

Furthermore, the expected number of infected sites of an LO by discovery iexp is

iexp =
∞∑
i=1

iqi = σ

βs

z+
(z+ − 1)2

If µ = 0, this expression simplifies to iexp = 1+βs/σ . This formula is remarkable,
since in absence of the dependency of the individuals within an LO, βs/σ would
just be the number of secondary cases one primary infected individual produces
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Fig. 4. Dependence of the factor z− on βs/µ for the disease in an LO without observation.

for µ = 0. In this setting, iexp is equal to the primary case (one) plus the cases of
the second generation (βs/σ ).

It is technically a little bit more complex to compute the distribution and the
mean value of affected (infected or recovered) sites at the moment of observation
but straightforward using the same ideas as before. Since for FMD among cattle
unobserved farms do not play a major role, we skip this computation.

4.1.3. Comparison of the spatially structured model with its caricature

In order to compare the particle model with the caricature, we link the parameters
µ, βs and σ to those of the particle model. Then we look at simulations of some
distributions to find similarities and differences.

Parameters:
We assume here that only short distance contacts occur, i.e. βl = 0. The simplest
parameter is σ : this is just the screening rate,

σ = σ.

We assume that the screening rate is not changed by the discovery of another out-
break. An infected site looses its infectivity at rate µ,

µ = α.
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βs is the per capita “birth” rate of infected individuals. We assume that the popula-
tion is vaccinated by a mass vaccination program with vaccination rate ψm. Hence,
the expected number of susceptible neighbors of a site in the uninfected situation
is γ /(ψm + γ ) times the number of all neighbors. However, the average number
of susceptible neighbors is not only reduced by the mass vaccination program but
also by infection. To take this fact into account, we define

βs = θ
γ

ψm + γ
βs,

where 0 < θ ≤ 1 denotes the typical reduction of susceptible neighbors due to the
disease. Of course, this reduction depends on the spatial distribution and especially
on the number of infected and immune cells. In our approximation we assume only
one constant factor for all states Ii . The comparison with simulations will show
that this assumption is not too rough. For simplicity, we fit θ by eye such that the
curves of the distributions become similar. We do not use optimization methods to
obtain θ , since the fitting by eye yields satisfying results.

It is astonishing that it is possible to describe the nonlinear particle model by a
linear birth death process. Note that we assume in the following usually θ = 0.75;
θ = 1 would result in considerably worse approximations. This does mean that
the described procedure of approximation of the particle model by the birth and
death process is not merely a hidden kind of linearization but that the nonlinearity
in the particle model cannot be neglected. However, it seems enough for the chosen
parameter values to adapt θ (i.e. to rescale the parameters of the birth death process)
in order to capture the nonlinear effects within the particle system.

Of course, a birth and death process where the per capita birth rate depends on
the number of infected sites would lead to even better approximations; but since the
result of the simple model is quite satisfying there is no real need for more complex
models. Also, a bigger neighborhood Ni would diminish the nonlinear effects and
in this way the approximation of the caricature would become better. Again, we
will see below that even for the Moore neighborhood the approximation is well
enough to be interesting as a caricature of the particle model.

Simulations:
Two scenarios are considered: one with mass vaccination and one without mass
vaccination (ψm = 0). For the first we choose ψm = γ , such that on average half
of the sites of the uninfected grid are protected. The other parameter values are the
same as in Section 3.4, with the exception of βl = 0. At time t = 0 one infected
site is randomly chosen. We performed 10000 runs to obtain the results. We com-
pare three types of distributions: the probability to find i infected sites at time t

for i = 1, . . . , 4, the probability density of the time to extinction (either with or
without observation of infected sites) and the distribution of the number of infected
sites at the moment of the observation.

In Fig. 5 we show the probabilities to have one, two, three or four infected sites
in an LO at certain time. In addition to the simulated values we show the computed
values for the birth and death process. We find a good agreement for θ = 0.75,
independently of ψm = 0 or ψm = γ . Similarly, in Fig. 6 the time to extinction is
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Fig. 5. Comparison of the probability to have one, two, three or four infected sites in one
LO at time t . The curves correspond to simulations of the branching process (θ = 1 and
θ = 0.75). The measured probabilities of the simulation model are shown together with the
95% confidence interval. Note, that the graphs have different time scales.

compared. Again, we use θ = 0.75 and obtain a good agreement. The situation is
slightly different in case of the distribution of the number of infected sites at the
moment of observation (Fig. 7). The figures show the densities of the distribution
of the particle model together with the distributions for the caricature with θ = 1,
θ = 0.75 and θ = 0.5. We find, that the curve for θ = 0.5 agrees much better with
the particle system than the curves with θ = 1 or θ = 0.75 (equally for ψm = 0 and
ψm = γ ). This fact can be explained: while the distributions for the probability to
have i infected sites at time t and the time to extinction depends mainly on the grid
states with a small number of infected sites, the number of discovered infected sites
also depends on the states with a higher number of infected sites. For the latter the
average reduction of susceptibles in the contact neighborhood is larger, and thus
for θ a smaller value should be chosen. However, in all cases θ seems not to depend
strongly on ψm, a fact that allows one to compare different vacination strategies
easily.

4.2. Inter-outbreak dynamics

In general, an LO assumes more than one state before it dies. This implies for
the dynamics of the population of LOs that the lifecycle of a single LO must be
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taken into account, a fact, that leads to similar difficulties as the generalized age
structured branching process: The process generating function cannot be computed
explicitly. However, we basically concentrate on properties independent of time
(like reproduction number RLO for LOs, i.e. the average number of LOs created
by one typical LO, or the probability of major outbreaks etc.). To descibe these
properties it is enough to know the embedded Galton-Watson process. In the next
section we derive the generating function for the latter process.

4.2.1. The embedded Galton-Watson process

In order to obtain the reproduction number for LOs we consider the embedded
Galton-Watson process, i.e. we do not work with time but only with the number
of generations. The Galton-Watson process is determined by the distribution of the
number of secondary LOs,

pj := P(one LO creates exactly j secondary LOs).

To compute the generating function for this process, we investigate the birth process
of LOs. Let Ij

i be the state where the primary LO consists of i infected sites and
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Fig. 7. Comparison of the spatial model and the caricature with respect to the distribution
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has created already j secondary LOs and is not discovered. Furthermore let Dj be
the state where the LO has been discovered (and thus the LO is “dead”), but has
created j secondary LOs before. The transition graph between these states is shown
in Fig. 8. Defining the probabilities p̃j

i (t) = P(I
j
i at time t) and q̃j (t) = P(Dj

at time t), we obtain the system of ordinary differential equations
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d

dt
p̃
j
i = −i(µ + βs + σ + βl)p̃

j
i + (i + 1)µp̃j

i+1

+(i − 1)βsp̃
j

i−1 + iβlp̃
j−1
i for i ≥ 1

d

dt
p̃
j

0 = µp̃
j

1

d

dt
q̃j = σ

∞∑
i=0

ip̃
j
i

The distribution of offspring pj reads

pj = lim
t→∞(p̃

j

0(t) + q̃j (t)).



Ring vaccination 161

Let u be the generating function, u(x, y, t) = ∑∞
i=0

∑∞
j=0 x

iyj p̃
j
i (t). We obtain

(Appendix A.2)

u(x, y, t) = x(z+(y) − z−(y)e((y)t ) − z+(y)z−(y)(1 − e((y)t )

(z+(y)e((y)t − z−(y)) + x(1 − e((y)t )
. (8)

where ((y) and z±(y) are defined in equations (19), (20). Let φ(y) be the generat-
ing function for the embedded Galton-Watson process, φ(y) = ∑∞

j=0 pjy
j . From

limt→∞ u(x, y, t) it is possible to derive an expression for φ(y) (see
Appendix A.2),

φ(y) = z−(y) + σ

βs

1

z+(y) − 1
= µ − σ + βs + (1 − y)βl − ((y)

µ + σ − βs + (1 − y)βl + ((y)
. (9)

The generating function of the embedded Galton-Watson process will be used in
the next sections to find characteristic quantities of the whole process.

4.2.2. The reproduction number

It does not make sense to consider the secondary cases of one primary infected site,
since the assumption of time-homogeneity does not hold: The discovery of one
infected site will change the situation for all infected sites within an LO dramati-
cally (they are mostly erased after the event has happend). Hence the reproduction
number for farms infected early in the history of a certain LO will be considerably
higher than that of farms infected later. However, the stability of the uninfected
situation is well described by the number of secondary LOs, created by one pri-
mary LO. This reproduction number RLO is defined similarly to the reproduction
number for households RHO in [6] (the number of secondary infected households,
infected by one typical primary infected household) or RT in [5] (the reproduction
number for the second level of a two-level epidemic model).

The reproduction number is defined as RLO = φ′(1), i.e.

RLO = φ′(1) = βl

(
z−(1)
((1)

+ σ

βs

z+(1)
(z+(1) − 1)2((1)

)
= βl

βs

1

z+(1) − 1
.

(10)

Note, that this expression is the same as

βl

∫ ∞

0
〈i〉(τ ) dτ = βl

βs

1

z+(1) − 1
= RLO.

This formula does mean that the avarage number of infected sites 〈i〉(t) in an LO
produce newly infected LOs at rate βl . In order to obtain the reproduction num-
ber one has to integrate over time. If there is no natural recovery, i.e. µ = 0, the
expression for RLO simplifies to

RLO = βl/σ , (11)
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i.e. RLO does not depend on βs . At first glance, this result seems counterintuitive,
since a high βs does mean that the disease is very contagious and thus one should
expect that also RLO is large. However, for βs high the LOs grow fast and thus
are likely to be observed soon. These two effects, the growth and the observability,
balance in such a way that for µ = 0 the rate βs drops out.

4.2.3. Probability for a major outbreak

Let RLO > 1 and PM be the probability for a major outbreak. The magnitude
1 − PM is the positive root of φ(y) = y, i.e.

1 − PM = φ(1 − PM) = µ − σ + βs + PMβl − ((1 − PM)

µ + σ − βs + PMβl + ((1 − PM)
.

Even though RLO > 1, the probability for the disease to take off is only PM . In
order to get some insight in the magnitude of PM we again consider the special
case µ = 0: The expression for PM simplifies considerably, that is

PM = 1 − 1/RLO.

In this special case an LO behaves like a particle that dies at rate σ and gives birth
to other particles at rate βl .

4.2.4. Expected number of observed infected farms

We have already computed the expected number of infected sites per LO iexp. Let
RLO < 1. From RLO we obtain that the expected number of LO is 1/(1 − RLO).
Hence the expected total number of observed infected farms Iexp becomes

Iexp = 1

1 − RLO

σ

βs

z+
(z+ − 1)2

. (12)

Also here, for µ = 0 this expression becomes more simple, Iexp|µ=0 = (1 +
βs/σ )/(1 − βl/σ ), i.e. the expected number of infected sites within an LO multi-
plied by the expected number of LOs.

4.2.5. Time-dependent behavior

Up to now we only considered properties derived from the embedded Galton-Wat-
son process, i.e. from the sequence of generations. Other properties which are
connected with time and not with generations, like time to extinction, cannot be
determined in this way. Therefore one needs information about the process gener-
ating function of the full process on two levels. There are two ways to look at this
problem. One could interprete LO’s as age-dependend particles, which leads to a
general (Crump–Mode–Jagers) branching process [18]. This approach is suggested
by F. Ball [3]. Instead we will look at it as a multitype branching process [2] with
infinitely many types. The numbering of the types is obvious: a particle of type i
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is an LO with i infected sites, i = 0, 1, 2, ... Let s = (s0, s1, s2, ...) be an infinite
dimensional vector of real variables si , and

F(s; t) = F(s0, s1, s2, . . . ; t)
be the process generating function. A particle of type i may have a short range
contact at rate iβs , a long range contact at rate iβl , it may be observed at rate iσ

or the site may recover spontaneously at rate iµ. Hence the time until some event
happens is exponentially distributed at rate ai ,

ai = i(βs + βl + σ + µ).

If a short range infection takes place, one particle of type i becomes a particle of
type i+1 while a long range contact creates a new particle of type one. Furthermore,
the observation changes the type number to zero. Hence we obtain the infinitesimal
generating function

ui(s) = i[σs0 + βls1 + µsi−1 − (βs + σ + µ)si + βssi+1],

and therefore

∂tF =
∞∑
i=0

ui∂si F =
∞∑
i=0

i[σs0+µsi−1−(βs+σ+µ)si+βssi+1]∂siF, F (s; t)=s1.

Defining the operator L by

L =
∞∑
i=0

i[σs0 + µsi−1 − (βs + σ + µ)si + βssi+1]∂si ,

the equation for F reads

∂tF = LF + βls1

∞∑
i=0

i∂si F.

To obtain a better representation of the solution, we look again at generations. Let

∂tF
0 = LF 0, F 0(s; t) = s1,

∂tF
n = LFn + βls1

∞∑
i=0

i∂si F
n−1, F n(s; t) = 0, n = 1, 2, ...

Then F 0 describes the primary infected particles, and Fn the nth generation of
particles. The generating function F is just the sum of the functions Fn,

F(s; t) =
∞∑
n=0

Fn(s; t).

In order to derive a recursion formula we solve the equation

∂tG(s; t) = LG(s; t), G(s; 0) = G0(s), (13)
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for some smooth initial condition G0(s). Let Gm(s; t) be the solution for G0(s) =
sm. In some sense, we already know this solution, because Gm describes the fate of
a single LO starting at time t = 0 with m infected sites, i.e. with ϕ defined in (5),

Gm(s; t) =
∞∑
i=0

si
1

i!
∂is [ϕ(s, t) + 1 − ϕ(1, t)]m

∣∣
s=0 .

Since F 0(s; 0) = s1, it follows that F 0(s; t) = G1(s; t). Defining

G(s; t) := (
G0(s; t),G1(s; t),G2(s; t), . . . ),

it follows for the initial value problem (13) that

G(s; t) = G0(G(s; t)).
With Duhamel’s principle we rewrite the inhomogeneous systems for Fk as

Fk(s; t) = βl

∫ t

0
G1(s; t − τ)

∞∑
i=0

i∂si F
k−1(G(s; t − τ); τ) dτ. (14)

This formula gives an explicit expression for F(s, t), since we know F 0, and Fk

can be contructed out of Fk−1. Furthermore, LOs are not likely to grow very much,
i.e. for practical purposes it is possible to restrict the number of states from an
infinite number to a relatively small number. Alike, it is possible to restict the ef-
fective live time of an LO from an infinite time to a finite maximal live span. These
restrictions yield a finite sum as well as a finite integral in equation (14), which
make it well suited for numerical methods to approximate the process generating
function.

4.2.6. When is the population disease-free?

Assume that for a time interval 5t no LO is observed. If one wants to decide
whether the population is disease free or not, one has to estimate the probability
that infected sites were able to stay unobserved for a time 5t ,

P(#infected sites > 0 at time t | no observations in (t − 5t, t])

=
∞∑
i=1

P({#inf. > 0 at time t} and {#inf. = i at time t − 5t} |

no observ. in (t − 5t, t])P (#inf. = i at time t − 5t).

Starting at time t = 0 with i infected sites and assuming one LO, we compute for
one LO the probability

P(#infected sites > 0 at time 5t | no observations up to time 5t)

= P({#infected sites > 0 at time 5t} ∩ {no observations up to time 5t})
P (no observations up to time 5t)

= P(#infected sites > 0 at time 5t)

P (no observations up to time 5t)
= ϕi(1,5t) − ϕi(0,5t)

ϕi(1,5t)
.
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Since ϕ(1,5t) > ϕ(0,5t), the latter function is increasing in i. Thus

P(#infected sites > 0 at time t | no observations in (t − 5t, t])

≤ (ϕ(1,5t) − ϕ(0,5t))/ϕ(1,5t)

∞∑
i=0

P(#inf. = i at time t − 5t)

= (ϕ(1,5t) − ϕ(0,5t))/ϕ(1,5t)

∼ (z+ − z−)2

z+z−(z+ − 1)
e−(5t for 5t → ∞,

where ( and z± are defined in (18). Of course, this estimate is very rough. Taking
the sequence of observations into account, it may be possible to derive much better
bounds for the probability that no infected site exists any more.

4.2.7. Comparison of the spatially structured model and the caricature

In Section 4.1.3 we already identified the rates βs , σ and µ with parameters of the
particle model. Here, we define in addition the rate βl ,

βl := γ

ψm + γ
βl.

This time a correction with a factor θ is not necessary, at least not in the subcritical
case: In [4] it is shown that for subcritical epidemic processes in a large enough
population, the approximation with a branching process becomes exact. In the su-
percritical case the agreement holds only up to a time T , that grows logarithmically
with population size.

5. Comparison of mass and ring vaccination

For sake of simplicity, we assume α = 0 throughout this section. The aim is to
compare mass and ring vaccination. We define a control strategy as a pair of rates
(ψm, σ ), i.e. we choose a mass vaccination rate and an observation rate. The ques-
tion of how to determine such a control strategy in an optimal way comes forward
immediately. In order to answer this question, one has to pin down a concept for
optimality.

One possible approach is to concentrate on the costs only. The idea is to choose
a certain time horizon T , to add up the costs for the control strategy (resulting from
the number of vaccinations etc.) and the expected costs caused by outbreaks of
FMD up to the time T , and to minimize these total costs [27,28]. Though this point
of view may be natural, especially for agricultural problems, it is very hard to find
realistic estimates especially of the expected costs due to outbreaks of FMD.

Here, we use another approach: Consider two strategies, (ψ1
m, σ

1) and (ψ2
m, σ

2).
It is obvious that for ψ1

m < ψ2
m and σ 1 < σ 2, the second strategy protects the pop-

ulation better than the first. But, since also the effort of (ψ2, σ 2) is higher than
that of (ψ1, σ 1), it is not appropriate to compare these two strategies directly. To
overcome this problem, only strategies which guarantee the same level for RLO
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are considered, and – within this class – the costs are minimized. This concept is
frequently used in the literature, see for example [1,17,13,16,20,21]. The idea is
to guarantee a certain stability of the uninfected situation at lowest costs. To realize
this concept, we first define costs for observation and mass vaccination.

Costs for observations: Let N be the total number of farms in the system and c1
the average costs for one observation. We define the costs for the observations per
time unit as

Co(σ) = c1σN. (15)

Note, that c1 will be very small, since one “observation” corresponds basically to
the fact that the farmer looks after his cattle from time to time. Costs basically arise
if the veterinarian is called in because of suspicious animals.

Costs for mass vaccination: Let c2 be the average costs for vaccinating the cattle
of one farm. Then the costs for mass vaccination read

Cm(ψm) = c2
ψm

γ + ψm

N. (16)

Now we fix RLO , i.e. ask for all strategies (ψm, σ ) with RLO = R∗, for some
given constant R∗. According to Section 4.2.7 we have βl = βlγ /(γ +ψm). Since
α = 0, i.e. µ = 0, the expression for RLO (11) becomes fairly simple

R∗ = RLO =
(

γ

γ + ψm

βl

)/
σ ⇒ σ =

(
γ

γ + ψm

βl

)/
R∗.

Hence, the total costs for the control strategy (ψm, σ ) under the condition RLO =
R∗ reads

Co(σ) + Cm(ψm) = c1σN + c2
ψm

γ + ψm

N

= c1
γ

γ + ψm

βlN/RLO + c2
ψ

γ + ψm

N

= c1γβl/RLO + c2ψm

γ + ψm

N.

This function is increasing in ψm if c2 − c1βl/RLO > 0 and decreasing otherwise.

Result: If c2 > c1βl/R∗, then all effort should go into ring vaccination. Otherwise
all effort should be used for mass vaccination.

Since in general c1 as well as βl are small, these considerations seem to indicate that
in our situation ring vaccination is better suited than mass vaccination to guarantee
a certain stability of the uninfected situation. This result is somehow astonishing,
since herd immunity is lost without mass vaccination. The reason may be the fact
that we consider the uninfected situation only. Here it is cheaper to react fast on
immigration of the disease than to protect the whole population all the time.
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6. Discussion

We developed a particle model for FMD and ring vaccination. This model assumes
an SIRS–type infectious disease that takes into account especially the contact struc-
ture of FMD. An SEIRS–type model would be more appropriate, but complicates
the mathematical structure. Up to now a square lattice was used for simulations.
In future work the stability of the results against different topologies of the graph
will be checked. Simulations of the particle model showed similar characteristics
as the outbreak near Hannover 1987/88. Note, that this outbreak took place in a
vaccinated population. It is possible that properties are different in totally naive
populations.

Since the particle model cannot be analyzed directly, we derived a linear branch-
ing process that approximates the particle model in certain parameter regions. The
nonlinear aspects of the particle system are summerized in one parameter. This
parameter was chosen ad hoc. Simulations show good agreement. However, it is
the aim of future work to investigate the approximation properties in more detail.
Especially the interplay between size of outbreak, correlations between infected
particles and nonlinearity are interesting. For the branching process, it is possible
to derive many interesting measures analytically like the reproduction number or
the number of infected, observed farms.

The last section compared mass and ring vaccination. The chosen approach was
not to minimize the total costs for control measures and disease but to minimize
the costs of strategies which guarantee a certain level for the reproduction number.
Here, ring vaccination seems to be superior to mass vaccination. However, we em-
phasize that the model was developed for the case of a vaccinated population and
it has to be checked again for totally naive situations.

A. Computation of generating functions

Since the computation of generating functions is rather standard and in some case
somewhat lengthy, some of these derivations are shifted to this appendix.

A.1. Generating function for one single LO

Assuming for the generating function u(x, t) the form

u(x, t) =
∞∑
i=0

xipi(t). u(x, t)|t=0 = xm,

this function satisfies the partial differential equation

∂tu = x0µp1 − (µ + βs + σ)

∞∑
i=1

ixipi + βs

∞∑
i=1

(i − 1)xipi−1

+µ

∞∑
i=1

(i + 1)xipi+1

⇒ 0 = ∂tu − [βsx
2 − (µ + βs + σ)x + µ]∂xu. (17)
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Let Q(x) be the polynomial

Q(x) = βsx
2 − (µ + βs + σ)x + µ.

The characteristic equation of the partial differential equation reads d
dt
x = Q(x),

x(0) = x0. The roots z± of Q(z) are

( :=
√
(µ + βs + σ)2 − 4βsµ, z± := (µ + βs + σ ± ()

/
(2βs). (18)

Separation of the variables yields

t =
∫ x

x0

1

Q(y)
dy = 1

(
{log(z+ − x) − log(z+ − x0)

− log(z− − x) + log(z− − x0)}

i.e.

x(t; x0) = x0(z+ − z−e(t ) − (z+z−(1 − e(t ))

(z+e(t − z−) + x0(1 − e(t )
.

Thus we obtain for m = 1 that the generating function assumes the form (5).

A.2. Generating function for the embedded Galton-Watson process of the whole
process

The generating function u = ∑∞
i=0

∑∞
j=0 x

iyj p̃
j
i (t) satisfies the partial differen-

tial equation

∂tu = [βsx
2 − (µ + βs + σ + (1 − y)βl)x + µ]∂xu, u(x, y, 0) = x.

Let Q(x) = βsx
2 − (µ + βs + σ + (1 − y)βl)x + µ. The characteristic equation

of the partial differential equation reads d
dt
x = Q(x), x(0) = x0. The roots z±(y)

of Q(z) are

z±(y) := [µ + βs + σ + (1 − y)βl ± ((y)]/(2βs), (19)

( :=
√
(µ + βs + σ + (1 − y)βl)

2 − 4βsµ. (20)

Note that z±(1) = z± and ((1) = (, where z± and ( are defined in equation
(18). Separation of variables yields

t =
∫ x

x0

1

Q(z)
dz = 1

(
(y) {log(z+ − x) − log(z+ − x0)

− log(z− − x) + log(z− − x0)}

i.e.

x(t; x0) = x0(z+ − z−e((y)t ) − z+z−(1 − e((y)t )

(z+e((y)t − z−) + x0(1 − e((y)t )
.
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Thus we obtain expression (8) for u(x, y, t). Hence p̃
j

0 = 1
j !∂

j
y u(0, y, t)|y=0 and

∞∑
i=0

ip̃
j
i (t) =

∞∑
i=0

i
1

i!j !
∂ix∂

j
y u(x, y, t)

∣∣∣∣
x=0, y=0

= 1

j !
∂
j
y ∂xe

∂x u(x, y, t)

∣∣∣∣
x=0, y=0

= 1

j !
∂
j
y ∂xu(x, y, t)

∣∣∣∣
x=1, y=0

.

We obtain the expression for pj

pj = lim
t→∞

1

j !
∂
j
y

(
u(0, y, t) + σ

∫ t

0
∂x u(x, y, τ )

∣∣∣∣
x=1

dτ

) ∣∣∣∣
y=0

.

Let φ(y) be the generating function for the Galton-Watson process. Since u is
smooth and the limit t �→ ∞ converges fast enough, we are allowed to exchange
the time limit and the derivative with respect to y, i.e. φ(y) can be written as

φ(y) = u(0, y,∞) + σ

∫ ∞

0
∂x u(x, y, τ )

∣∣∣∣
x=1

dτ.

Since ((0) > 0 the first term yields

lim
t→∞ u(0, y, t) = z−(y)

and the second term is

∫ ∞

0
∂x u(x, y, τ )

∣∣∣∣
x=1

dτ

=
∫ ∞

0
∂x

(
x(z+ − z−e((y)t ) − z+z−(1 − e((y)t )

z+e((y)t − z− + x(1 − e((y)t )

)∣∣∣∣∣
x=1

dt

=
∫ ∞

0

(z+ − z−)2e((y)t

[z+e((y)t − z− + 1 − e((y)t ]2
dt

= (z+ − z−)2

((y)

∫ ∞

1

1

[(z+ − 1)τ − (1 − z−)]2
dτ = 1

βs

1

z+ − 1
.

where we used the transformation τ = e((y)t . Hence the generating function φ(y)

is given by (9).
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